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ABSTRACT

Motivation: Computational annotation of protein coding genes

in genomic DNA is a widely used and essential tool for analyzing

newly sequenced genomes. However, current methods suffer from

inaccuracy and do poorly with certain types of genes. Including

additional sources of evidence of the existence and structure

of genes can improve the quality of gene predictions. For many

eukaryotic genomes, expressed sequence tags (ESTs) are available

as evidence for genes. Related genomes that have been sequenced,

annotated, and aligned to the target genome provide evidence

of existence and structure of genes.

Results: We incorporate several different evidence sources into

the gene finder AUGUSTUS. The sources of evidence are gene and

transcript annotations from related species syntenically mapped to

the target genome using TRANSMAP, evolutionary conservation of

DNA, mRNA and ESTs of the target species, and retroposed genes.

The predictions include alternative splice variants where evidence

supports it. Using only ESTs we were able to correctly predict at

least one splice form exactly correct in 57% of human genes. Also

using evidence from other species and human mRNAs, this number

rises to 77%. Syntenic mapping is well-suited to annotate genomes

closely related to genomes that are already annotated or for which

extensive transcript evidence is available. Native cDNA evidence is

most helpful when the alignments are used as compound informa-

tion rather than independent positionwise information.

Availability: AUGUSTUS is open source and available at http://

augustus.gobics.de. The gene predictions for human can be

browsed and downloaded at the UCSC Genome Browser (http://

genome.ucsc.edu)

Contact: mstanke@gwdg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Eukaryotic genome projects are dependent on automated

methods for identifying the genes in the genome assembly.

However, the accuracy of current methods is not sufficient for

many purposes. For example, taking alternative splicing into

account, the best methods predict only 40–50% of human

transcripts correctly (Guigó et al., 2006). Increasing the

prediction accuracy is crucial to ensuring a maximal scientific

benefit of the genome projects. So-called ab initio gene finders

just require the target genome as input and some are readily

trained for a new genome (Korf, 2004; Lomsadze et al., 2005;

Stanke and Waack, 2003) However, the progress of the last

years in improving ab initio methods is not far reaching enough

(Guigó et al., 2006) and the methods of choice in most genome

projects are methods based on extrinsic data such as expressed

sequence tags (ESTs), other cDNA evidence, and the informa-

tion that is provided by related sequenced genomes and their

annotation. However, ab initiomethods are still required to find

genes without sufficient support by extrinsic data.
Many genome sequencing projects are also accompanied

by EST sequencing efforts. The new pyrosequencing (454)

method (Margulies et al., 2005) is also resulting in an increase

in the availability of cDNA reads. Several methods have been

developed that predict genes based on full-length coverage with

transcript alignments and/or protein alignments (e.g. Djebali

et al., 2006; Thierry-Mieg and Thierry-Mieg, 2006). However,

even with exceptionally extensive cDNA sequencing, as in the

case of the human genome, not all genes are covered with

transcript alignments. Further, many genes are only partially

covered with ESTs and the remaining part needs to be predicted

without the help of any cDNA evidence.
Gene finders which incorporate ESTs in their predictions

can improve their accuracy over pure ab initio predictions

(Brejová et al., 2005; Stanke et al., 2006b). In a recent study, the

program N-SCAN/EST, which is based on an ab initio model,

has been shown to predict approximately 40% of human genes

correctly using only ESTs and conservation to three other

vertebrate genomes (Wei and Brent, 2006). However, N-SCAN/

EST does not incorporate other extrinsic information, it does

not take alternative splicing into account, and it does not

predict the 30UTR of genes, which is often covered best by

ESTs. Another gene finder that can incorporate ESTs and that

does not completely rely on cDNA data for the prediction is

EuGÈNE-M (Foissac and Schiex, 2005). It constrains the gene

structure in areas covered by transcripts and uses an ab initio

model for the prediction in the other areas and for the identi-

fication of the coding start and stop. However, the extrinsic*To whom correspondence should be addressed.
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information that is incorporated is limited to transcript align-
ments. Further, it is trained only for a few plant species and
therefore the current version of the program cannot be properly

applied to vertebrate genomes.
There are a number of dual or multiple genome-based gene

finders which use unannotated related genome sequences to

predict the genes in one or two of these sequences by exploiting
that functional regions are evolutionary better conserved
(Gross and Brent, 2005; Meyer and Durbin, 2002). However,
when a new genome is being sequenced, increasingly, related

