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72076 Tübingen, Germany

Received on October 10, 2007; revised on November 20, 2007; accepted on December 14, 2007

Advance Access publication January 2, 2008

Associate Editor: Burkhard Rost

ABSTRACT

Motivation: The prediction of ligand-binding residues or catalytically

active residues of a protein may give important hints that can guide

further genetic or biochemical studies. Existing sequence-based

prediction methods mostly rank residue positions by evolutionary

conservation calculated from a multiple sequence alignment of

homologs. A problem hampering more wide-spread application of

these methods is the low per-residue precision, which at 20%

sensitivity is around 35% for ligand-binding residues and 20% for

catalytic residues.

Results: We combine information from the conservation at each

site, its amino acid distribution, as well as its predicted secondary

structure (ss) and relative solvent accessibility (rsa). First, we

measure conservation by how much the amino acid distribution at

each site differs from the distribution expected for the predicted ss

and rsa states. Second, we include the conservation of neighboring

residues in a weighted linear score by analytically optimizing the

signal-to-noise ratio of the total score. Third, we use conditional

probability density estimation to calculate the probability of each site

to be functional given its conservation, the observed amino acid

distribution, and the predicted ss and rsa states.

We have constructed two large data sets, one based on the

Catalytic Site Atlas and the other on PDB SITE records, to benchmark

methods for predicting functional residues. The new method FRcons

predicts ligand-binding and catalytic residues with higher precision

than alternative methods over the entire sensitivity range, reaching

50% and 40% precision at 20% sensitivity, respectively.

Availability: Server: http://frpred.tuebingen.mpg.de. Data sets: ftp://

ftp.tuebingen.mpg.de/pub/protevo/FRpred/

Contact: soeding@lmb.uni-muenchen.de

Supplementary information: Supplementary data are available at

Bioinformatics Online.

1 INTRODUCTION

An important aspect of the functional characterization of

a protein is the determination of the residues mediating its

function, such as catalytic residues, those forming the ligand-

binding pocket, or residues involved in protein–protein inter-

actions. To guide experiments, functional residues can be

predicted by inference from homologous proteins whose

functional sites have already been studied. Many tools and

databases have been developed for this purpose (Hulo et al.,

2006; López et al., 2007). Whenever no such information is

available, functional residues can be predicted de novo. In the

wake of the structural genomics initiative, a lot of effort has

gone into developing methods for the de novo prediction of

catalytic residues and ligand-binding sites from protein struc-

ture (reviewed by Jones and Thornton, 2004). However,

structures are only available for a small fraction of proteins,

which underscores the importance of being able to reliably

predict functional residues based only on sequence. Also, any

advance in this area is directly transferable to methods combin-

ing sequence and structural information since these sources of

information have been shown to be largely complementary

(Gutteridge et al., 2003; Petrova and Wu, 2006; Youn et al.,

2007). By training their machine-learning methods on different

subsets of sequence and structure-based features, these studies

have identified the most important ones: residue conservation

clearly tops the list, followed by amino acid type (or frequency

distribution), surface geometry, and rsa (or similar measures).

The conservation of a residue is calculated from the amino

acid frequency distribution in the corresponding column of

a multiple sequence alignment of homologs. It is a measure for

the functional or structural constraints that have acted on

this position. Practically every known conservation measure

has been tested for its ability to predict functional residues

(Capra and Singh, 2007; Chelliah et al., 2004; Madabushi et al.,

2002; Pei and Grishin, 2001; Pupko et al., 2002; Valdar and

Thornton, 2001; Wang and Samudrala, 2006; Zhang et al.,

2007), but there is no consensus so far as to what score works

best (see review by Valdar, 2002).
A related group of methods detect residues that determine

the functional subtype of proteins. Examples are positions that

influence which substrate of a class of similar compounds

is bound by a group of related enzymes. To detect such sub-

typing or tree-determining positions, these methods generally

look for columns whose amino acid distributions differ strongly

between the subtypes or between automatically clustered
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groups of homologous sequences (Casari et al., 1995;

del Sol Mesa et al., 2003; Hannenhalli and Russell, 2000;

Kalinina et al., 2004; Marttinen et al., 2006; Mihalek et al.,

2004; Pei et al., 2006).
Motivated by the work of Youn et al. (2007), Petrova and

Wu (2006), and Gutteridge et al. (2003), we aim here to use all

information available from a protein’s sequence to predict

functional residues. We combine a new conservation score that

takes into account the predicted local environment (Chelliah

et al., 2004), predicted ss and rsa, and the profile amino acid

frequencies at each position, in a simple and transparent

statistical framework.