sequenced genomes that previously exist already have an
annotation or cDNA data. This is particularly the case for
the new mammalian genome projects which can make use

of conservation with other mammals and the extensive
annotations and mRNA data of human, mouse, rat and other
mammals. For this reason, methods have been developed which

explicitly exploit the information that the annotation from
a syntenic genome sequence provides for annotating the genes
in a target genome. Projector (Meyer and Durbin, 2004) uses

a pair of homologous sequences from two species to project
known genes from one species to the other using a pairHMM.
However, this cannot easily be generalized to using multiple

informant species and Meyer and Durbin did not propose
an annotation pipeline for entire genomes. Another method is
used in the AIR pipeline (Florea et al., 2005) which uses a splice

graph to find and weight transcripts based on evidence from
cDNA and protein sequences. In particular, AIR incorporates
annotated features mapped from a closely related species using

syntenic mapping information.
In many species, alternative splicing is too frequent to be

neglected in the annotation process. There exist a number

of non-expression-based methods that allow predicting more
than one splice form per gene. The approaches are to predict
suboptimal gene structures (HMMGene, Krogh, 1997) or

sampling-based (Cawley and Pachter, 2003; Stanke et al.,
2006a). The program ExAlt (Allen and Salzberg, 2006) takes
a given transcript as input and tries to find alternative

splicing, explicitly modeling certain alternative splicing events.
Currently, the non-expression-based methods are not accurate
enough for a reliable large-scale annotation of alternative splice

forms and the most reliable way to predict alternative splicing
requires actual transcript evidence for the splice form.
Expression-based annotation pipelines that report alternative

splicing are ENSEMBL (Curwen et al., 2004), Aceview
(Thierry-Mieg and Thierry-Mieg, 2006) and EuGÈNE-M.
The ab initio version of the General-Hidden-Markov-Model-

based (GHMM) gene finder AUGUSTUS has been shown to
be among the most accurate for several species (Brejová, 2005;
Guigó et al., 2006; Korf, 2004). In this article, we present an

extension of AUGUSTUS, which can incorporate evidence
from a variety of sources, predict alternative splicing and allows
predicting complete genes including both UTRs and introns

therein. This gene finder has a significantly higher accuracy
than existing systems when only ESTs are available or only
ESTs and related genome sequences are available. Further, we

exploit mRNA alignments of other genomes through using the
syntenic alignment to the target genome. Our system is capable
of incorporating extrinsic information from conservation,

native EST and mRNA alignments as well as alien transcript

alignments. This enables us to predict up to 77% of genes

correctly on the human genome when using all information

at the same time. The presented method is very general and

allows users to provide evidence for a gene structure from other

sources of extrinsic evidence as input.

2 METHODS

2.1 Incorporating hints from extrinsic evidence

Extrinisic evidence is computed or collected beforehand and given as

input to AUGUSTUS in the form of ‘hints’ in a file in GFF format.

With the word hint we are referring to an uncertain local piece of

information about the gene structure of the input sequence such as

a likely position of a signal or a likely stretch of coding sequence.

We distinguish 16 types of hints shown in Table 1. Each type is asso-

ciated with a biological label of the gene structure as indicated by the

name of the type. Each hint specifies an interval or a position of the

target DNA sequence. The hints may also contain strand information

Table 1. Types of hints

Type t of hint Description

start Translation start

stop Translation stop

tss Transcription start site

tts Transcription termination site

ass Acceptor (30) splice site

dss Donor (50) splice site

exon Exact exon

exonpart Part of an exon

intron Exact intron (in CDS or UTR)

intronpart Part of an intron

CDS Coding part of an exon with exact boundaries

CDSpart Part of the coding part of an exon

UTR Exact boundaries of a UTR exon or the

untranslated part of a partially coding exon

UTRpart Part of a UTR

irpart Part of the intergenic region

nonexonpart Part of intergenic region or intron

‘Exon’ refers here to exons in the biological sense, i.e. an exon can be completely

coding (CDS), completely untranslated (UTR) or it can be partially coding and

partially untranslated.

Table 2. Types of hints we used depending on source of evidence

Source of

extrinsic information

Types of hints

EXONIPHY CDS, CDSpart

PHASTCONS CDSpart

native ESTs, mRNAs exon, intron, exonpart

TRANSMAP RefSeqs CDSpart, intronpart, intron, UTRpart,

start, stop, tss, tts

TRANSMAP mRNAs without

ORF information

exonpart, intronpart, intron, tss, tts

retroposed genes nonexonpart
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and a reading frame, if appropriate. Table 2 shows which types of

hints we generate from each source. In a given application setting with

various heterogenous sources of available extrinsic evidence, all hints

of all available sources are used simultaneously. The files containing the

hints for each source are simply concatenated.

We will use the following vocabulary. By a single-transcript gene

structure we refer to a gene structure in which every gene has only one

transcript and no genes are overlapping. A single-transcript gene

structure obeys a hint if the gene structure has the biological feature as

specified in the hint. In that case, we also say that the hint supports the

gene structure. Two hints are said to be compatible if there exists a

single-transcript gene structure which obeys both hints. A hint g is said

to support a hint h if every single-transcript gene structure which obeys

g obeys also h. For example, if g and h are CDSpart hints in the same

frame and on the same strand, then g supports h if and only if the

interval of g contains the interval of h.

Consider a fixed set of sources of evidence, a single type t and

the biological feature (label) f that type of hints refers to. For each type,

we define a penalty factor 0�m(t)� 1, that we call malus. When a

candidate single-transcript gene structure is evaluated by the GHMM,

each feature f of the gene structure that is not supported by any hint

is penalized by multiplying the factor m(t) to its probability. For the

types ending in ‘part’, the malus is applied for each base position of

the exon, intron, or intergenic region that is not covered by the hint.

For all other types it is applied only once for each signal or interval.

Further, with each hint h a bonus factor b(h)41 is associated.

A candiate gene structure is rewarded for each feature f by multiplying

its probability with
Y

h

bðhÞ;

where h ranges over all hints that support feature f. For example,

consider intron hints. Then, for each hint h indicating an intron, that

intron is rewarded by multiplying its probability with b(h). An intron

candidate for which no supporting intron hints exists is penalized

by multiplying its probability with m(t).

The bonus factor b(h) depends mainly on the type of hint and the

source of evidence, but can also depend on a score associated with the

hint and the degree of compatibility of the hint with all other hints.

Let H be the collection of all hints. Then

bðhÞ :¼ bðt, sÞ � bðscoreðhÞÞ½ �
cðh,HÞ:

b(t, s) is a bonus factor associated with the type t and the source s,

taking into consideration the fact that some sources are more reliable

than others. b(score(h)) is a function of the score field in the GFF file.

For almost all types and sources in our applications presented in this

paper this is not used (i.e. b(score(h))¼ 1). For the other cases,

we distinguish only ‘low’- from ‘high’-scoring hints. 05c(h,H)52 is a

modifier depending on how well h is compatible with other hints in H:

c(h, H)¼ 2(Sþ 5)/(Sþ Iþ 10), where S is the number of hints in H that

support h and I is the number of hints inH that are incompatible with h.

So, when there are few other hints, supportive or incompatible, c(h,H)

is close to 1 and does not affect the bonus much. c(h,H)51 if and only

if there are more incompatible hints than supportive. We introduced

this modification to downweight the impact of spurious EST alignments

that often disagree with the majority of other EST alignments. In our

experiments, ESTs were by far the source with the highest number

of hints.

The number of parameters for the integration of hints is rela-

tively small, often small enough to be adjusted by hand. For example,

in a de novo setting, where only hints from EXONIPHY (Siepel and

Haussler, 2004) are used, there are only four parameters. We use

malus(CDS)¼ 0.25, b(CDS, EXONIPHY)¼ 25, malus(CDSpart)¼ 0.992,

b(CDSpart, EXONIPHY)¼ 400. For comparison, N-SCANs fifth-order

Markov chain for the conservation sequence requires the training of

several thousands of parameters. In the most inclusive application

setting, when hints from EXONIPHY, TRANSMAP Refseqs, ESTs, mRNAs

and retroposed genes are used at the same time, the total number of

parameters for the hints is 29. These parameters for the hints are listed

in the configuration files extrinsic.*.cfg in the supplementary data.

2.2 Alternative splicing

Each individual hint contains only local information. However, in the

presence of alternative splicing or, in general, when the transcript

alignments ‘contradict’ each other, an alignment usually contains more

information than the set of independent hints derived from it. It also

indicates that these hints belong to the same transcript. Therefore, we

allow that the hints are grouped such that all hints from one group are

thought to belong to the same transcript. All hints that are derived from

a single (native or TRANSMAP) alignment are grouped together. Hints

from different alignments belong to different groups. Similarly, the

CDSpart and CDS hint derived from a single predicted EXONIPHY exon

belong to one group.