2 METHODS

2.1 Benchmark sets

Small or unevenly sampled test sets suffer from intrinsic noise and make

it difficult to distinguish chance effects from systematic differences.

We have therefore constructed two large and diverse benchmark sets,

based on the Catalytic Site Atlas by Thornton and coworkers (Porter

et al., 2004) and on PDB SITE records, which we name CSA and

SITE. For comparison purposes, we also test all methods on a recently

published, large data set by Capra and Singh (2007). The construction

of the two sets is described in detail in the Supplementary Material.

Briefly, for CSA we use two alternative definitions of true positive

residues: catalytic (CSA-cat) and ligand-binding (CSA-ligand).

Catalytic residues are defined according to the CSA, whereas ligand-

binding residues are those that are in contact with a validated physio-

logical ligand. A non-protein molecule is validated as physiological

ligand by being in contact with a protein residue annotated as catalytic in

the Atlas (with a 4Å distance cut-off). The SITE-ligand dataset uses the

same definition of true positive residues as CSA-ligand. Here, a molecule

is validated as physiological ligand by being in contact with a protein

residue annotated in a PDB SITE record. Table 1 gives an overview over

the benchmark sets. Note that the CSA and SITE sets are very diverse

and evenly sampled, containing one member per SCOP family.

For benchmarking the various flavours of our functional residue

prediction method FRcons, we use two-fold cross-validation: We divide

the benchmark sets into two halves, ensuring that no SCOP superfamily

(or EC family) is split between the halves. We train on the first half and

test on the second and vice versa, then we pool the results.

2.2 Profile generation

Following the work of Pei and Grishin (2001), we tested three schemes

to build sequence profiles from MSAs: ‘unweighted’, ‘weighted’ and

‘independent counts’ (see Supplementary Material). We have tested all

benchmarked methods with all three profile building schemes (Fig. S1)

(except Rate4Site that takes alignments as input) and picked the best

scheme for each method. All methods except Jensen-Shannon

Divergence performed best with independent counts. The latter was

slightly better with the Henikoff-weighted scheme, which was also

employed in the original work (Capra and Singh, 2007). Except for the

FRcons method, no pseudocounts are added to the profiles because our

tests have shown that pseudocounts do not improve the performance of

the methods once the scores are normalized (Fig. 4B).

2.3 Benchmarked methods

In the following we describe the scores that have been benchmarked,

which includes all top-performing scores from the recent functional site

prediction benchmark by Capra and Singh (2007). The sum-of-pairs

measures as implemented in AL2CO were also tested but proved

much inferior to the other measures and their results have therefore

been omitted. For all methods in this section except Rate4Site, columns

with450% gaps have been given the minimum score, as implemented in

the AL2CO method. To minimize the influence of the gap treatment,

we have striven to build the alignments with uniformly high coverage

(Section 2.1).

2.3.1 Normalization We investigated the effect of normalizing

the conservation scores, Zi¼ (Scorei��Score)/�Score, where Scorei
is a placeholder for the benchmarked scores, �Score is the average

of Scorei over all positions i in the alignment and �Score is the SD over

all alignment positions. The normalization considerably improves all

scores except FRcons (Fig. 4B). We therefore normalized all scores

except Rate4Site by default.

2.3.2 Shannon entropy The entropy for a profile column with

amino acid frequencies pia is

Entropy ¼ �
X20
a¼1

pia log pia ð1Þ

and measures the amount of disorder in the amino acid distribution.

It assumes its minimum value of 0 for a totally conserved column.

2.3.3 Relative entropy Whereas entropy treats all amino acids in

the same way, relative entropy measures the deviation of the amino acid

distribution pia from a background distribution fa:

Relative entropy ¼
X20
a¼1

pia log
pia
fa

ð2Þ

As a consequence, a partially conserved column with 50% tryptophane

( fW¼ 1.4%) will score higher than a fully conserved column with

leucine ( fL¼ 10%). For the relative entropy as well as for the Jensen

Shannon divergence (see below), we use the amino acid background

frequencies from the Gonnet matrix.

2.3.4 Variance Pei and Grishin (2001) propose as a conservation

measure the root mean square deviation between the amino acid

distribution pia and the average amino acid distribution over the whole

alignment pa, which they name Variance:

Variance ¼
X20
a¼1

ðpia � paÞ
2

 !1=2

ð3Þ

It has the advantage over relative entropy of being less extreme in scor-

ing deviations in frequencies of rare amino acids because the difference

between frequencies instead of their ratio is used to measure deviation.