In an initial step of the AUGUSTUS algorithm the compatibility of

all hint groups with each other is determined. Two hint groups are

considered compatible if and only if there is a possible single-transcript

gene structure that is compatible with both hint groups. In particular,

alignments suggesting alternative splice variants of a gene yield

incompatible hint groups. Also, alignments suggesting a gene contained

in an intron of another gene or overlapping genes on opposite strands

yield incompatible hint groups. The input sequence is then internally

split into segments such that no hint groups are separated and no genes

are separated, if possible. Here, we use predicted genes from a first run

of the Viterbi algorithm using all hints simultaneously.

In a subsequent step we make several prediction runs for each

segment, each using the Viterbi algorithm. In each prediction run,

a different subset of the hint groups is deactivated, meaning that these

hints are not used at all in the prediction run. The set of prediction runs

is the smallest set of prediction runs such that for each hint group g

there is at least one prediction run in which all groups that are incom-

patible with g are deactivated. This gives AUGUSTUS the chance to

predict splice forms that are compatible with all the hint groups.

However, if the bonuses and maluses are moderate, AUGUSTUS may

not obey all hint groups, since it is allowed to ignore individual hints.

This will happen if all gene structures that obey a certain hint have,

even with the bonus, a lower likelihood than some gene structure that

disobeys the hint. Figure 1 shows an example of a prediction obeying

some hints for alternative splicing, but not all.

In a post-processing step, transcripts from the previous step are

grouped to genes. For each transcript, the fraction of coding exons,

non-coding exons, and introns is computed that is supported by hints

(see Fig. S1). Transcripts whose supporting fraction is smaller than

86% of the supporting fraction of another transcript of the same gene

are discarded.

2.3 Pre-processing of hints

Hint groups from mRNA or EST alignments are deleted by

AUGUSTUS if any of the hints in the group is unsatisfiable. Introns

are required to have the GT/GC-AG consensus. (AUGUSTUS predicts

the much less frequent GC-donor splice site only when it is supported

by a hint.) Some loci of the human genome contain thousands of EST

alignments and therefore ususally also a very large number of

incompatible hint groups solely due to errors. To reduce the number

of prediction runs triggered by spurious EST alignments, AUGUSTUS

further discards hint groups where a hint has a suspiciously high

number I of incompatible other hints compared to the number S

of other hints supporting it. We discard the group if I� 9(Sþ 1).
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The drawback is that splice variants supported by less than 10% of the

EST evidence might not be found.

Hint groups can be given a priority number. In this case, any hint

group which is incompatible with another hint group of higher-priority

is discarded. The purpose of this procedure is to use not-so-reliable

hints only when no better information source is available for the gene.

For example, native transcripts can be set to override alien transcripts

to account for divergence in the gene structures. However, parts of the

gene structure suggested by higher priority hint groups containing

incomplete information can be extended using lower-priority hint

groups. In our experiments, we used the following priorities depending

on the source of the hints: retrogenes 5, human RNAs 4, TRANSMAP

alignments 4, EXONIPHY 4, human spliced ESTs 2.

2.4 Generation of hints

TRANSMAP Orthologous Genes Orthologous gene hints were

produced by TRANSMAP (Siepel et al., 2007; Zhu et al., 2007),

a methodology for generating cross-species genomic alignments of

cDNAs by combining the results of two alignment methods that are

optimized for different tasks. Alignments of cDNA sequences to their

cognate genome are done using BLAT (Kent, 2002). BLAT is designed

to align transcripts of at least 95% identity to DNA sequences, produc-

ing intron-spanning alignments of the full cDNA. TRANSMAP projects

the cDNA to genome alignments through BLASTZ (Schwartz et al.,

2003) cross-species genomic alignments to a target species genome.

BLASTZ is a highly-sensitive aligner, optimized for aligning diverged,

orthologous genomic sequences. BLASTZ alignment chains identified

as syntenic (Kent et al., 2003) are used in the mappings. The use of

alignment chains allows for the mapping of mRNAs as a whole, rather

than as independent exons. The syntenic filtering removes paralogs,

with the exception of those caused by tandem gene duplication,

and alignments to processed pseudogenes.