2.3.5 Jensen Shannon divergence Capra and Singh (2007) have

applied the Jensen Shannon divergence (JSD) to scoring residue

Table 1. Overview of the benchmark sets used in this study

Proteins SCOP

families

Positive

residues

Negative

residues

Alignment

diversity

CSA-cat 423 423 1536 107 463 11� 4

CSA-ligand 5331 103 668

SITE-ligand 711 711 9547 142 628 11� 4

EC-ligand 828 348 16 166 273 718 7� 3

The CSA set uses two definitions of true positive residues: original CSA-

annotated, (CSA-cat) and ligand-binding (CSA-ligand). The diversity is measured

by the average number of different amino acids per column.
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conservation. As in the previous two scores, the deviation between the

amino acid distributions pia and the background distribution ( fa) is

measured:

JSD ¼ H
pia þ fa

2

� �
�
1

2
HðpiaÞ �

1

2
Hð faÞ: ð4Þ

Here, H(�) denotes the entropy of an amino acid distribution as

defined in Equation (1). JSD can be interpreted as mutual information

(Grosse et al., 2002): Given an amino acid drawn from either of the

two distributions with a probability of 1/2, JSD is the amount of infor-

mation that is gained for deciding which of the two distributions the

amino acid was drawn from.

2.3.6 Rate4Site Rate4Site (Mayrose et al., 2004; Pupko et al., 2002)

is a method that estimates the rates of evolution for each position

in an alignment by constructing a maximum-likelihood phyloge-

netic tree and predicting the most likely rates of evolution with

Bayesian statistics. We use Version 3.1 (slow version) with default

parameters on the EC set. We could not benchmark Rate4Site on the

other two sets because the fast version did not work on several

alignments and the slow version was prohibitively slow.

2.4 The FRcons method

In this subsection we first introduce the basic FRcons conservation

score and then explain its extensions: using amino acid background

frequencies conditioned on predicted rsa and ss, including the effects of

local sequence neighbors through a windowing method, and integrating

this information with site-specific amino acid distributions by condi-

tional probability density estimation.

2.4.1 The basic conservation score In devising a new conserva-

tion score, we were guided by Valdar’s criteria (Valdar, 2002). Briefly,

the score should (a) be continuous and bounded, (b) depend on the

relative amino acid frequencies, (c) take the similarities between amino

acids into account, (d) penalize gaps in the alignment column, (e) weight

the sequences according to their diversity, and (f) be as simple as possi-

ble. In addition, we demand that (g) a maximally unconserved column

get a score of 0, and (h) a fully conserved column get the maximum

score, independent of the conserved amino acid.

The following score comes close to obeying these conditions:

FRconsbasic ¼
log

P20
a¼1 p

2
ia=fa

log
P20

a¼1 pia=fa
: ð5Þ

As does relative entropy and JSD, this score relates the profile amino

acid distribution pia to a background distribution fa. One can show that

it attains its minimum of 0 when pia¼ fa(a¼ 1, . . . , 20) and its maximum

of 1 for a fully conserved column.

Equation (5) thus fulfills all criteria except (c) and (d). To make it

respect (d), we penalize gaps in a straightforward way, multiplying

the score by one minus the fraction of internal gaps in the alignment

column. Here, an internal gap is a gap that is bordered by residues

on both sides. We use Henikoff sequence weights to calculate this

fraction.

2.4.2 Pseudocounts To fulfill (c), we add pseudocounts to the

profile frequencies pia by the substitution matrix method (Durbin et al.,

1998; Altschul et al., 1997):

~pia ¼ ð1� �Þ pia þ �
X20
b¼1

Mða; bÞ pib; ð6Þ

Here, � quantifies how much pseudocounts are mixed into the

original profile (see following paragraph). In the standard substitution

matrix method, M(a, b) would be the conditional probability matrix

P(a|b) that underlies the log-odds representation of substitution

matrices: Sab¼ log(P(a|b) / fa). However, in that case condition (h)

would be violated: For the same value of �, a tryptophane would receive

fewer pseudocounts than a serine, for instance, since a serine is much

more likely to mutate than a tryptophane in the same time span. Hence

the FRcons score would be higher for a column with only tryptophanes

than for a column with only serines. We therefore define a matrix

M(a, b)¼ (1��b)�abþ �bP(a|b), which is a mixture of the identity matrix

�ab and P(a|b). We determine the mixture coefficients �b such that

FRconsbasic M(�, b) ¼ minb0 2 {1, . . ., 20} FRconsbasicP(�|b
0)¼ const. for all

b2 {1, . . . , 20}. As substitution matrix, we chose the Gonnet matrix, but

the particular choice is not critical. (The pseudocount matrix M(a, b)

can be obtained from the authors.)

The value of the pseudocount admixture is chosen in Equation (6) in

a similar way as in PSI-BLAST (Altschul et al., 1997), �¼ (�þ 1)/

(Neff� 1þ �), where �¼ 5 and Neff is the average entropy over all

alignment columns with 550% gaps. Thus, very diverse alignments

receive few pseudocounts, whereas an alignment consisting only of

a single sequence (Naa¼ 1) gets the maximum amount of pseudocounts

(�¼ 1). The effect is that after the addition of pseudocounts, the profiles

have approximately the same degree of diversity (or entropy) in their

columns, independent of their initial diversity. In this way, conservation

scores for alignments with very different alignment diversities can be

compared. (We will show in Figure 4B, however, that a similar effect

can also be achieved, at least in our benchmarks, by normalizing

the conservation scores.) To treat all scores similarly, we normalize

FRcons (Section 2.3) and name the resulting score FRconsbasic in the

following.

2.4.3 Trained background frequencies Instead of simply taking

fixed background frequencies fa, we can estimate the background

frequencies given the predicted rsa and ss (Chelliah et al., 2004).

We thereby assess how unusual the amino acid distribution of a profile

column is compared to what would be expected for the predicted

rsa and ss. This should allow us to better distinguish conserved core

residues from conserved functional residues since core positions will

mostly exhibit amino acid distributions that are common for their

predicted low solvent accessibility.

We first construct training alignments in the same way as described in

Section 2.1 for 5000 randomly chosen sequences from the nonredun-

dant protein sequence database and predict the solvent accessibility

with SABLE (Adamczak et al., 2004) and the secondary structure with

PSIPRED (Jones, 1999). We divide the predicted rsa into 10 equally

populated bins to obtain a single number ri2 {0, . . . , 9} for each posi-

tion. Similarly, we divide the PSIPRED confidence values for helix

and extended sheet states into 10 bins, obtaining hi, ei. For each profile

column we then sum up the training profile frequencies pia for

each amino acid a in the bin (ri, hi, ei)2 {0, . . . , 9}3 determined by the

predicted rsa and ss states. After normalizing, we obtain a matrix

containing the conditional background frequencies f(a|r, h, e). These

frequencies can now be used in place of the unconditioned frequencies

fa in Equation (5). (Figure S3 illustrates this procedure.)

2.4.4 Windowing over neighboring positions Capra and Singh

showed that incorporating information about the conservation of

sequentially neighboring positions improves the prediction of both

catalytic and ligand-binding residues. They summed the conservation

scores Z of the central position i and the neighboring positions iþ d,

Zwin ¼
XD

d¼�D

wdZiþ d ð7Þ

and empirically optimized the window length 2Dþ 1 and the total

weight of the neighboring positions, weighting all neighboring positions

the same. To improve this successful idea, we drop the restriction of

constant weights for the neighbors and analytically optimize all weights
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wd independently. Technically speaking, we would like to optimize a

signal-to-noise ratio, where the signal measures how much more score

on average is given to the positive (i.e. functional) positions in compari-

son with the negatives. The noise is the standard deviation of the scores

of the negative positions. Both these entities can be estimated from the

training data. The signal can be written

signal ¼ hZwinipos � hZwinineg

¼
XD

d¼�D

wd hZdipos � hZdineg
� �

;
ð8Þ

where h Zdipos¼
P

i is pos Ziþ d/Npos is the average conservation score

Z over all positions at þd residues from a positive position and

hZdineg¼
P

i is neg Ziþ d/Nneg is the average conservation scores Z over

all positions at þd residues from a negative position. The squared

noise is

noise2 ¼ varðZwinÞ ¼
X4
d¼1

X4
e¼1

covðZd;ZeÞwdwe; ð9Þ

where cov(Zd, Ze)¼
P

i is neg Ziþ d Ziþ e/Nneg is the covariance between

scores at distance d and e from a negative residue. The signal-to-noise

ratio can be maximized using the method of Lagrange multipliers,

by maximizing the signal under the constraint of constant noise.

To separate training and test data, we use two-fold cross-validation as

described in Section 2.1. The optimum value for D is 2 for all data sets.