TRANSMAP was chosen for generating orthologous gene hints due to

its relative immunity to pseudogenes and the ability to map a larger

fraction of the gene structure than protein translation alignment

methods. For a detail description of the TRANSMAP methodology,

see Zhu et al. (2007). The cDNA alignments produced by TRANSMAP

are used to generate hints, without the heuristic correction of gene

structure used in this work. The evolutionary changes in gene structure

were handled by generating hints that are part hints, which do not

delineate the exact beginning and end of features. Alignment gaps that

correspond to the location of introns in the mRNA in the source

organism are used to generate intron hints.

The TRANSMAP hints were generated by mapping the BLAT

alignments of RefSeq mRNAs (Pruitt et al., 2007) for five organisms

obtained from the UCSC genome browser database (Kuhn et al., 2006).

The number of transcripts that were mapped from mouse, rat, cow,

Augustus Gene Predictions Using Hints

Augustus De Novo Gene Predictions

RefSeq Genes

N-SCAN Gene Predictions

TransMap RefSeq Alignments

Exoniphy Human/Mouse/Rat/Dog

Human mRNAs from GenBank

Human ESTs That Have Been Spliced

Augustus Gene Predictions Using Hints

Augustus De Novo Gene Predictions

RefSeq Genes

N-SCAN Gene Predictions

TransMap RefSeq Alignments

Exoniphy Human/Mouse/Rat/Dog

Human mRNAs from GenBank

Human ESTs That Have Been Spliced

Augustus Gene Predictions Using Hints

Augustus De Novo Gene Predictions

RefSeq Genes

N-SCAN Gene Predictions

TransMap RefSeq Alignments

Exoniphy Human/Mouse/Rat/Dog

Human mRNAs from GenBank

Human ESTs That Have Been Spliced

chr1 36550000 36560000

1

2

3

Fig. 1. Example annotation of a human region (assembly hg18) taken from the UCSC Genome Browser (Kuhn et al., 2006). The top AUGUSTUS

track (¼ X,R,T,E,m) uses, in particular, the information from the other shown tracks TRANSMAP, EXONIPHY, mRNAs and ESTs. In the circled region

labeled 1 AUGUSTUS predicts alternative splicing supported by the EST alignments. In the circled regions 2 and 3 the mRNA track is missing exons

which are supported by ESTs, a TRANSMAP mouse RefSeq and cross-species conservation (circle 2 only) and predicted by AUGUSTUS. Here, a

purely mRNA-based gene prediction contradicts most other evidence because of ORF constraints it is forced to predict most exons as untranslated

(see RefSeq track).
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chicken and dog were 18887, 8976, 7323, 3095 and 848, respectively

(see also Table 1). See Figure 2 for an example. The TRANSMAP

alignments were converted to hints of types intron, CDSpart, UTRpart,

start, stop, tss, tts and intronpart with the script transmap2hints.pl

in the AUGUSTUS package.

2.4.1 Processed pseudogenes To identify and analyze the func-

tionality of relatively recently evolved retrogenes, we carried out

BLASTZ alignments of a set of mRNAs against the human genome and

then scored a set of features indicative of such retroposition. These

features include the number of processed introns; the absence of

conserved splice sites; breaks in orthology with mouse, dog, and rhesus

monkey; the presence, position, and length of the poly (A) tail; and

sequence similarity and fraction of the parent mRNA that is repre-

sented in the retrogene, indicating evidence of the likelihood of

retroposition. As mRNA set we either used the actual human mRNA

sequences (in the setting AUGUSTUS þR) or the set of predicted

mRNAs (in the setting AUGUSTUS þRA), which have previously

been predicted with de novo AUGUSTUS. The latter we did to simulate

the absence of mRNA sequence data for the target genome.

2.4.2 cDNA alignments The mRNA and spliced EST alignments

were taken from the UCSC Genome Browser tracks. They had been

constructed using BLAT (Kent, 2002). Hints of the types intron, exon

and exonpart were generated from the BLAT output with the script

blat2hints.pl that comes with the AUGUSTUS distribution.

2.4.3 Conservation Each conserved coding exon predicted by

EXONIPHY (Siepel and Haussler, 2004) gives rise to one hint of type CDS

and one hint of type CDSpart. The CDSpart intervals are cut off by 9bp

on both sides with respect to the EXONIPHY intervals. The reason for

using both a CDS hint with exact boundaries and a CDSpart hint

is that EXONIPHY exons are often correct but in the cases when they are

not correct, they are often still approximate to a real exon. Further,

in the de novo category, we used hints of type CDSpart created from the

PHASTCONS conserved elements predictions (Siepel et al., 2005) using the

script phastconsDB2hints.pl in the AUGUSTUS distribution.