For the CSA-catalytic set, we get (averaged over both halves)

(w�2, . . . ,wþ2)¼ (0.10, 0.14, 0.90, 0.15, 0.10), for the CSA-ligand set

(w�2, . . . ,wþ2)¼ (0.09, 0.12, 0.94, 0.13, 0.09) and similar values for

SITE-ligand and EC-ligand. This is not far from the values Capra

and Singh empirically optimized: D¼ 3 and (w�3, . . . ,wþ3)¼ (1/8, 1/8,

1/8, 1, 1/8, 1/8, 1/8). (We have scaled their weights by a factor 7/4 to

show the correspondence).

2.4.5 Probability density estimation The constraint on residues

to take part in a specific catalytic activity or to bind ligands certainly

influences the observed frequency distribution considerably. Valines are

much underrepresented at catalytic sites, whereas lysines or aspartates

are highly overrepresented, for instance. The degree of under- or over-

representation may also be correlated with other properties, such as rsa

or conservation.

We aim to exploit this information by estimating the probability that

a position i is positive (i.e. catalytic or ligand-binding), given its amino

acid frequency distribution pia, its predicted rsa ri, predicted helix and

extended sheet propensities hi, ei, and its conservation score Zi. We first

use Bayes’ theorem (Sivia, 2006; Durbin et al., 1998) to calculate

the posterior probability of finding a positive residue, given the data

(pia, ri, hi, ei,Zi),

Pði posjpia; ri; hi; ei;ZiÞ ¼
Pðpia; ri; hi; ei;Ziji posÞ

Pðpia; ri; hi; ei;ZiÞ
PðposÞ ð10Þ

and then estimate the numerator and denominator by modeling the

probabilities with the Bayesian network (Needham et al., 2007) shown

in Figure S2A: For the likelihood in the numerator we get

Pðpia; ri; hi; ei;Ziji posÞ � Pðpiajri;Zi; i posÞ
�PðrijZi; i posÞ Pðhi; eijZi; i posÞ PðZiji posÞ Pði posÞ

ð11Þ

where the first factor on the right-hand side can be approximated by

Pðpiajri;Zi; i posÞ �
Y20
a¼1

Pðajri;Zi; i posÞ
pia ; ð12Þ

and analogously for the denominator. We can now substitute

Equation (12) into (11) and then into (10). The result is expressed

in terms of the odds matrices

Aða; r;ZÞ ¼
Pðajr;Z; posÞ

Pðajr;ZÞ
; Rðr;ZÞ ¼

PðrjZ;posÞ

PðrjZÞ
;

Sðh; e;ZÞ ¼
Pðh; ejZ;posÞ

Pðh; ejZÞ
; CðZÞ ¼

PðZjposÞ

PðZÞ
:

Pði posjpia; ri; hi; ei;ZiÞ �Q20
a¼1 Aðai; ri;ZiÞ

pia Rðri;ZiÞ Sðhi; ei;ZiÞ CðZiÞ PðposÞ:
ð13Þ

The odds matrices and the a priori probability of a functional residue

P(pos) can be estimated from the training alignments (Fig. S2B).

We first determine the total count matrices C(a, ri, hi, ei,Zi) and

C(a, ri, hi, ei,Zi|i pos) by iterating over all positions i of the training

alignments and adding pia to the count matrix bins C(a, ri, hi, ei,Zi)

for all a, and to C(a, ri, hi, ei, zi, pos) if position i is positive. Here,

ri, hi, ei, and Zi are obtained by running SABLE (Adamczak et al.,

2004), PSI-PRED (Jones, 1999) and FRconsbasic, respectively, and

dividing the results into 10 bins (20 bins for Zi).

Since there are far too many bins (20� 103� 20) in the count matrix

to be sufficiently populated by the �5� 104 positions in the training

alignments, we smear out the counts with functions wr(r
0)¼ 0.5�|r0�r|,

wZ(Z
0)¼ 0.5�|Z0�Z0 |, and whe(h

0, e0)¼ 0.7(�|h0�h|¼ |e0�e|þ |h0 þ e0�h�e|)/2,

similar to the way Gaussian envelopes in classical probability

estimation are convoluted over the counts. We calculate a smoothed

matrix with

~Cða; r; h; e;ZÞ

¼

P10
r0;h0;e0¼1

P20
Z0¼1 wrðr

0Þwheðh
0; e0ÞwZðZ

0Þ � Cða; r0; h0; e0;Z0ÞP10
r0;h0;e0¼1

P20
Z0¼1 wrðr0Þwheðh0; e0ÞwZðZ0Þ

: ð14Þ

In an analogous way, we smear out the counts of the positive residues

to obtain ~C(a, r, h, e,Z|pos). From these smoothed matrices, the condi-

tional probabilities in the numerator and denominator of the odds

matrices in Equation (13) can be obtained by summing over the

appropriate indices.

3 RESULTS AND DISCUSSION

Figure 1 shows the probability density for the FRcons score,

calculated as explained in Sections 2.4.1–2.4.5, for positive

(i.e. functional) and negative residues on the CSA-ligand data

set. Positive residues are strongly enriched in the high-score

range relative to negatives: If we set the score threshold to
1.5 (see shaded areas in Fig. 1), about 40% of positive residues

Fig. 1. FRcons score distribution for the 1536 positive and 107 463

negative residues in the CSA-ligand data set.
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will be predicted as true positives (light gray area), whereas

only about 4% of negative residues will be predicted as false

positives (dark gray area).

Let us introduce a few definitions. The positive residues

above (below) the threshold score are called true positives

(false negatives), and the negative residues above (below) the

threshold are called false positives (true negatives). These are

abbreviated TP, FN, FP, and TN, respectively. The true positive

rate is defined as TPR¼TP/(TPþFN) and the false positive

rate as FPR¼FP/(FPþTN). To compare the predictive power

of different methods, a ROC plot is often drawn, tracing

TPR vs. FPR while varying the threshold score from �1 to1.

(Often, TPR and FPR are called sensitivity and 1–specificity,

respectively.)
Figure 2 shows a ROC plot for six conservation methods

applied to the CSA-ligand set. Before discussing the results

in the next subsection, a few remarks about the graphical

presentation of the data are in place. It looks at first glance

as though 40% of the positive residues should be predictable

with fairly high confidence. However, one must bear in mind

that ligand-binding residues make up only about 5% of the

total number of residues (Table 1), hence at a true positive rate

of 40% and a false positive rate of 4%, the ratio of TP to FP

is about 0.4� 0.05:0.04¼ 1:2, corresponding to a precision

TP/(FPþTP) of only 33% and a false discovery rate

FP/(FPþTP) of 67%. This exemplifies the importance of

carefully interpreting TPR–FPR plots if positives and negatives

are highly unbalanced (Davis and Goadrich, 2006). First, the

FPR gives only indirect information about the false discovery

rate, which is the more relevant measure for practical purposes.

Second, the names ‘false positive rate’ and also ‘1–specificity’

carry the risk of being misunderstood to be synonymous with

‘error rate’. We have, therefore, chosen to present the bench-

mark results as precision versus sensitivity plots, where preci-

sion can be interpreted as 1–error rate and sensitivity is

synonymous with TPR and recall. To allow easier comparison

with previous studies, we include TPR versus FPR versions of

all precision–sensitivity plots in the Suppplementary Materials

(Figs. S4–S6).

3.1 Prediction of ligand-binding residues

Precision versus sensitivity for the CSA-ligand benchmark

set is shown in Figure 3A. First, we note that the precision

of all methods is below 30% at 50% sensitivity, a fairly sober-

ing result that suggests plenty of room for improvement.

Fig. 2. ROC plot on the CSA-ligand data set.

Fig. 3. Prediction of ligand-binding residues on three sets: (A) CSA,

(B) SITE and (C) EC. (Note: sensitivity is the same as recall.)
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Second, the differences in performance between entropy, rela-
tive entropy, variance, and JSD are minor compared to the
improvement over these methods by FRcons. The absolute

improvement by FRcons is particularly pronounced at high
precisions. In relative terms, FRcons precision shows between
10% and 40% higher precision than the other methods over

most of the sensitivity range. The windowing (Section 2.4.4)
is able to improve the JSD score, but only at precisions

below 0.3.
The results on the SITE-ligand benchmark set (Fig. 3B)

yield similar results. The improvement of FRcons over the

other methods is more pronounced for lower sensitivities, but
vanishes above 50% sensitivity. We surmise that the much
more heterogenuous quality of the PDB SITE annotations

compared with the manually curated, literature-based CSA
annotations is responsible for the smaller differences in the
right half of the plot. The larger differences toward low

sensitivities might be explained by a higher coverage of ligand-
binding sites in the SITE annotated structures. A higher cover-

age would lead to fewer falsely assigned negatives and to
a higher achievable maximum precision.
The results on the EC-ligand benchmark set (Fig. 3C) show a

much weaker improvement of FRcons over the other methods,
but the former still performs best over the entire sensitivity
range. Entropy is slightly better than JSD and relative entropy,

although the opposite is true for the other two sets. We suspect
that the main cause for the differences between the EC set and
the other two benchmark sets is the presence of a fair amount of

alignments in the EC-benchmark set with very low diversity
(Table 1). Alternatively, some non-physiological ligands might

have been used to define positive residues. This would explain
the much smaller maximum precision reached (55% instead
of 85%). However, this hypothesis cannot explain the observa-

tion that only some of the methods have a decreased perfor-
mance on the EC set in comparison with the CSA set (FRcons,
relative entropy, entropy) whereas others have similar