2.5 Training and testing

AUGUSTUS has previously been trained on 1284 human genes

retreived from Genbank in 2002. The parameters for the hints were

trained to optimize prediction accuracy against RefSeq genes on a part

of human chromosome 17, which has no overlap with the ENCODE

regions. This was done using a simple semi-automatic optimization

procedure, iterating changes to the bonuses and maluses and measuring

accuracy against the RefSeq annotation. However, a fully manual

adjustment of the hint parameters to new sources or species is similarly

effective.

As a reference set for evaluation of gene predictions we used

the ENCODE reference annotation on human genome version hg17

from the GENCODE consortium (Harrow et al., 2006). Many gene

finders have been evaluated on this set previously (Guigó et al., 2006).

The N-SCAN/EST predictions were taken from the UCSC Genome

Browser. The N-SCAN/ESTþPASA predictions were only available for

the assembly hg18. We compared them against the ENCODE reference

annotation mapped to assembly hg18.

3 RESULTS

We evaluated the gene predictions of AUGUSTUS using hints

from different combinations of sources of evidence on the

human ENCODE regions. In Table 3, we compare the accuracy

to that of several other programs, in particular to some which

had performed among the best in the ENCODE Genome

Annotation Assessment Project (EGASP) (Guigó et al., 2006).

Table 3. Accuracy on the ENCODE test regions against the reference annotation from EGASP

Program Gene Transcript Exon Base tr./ gene

sn[%] sp[%] sn[%] sp[%] sn[%] sp[%] sn[%] sp[%]

De novo methods

AUGUSTUS þX,p 33.78 37.04 16.02 37.04 66.39 82.99 84.06 88.02 1

AUGUSTUS þX,p,RA 32.09 39.26 15.25 39.26 65.45 84.41 80.47 90.22 1

N-SCAN* 35.47 36.71 16.95 36.71 67.66 82.05 85.38 89.02 1

Methods using only genome sequences and ESTs

AUGUSTUS þE 56.76 53.16 30.82 39.36 77.35 80.98 86.74 87.86 1.6

AUGUSTUS þX,p,E 53.38 59.40 26.50 49.85 75.80 86.57 84.27 92.75 1.27

AUGUSTUS þX,p,E 1tr 51.01 58.08 24.35 58.08 74.24 88.22 82.10 93.51 1

N-SCAN/EST 36.15 35.55 17.41 35.55 72.00 84.14 84.46 91.18 1

Methods using any type of information

AUGUSTUS þX,R,T,E,m 77.36 72.96 46.84 48.70 84.99 82.36 94.89 90.88 2.0

AUGUSTUS þX,R,T,E,m 1tr 67.57 62.89 32.05 62.89 80.39 87.34 92.94 91.91 1

JIGSAW* 72.64 65.95 34.05 65.95 80.61 89.33 94.56 92.19 1

ENSEMBL* 71.62 67.32 39.75 54.64 77.53 82.65 90.18 92.02 1.47

N-SCAN PASA-EST 58.89 59.65 34.96 39.62 75.55 82.43 87.28 88.22 2.01

Methods using no transcribed data of target species

AUGUSTUS þT 62.16 65.70 30.82 57.02 74.93 87.49 89.64 90.87 1.23

Sources of information: X: EXONIPHY, p: PHASTCONS, RA: retroposed genes based on AUGUSTUS prediction, R: retroposed genes based on mRNA, T: TRANSMAP

RefSeqs from other species, E: human ESTs, m: human mRNAs. tr./gene: average number of distinct transcripts (CDS only) per gene. *These accuracy values were taken

from Guigó et al. (2006).
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It should be noted that it is hard to compute very precise
absolute accuracy numbers as the reference annotation is likely
to have errors as well. Nevertheless, we think it is appropriate

for a relative comparison of different programs, especially when
they only use a subset of the complete information.
Among the de novo programs, which use only the target

genome and other genome sequences as input, N-SCAN previ-
ously was by far the best-performing program for human
(Guigó et al., 2006). Here we report the original EGASP
results as the accuracy of the whole-genome predictions of