(variance) or improved performance (JSD, JSDþwin).
The relatively weak predictive performance of Rate4Site

might be due to the fact that Rate4Site ranks conserved residues

from the core higher on average than the other methods,
degrading its performance. This disappointing result is surpris-

ing, however, since the study by Capra and Singh (2007) showed
Rate4Site to be slightly better than the other tested methods.
While Rate4Site scores were calculated in the same way, the

differences are probably related to the calculation of JSD,
relative entropy, and entropy: (a) In our study these scores are
normalized, whereas they were not in the other study, and (b) we

do not add pseudocounts, whereas constant pseudocounts of
10�6 were employed in the other study.

3.2 Prediction of catalytic residues

The results of predicting catalytic residues on the CSA catalytic

benchmark set are shown in Figure 4A. In comparison with the
CSA-ligand graph (Fig. 3A), the precision is lower for all tested

methods. This is not surprising since many conserved ligand-
binding sites will have high scores and will become high-scoring
false positives in this benchmark set. However, FRcons man-

ages at least to some extent to distinguish ligand-binding

Fig. 4. (A) Precision versus sensitivity for the prediction of catalytic

residues. (B) Normalization improves the performance of all scores

except FRcons, as shown here for the CSA-ligand set. Unnormalized

scores are plotted as dotted lines, normalized scores as solid lines. Note

that the x-axis scale and the data set are different from A. (C) Effect of

the different FRcons components, shown here for the CSA-ligand set.

FRcons basic: basic score as described in Sections 2.4.1–2.4.2;

TF: trained background frequencies (Section 2.4.3); win: windowing

over neighboring positions (Section 2.4.4);DE ss rsa: density estimation

using predicted ss and rsa (Section 2.4.5); DE aa: density estimation

using amino acid distribution (Section 2.4.5); FRcons all: full FRcons

score (Sections 2.4.1–2.4.5).
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residues from catalytic ones, because its improvement over the

other methods is larger than the CSA-ligand set. The likely

reason is that FRcons uses information other than conserva-

tion, e.g. the amino acid composition of sites.

3.3 Score normalization

Normalization relative to all positions in the query protein

(Section 2.3) greatly improves the performance of all scores

(Fig. 4B), except FRcons with pseudocounts (see mauve FRcons

basicþ pc trace). Without normalization, alignments containing

only a few very similar sequences look highly conserved at all

positions compared to highly diverse alignments. After normal-

ization, the conservation score of each particular position is

related to the conservation at all other positions. Hence, a very

narrowly sampled alignment will not have many more highly

scoring positions than a diverse alignment once the normalized

score is used. A similar effect can be achieved by adding

diversity-dependent pseudocounts, which has been done for

FRcons, explaining why FRcons performance does not criti-

cally depend on the normalization step.
The magnitude of the improvement is likely to be smaller in

practice than in the CSA-ligand benchmark set, which would

mean the results of all methods except FRcons are slightly

optimistic. The reason is that the normalization helps more

when the fraction of positives varies little from protein to

protein. Due to the construction of the CSA-ligand benchmark

set, we expect this variation to indeed be the lower than it will

be in practice.

3.4 Contribution by various FRcons components

To gain insight into the source of improvement of FRcons over

the other methods, we have tested several versions of FRcons

by including the components described in Sections 2.4.1–2.4.5

in various combinations (Fig. 4C). The basic FRcons score

including pseudocounts (mauve) performs similarly to the other

tested scores (Fig. 4B). Windowing (blue) and trained

frequencies (cyan) both improve the performance by a small

amount, which adds up when combined (green). Density esti-

mation using ss and rsa but without using trained frequencies

or windowing gives only a marginal improvement (dark green).

The largest contribution by far stems from density estimation

using amino acid frequencies (orange). When adding the

other components (red trace), there is a clear improvement at

intermediate and high sensitivities. However, the effects are

unfortunately far from additive (compare the green and orange

trace with red). To make further progress, it will be important

to understand the underlying reasons.

4 CONCLUSION

We have developed a sequence-based method for the prediction

of catalytic- or ligand-binding residues that combines a new

conservation score with two further ingredients: the estimation

of background frequencies conditioned on predicted ss and rsa

and a probability density estimation technique to integrate the

information from conservation, predicted ss and rsa, and amino

acid frequencies. Furthermore, we show how to analytically

optimize the weights for the inclusion of neighboring residues

(Capra and Singh, 2007).
The proposed method considerably improves on existing,

conservation-based methods for the prediction of both ligand-

binding and catalytic residues. The largest contribution comes

from combining the conservation score with the amino acid

frequencies by probability density estimation. This method was

chosen for its simplicity and transparency, but it would make

sense to compare its performance to that of other techniques

such as Support Vector Machines. An advantage could be that

one would not have to specify conditional dependencies in

order to artificially reduce the complexity of the problem.
In a comparison to approaches using sequence and structure

information, we attain similar performance for catalytic residue

prediction: At 18.5% precision, our method has a sensitivity

of �50%, close to the 51.1% cited by Youn et al. (2007) for

fold-level training. At 14% precision we get 57% sensitivity,

again close to the 56% obtained by Gutteridge et al. (2003)

without spatial clustering. However, such a comparison can

only give a rough indication due to the different data sets used.

Our set, for instance, contains 1.5% positives whereas the

CATRES set contains only 1.1%.
The design of two large benchmark sets for the prediction

of ligand-binding residues, based on the CSA and on the PDB

SITE annotations, proved crucial for the development and

testing of our new method, as no such large data set was around

when the work was begun. Together with the new data set by

Capra and Singh (2007) and the (not CAS) (Porter et al., 2004),

they will hopefully assist others in making progress in the

prediction of functional residues.
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López,G. et al. (2007) Firestar–prediction of functionally important residues

using structural templates and alignment reliability. Nucleic Acids Res., 35,

573–577.

Madabushi,S. et al. (2002) Structural clusters of evolutionary trace residues

are statistically significant and common in proteins. J. Mol. Biol., 316,

139–154.

Marttinen,P. et al. (2006) Bayesian search of functionally divergent protein

subgroups and their function specific residues. Bioinformatics, 22, 2466–2474.

Mayrose,I. et al. (2004) Comparison of site-specific rate-inference methods for

protein sequences: empirical Bayesian methods are superior. Mol. Biol. Evol.,

21, 1781–1791.

Mihalek,I. et al. (2004) A family of evolution-entropy hybrid methods for ranking

protein residues by importance. J. Mol. Biol., 336, 1265–1282.

Needham,C.J. et al. (2007) A primer on learning in Bayesian networks for

computational biology. PLoS Comput. Biol., 3, e139.

Pei,J. et al. (2006) Prediction of functional specificity determinants

from protein sequences using log-likelihood ratios. Bioinformatics, 22,

164–171.

Pei,J. and Grishin,N.V. (2001) AL2CO: calculation of positional conservation in

a protein sequence alignment. Bioinformatics, 17, 700–712.

Petrova,N.V. and Wu,C.H. (2006) Prediction of catalytic residues using Support

Vector Machine with selected protein sequence and structural properties.

BMC Bioinformatics, 7, 312.

Porter,C.T. et al. (2004) The Catalytic Site Atlas: a resource of catalytic sites and

residues identified in enzymes using structural data. Nucleic Acids Res., 32,

129–133.

Pupko,T. et al. (2002) Rate4Site: an algorithmic tool for the identification of

functional regions in proteins by surface mapping of evolutionary determi-

nants within their homologues. Bioinformatics, 18 (Suppl 1), 71–77.

Sivia,D.S. (2006) Data Analysis. A Bayesian tutorial. Oxford University Press,

Oxford.

Valdar,W.S. (2002) Scoring residue conservation. Proteins, 48, 227–241.

Valdar,W.S. and Thornton,J.M. (2001) Protein–protein interfaces: analysis of

amino acid conservation in homodimers. Proteins, 42, 108–124.

Wang,K. and Samudrala,R. (2006) Incorporating background frequency

improves entropy-based residue conservation measures. BMC Bioinformatics,

7, 385.

Youn,E. et al. (2007) Evaluation of features for catalytic residue prediction in

novel folds. Protein Sci., 16, 216–226.

Zhang,S.W. et al. (2007) Estimating residue evolutionary conservation by

introducing von Neumann entropy and a novel gap-treating approach.

Amino Acids, DOI 10.1007/s00726-007-0586-0.

620

J.D.Fischer et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/5/613/200952 by guest on 25 April 2024