N-SCAN on the UCSC Genome Browser are somewhat worse.
In this category of programs, we gave AUGUSTUS hints from
genomic conservation through EXONIPHY and PHASTCONS

(AUGUSTUS þX,p). In another run (AUGUSTUS
þX,p,RA), we also added hints from de novo predicted
retroposed genes. Incorporating the hints from retroposed

genes, removed a small percentage of predicted genes and
increased the specificity of AUGUSTUS at the cost of a some-
what lower sensitivity. The impact of the retroposed gene

predictions on the average accuracy is relatively small. These
results are in agreement with van Baren and Brent (2006).
However, these hints are helpful when trying to avoid false

positive ‘new’ genes.
Next, we tried variants that use no other evidence than

genome sequences and ESTs (no full length mRNAs). We tried

a variant of AUGUSTUS that uses human ESTs only
(AUGUSTUS þE), and two variants that use human ESTs
in addition to genomic conservation (AUGUSTUS þX,p,E

and AUGUSTUS þX,p,E 1tr). We compared to N-SCAN/
EST, which has previously been reported to perform best on
human whithin this category of programs (Wei and Brent,

2006). Using ESTs only, AUGUSTUS predicts 77% more
transcripts correctly than N-SCAN/EST, while at the same time
having a higher transcript specificity. Incorporating informa-

tion from genomic conservation substantially improves the
specificity over pure EST-based predictions. We also tried
reporting only one transcript per gene (AUGUSTUS þX,p,E

1tr) for a more direct comparison to N-SCAN/EST. As can be
expected, this generally further increases specificity so that
more than 58% of the transcripts predicted by AUGUSTUS

match perfectly a reference transcript (N-SCAN/EST: 36%).
We also compared programs that use human mRNAs as

well as other evidence. In this category we gave AUGUSTUS

evidence from human mRNAs; mouse, rat, cow, chicken and
dog RefSeqs mapped to the human genome using TRANSMAP;
and genomic conservation and predicted retroposed genes using

human mRNA. When AUGUSTUS is configured to predict
alterntive splice variants (AUGUSTUS þX,R,T,E,m) it pre-
dicts at least one splice variant correctly for more than 77% of

the reference genes. In the EGASP experiment, JIGSAW had,
with 72.64%, the highest gene-level sensitivity. However,
JIGSAW has in most measures a higher specificity, which, in

part, can be explained by the fact that it only predicts one splice
form per gene. N-SCAN PASA-EST is a recently developed
combination of N-SCAN/EST with PASA (Haas et al., 2003),

in which PASA is used to create the input ESTseq for
N-SCAN/EST from alignments of mRNAs and ESTs and
also to find alternative splice variants to the single-transcript

genes predicted by N-SCAN/EST.

To simulate the performance on a genome for which no

transcribed data at all exists, but where the gene annotation of

related genomes is available, we ran AUGUSTUS using only

hints from running TRANSMAP on RefSeqs from non-human

species (mouse, rat, cow, chicken and dog). Somewhat surpris-

ingly, AUGUSTUS þT is not very much behind the methods

that use human mRNAs besides other evidence. For example,

AUGUSTUS þT has a gene-level accuracy of only 10 percent-

age points lower than JIGSAW at approximately the same

gene-level specificity, however JIGSAW used human mRNA,

human and non-human RefSeqs, the UCSC KnownGenes, the

ENSEMBL predictions, PHASTCONS and the predictions of six

other gene finders, which themselves include further evidence.

We have to note that the human genome as a test case is

somewhat special. The non-human RefSeq mRNA annotations

could have been influenced by the knowledge of the annotators

of the human genes, so that possibly a circularity effect might

lead to an overestimation of accuracy. On the other hand,

non-human mammalian target genomes would benefit from the

availability of the well-annotated human informant genome.

Table S3 shows the accuracy when all mRNAs from Genbank

of the five informant species are used and not only the RefSeq

mRNAs.

This new version of AUGUSTUS has been applied to

annotate the genes in Galdieria sulphuraria (manuscript in

preparation). In this genome project, we incorporate extensive

cDNA sequence data sequenced with 454 technology besides

protein-level conservation [protein hints not discussed here,

see Stanke et al. (2006b)]. We find that the method presented

here also works well when using the shorter ESTs from 454

sequencing.

4 DISCUSSION

In this study, we used the human genome to evaluate our

program for several reasons. Besides the direct interest in the

human genome, we chose it because it is relatively well anno-

tated for a complex genome and many gene prediction tools are

adjusted and have previously been evaluated using standard

reference sets. However, the many newly sequenced genomes,

in which the genes need to be indentified, have less available

transcript evidence, in particular much fewer full length mRNA

sequences than human. For many species, even a little native

EST data exists. Therefore, restricting the gene prediction in

human to the usage of different evidence sources can be seen as

an estimate of the performance in other species where direct

gene prediction assessment is more difficult.

De novo gene finding is useful mostly for finding genes

or parts of genes for which insufficient evidence exists from

transcript or protein data. The de novomethod presented here is

modular and simple. Nevertheless, it approximately achieves

the accuracy of N-SCAN, the previously most accurate de novo

gene finder for human. Further, PHASTCONS is not a specific

method for finding conserved protein coding regions. We only

included it to supplement EXONIPHY as it sometimes misses

conserved exons. We expect that further improvements can be

achieved by using a more inclusive prediction of evolutionary

conserved exons.
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Using only ESTs and genomic conservation, AUGUSTUS
is significantly more accurate than N-SCAN/EST. However,
each of the two programs can be seen as an extension of

a GHMM-based comparative gene finder, AUGUSTUS
þX,p,RA and N-SCAN, respectively, which have similar
performances. The main difference between the two methods

of incorporating EST alignments is that AUGUSTUS inter-
prets these alignments as information about intervals and
N-SCAN/EST interprets them as information about individual

positions. N-SCAN/EST reduces the information of the EST
alignments to a so-called ESTseq, a set of likely intronic bases
and a disjoint set of likely exonic bases. When predicting a gene

structure, it rewards or penalizes the classification of individual
bases as exonic or intronic based on the ESTseq. So, a predicted
intron having overlap with many intronic bases from the

ESTseq may be rewarded although it actually contradicts
the splicing suggested by EST alignments. In contrast to the
method proposed here, the N-SCAN/EST approach also loses

the information about possibly complicated alternative spicing
and nesting of genes by projecting the EST alignments to
a single ESTseq. In light of these differences, we attribute

the advantage of AUGUSTUS X,p,E over N-SCAN/EST to
a more careful method of evidence integration.

5 CONCLUSION

We conclude that our gene annotation pipeline is particularly
strong in two major settings: First, when the major source of
gene evidence for the genome is ESTs and, second, when one or

more well-annotated informant genomes are available that are
related closely enough to show synteny.
We showed that despite the quality issues of ESTs and their

fragmented nature, EST-supported gene finding can be much
more accurate than previously shown in mammals. Further, the

accuracy, mainly the specificity, can be increased using genomic
conservation in addition to the EST evidence. We expect that
ESTs will play an even more important role for the annotation

of future genomes because cheaper new sequencing methods
allow for economically obtaining a good coverage of the
transcriptome.

The indirect use of alien cDNA by mapping it syntenically to
the target genome can produce almost as accurate gene models
as methods that use native transcripts, even when exceptionally

many and full-length native mRNAs are available as in the case
of human. This method is very well-suited to annotate, e.g. the
mammalian genomes, making use of the relatively good human,

mouse and rat annoations, and the fact that usually only
little native transcript data is available. In upcoming genome
projects this setting will also become more relevant as for most

finished genomes there will be suitable informant genomes that
have been annotated before. Also, with AUGUSTUS native
and alien transcripts can be combined and complement each

other to achieve even higher accuracy.

ACKNOWLEDGEMENTS

This work was supported by a fellowship within the Postdoc
Program of the German Academic Exchange Service (DAAD)

to M.S. This work was partially supported by Federal Ministry

of Research and Education (BMBF) project ‘MediGRID’

(BMBF 01AK803G). This project has been funded in whole or

in part with Federal Funds from the National Cancer Institute,

National Institutes of Health, under Contract No. NO1-CO-

12400.

We thank Michael Brent and Jeltje van Baren for giving us the

N-SCAN/ESTþPASA predictions, Adam Siepel for providing

the EXONIPHY and PHASTCONS tracks, and the anonymous

referees for their helpful suggestions to improve the manuscript.

Conflict of Interest: none declared.

REFERENCES

Allen,J.E. and Salzberg,S.L. (2006) A phylogenetic generalized hidden Markov

model for predicting alternatively spliced exons. AMB, 1, 14.
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