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ABSTRACT

Motivation: Copy number profiling methods aim at assigning DNA

copy numbers to chromosomal regions using measurements from

microarray-based comparative genomic hybridizations. Among the

proposed methods to this end, Hidden Markov Model (HMM)-based

approaches seem promising since DNA copy number transitions are

naturally captured in the model. Current discrete-index HMM-based

approaches do not, however, take into account heterogeneous

information regarding the genomic overlap between clones. More-

over, the majority of existing methods are restricted to chromosome-

wise analysis.

Results: We introduce a novel Segmental Maximum A Posteriori

approach, SMAP, for DNA copy number profiling. Our method is

based on discrete-index Hidden Markov Modeling and incorporates

genomic distance and overlap between clones. We exploit a priori

information through user-controllable parameterization that enables

the identification of copy number deviations of various lengths and

amplitudes. The model parameters may be inferred at a genome-

wide scale to avoid overfitting of model parameters often resulting

from chromosome-wise model inference. We report superior perfor-

mances of SMAP on synthetic data when compared with two recent

methods. When applied on our new experimental data, SMAP readily

recognizes already known genetic aberrations including both large-

scale regions with aberrant DNA copy number and changes affecting

only single features on the array. We highlight the differences

between the prediction of SMAP and the compared methods and

show that SMAP accurately determines copy number changes and

benefits from overlap consideration.

Availability: SMAP is available from Bioconductor and within the

Linnaeus Centre for Bioinformatics Data Warehouse.

Contact: Jan.Komorowski@lcb.uu.se

Supplementary information: Supplementary data are available at

http://www.lcb.uu.se/papers/r_andersson/SMAP/

1 INTRODUCTION

The study of human genetic variation at the level of nucleotide
sequence changes constitutes a major challenge and has,
therefore, received considerable attention in the genomic era.
The primary type of variation explored so far has been at
the level of single nucleotide polymorphisms (SNPs). Larger
variations at the level of gains and deletions, also called copy
number variation (CNV), have received less attention.
The genome-wide detection of CNVs has been difficult due to
the lack of high-resolution and high-throughput techniques.
A fundamental step towards identifying such variation has

been the development of microarray-based comparative geno-
mic hybridization (array-CGH) (Mantripragada et al., 2004;
Pinkel et al., 1998; Solinas-Toldo et al., 1997). Recently, two
landmark studies have reported the presence of CNVs in the
human genome using different approaches (Iafrate et al., 2004;
Sebat et al., 2004). Both studies convincingly demonstrate the
presence in normal individuals of genomic imbalances that
overlap with genes and segmental duplications and may
contribute to phenotypic variation and disease susceptibility.
These initial findings have now been followed by a number of
additional reports that further strengthen the evidence for the
importance of CNVs (Redon et al., 2006). The identification of
DNA copy number alterations is also very important in studies
of cancer, indicating that failures in the mechanisms that
maintain the integrity of the genome contribute to tumor
initiation/progression. Structural rearrangements (transloca-
tions, inversions) or gains may cause activation of oncogenes,
whereas deletions may underlie haploinsufficiency or inactivate
tumor suppressor genes. All these aberrationsmay also influence
the expression of so-called phenotype modifier genes. Although
not critical for tumor initiation as such, these genes may greatly
change the clinical picture and outcome of a disease. Discovery
and functional assessment of genomic regions affected by copy
number alterations are thus essential for understanding the
biology of cancer and for diagnostic applications.
In a typical array-CGH experiment, total genomic DNA from

test and reference samples are labeled differently and hybridized
to a microarray. The intensity ratio between the test and*To whom correspondence should be addressed.
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reference signal for each spot on the microarray is, theoretically,
proportional to the relative copy number of the corresponding
genomic sequence. Recently developed commercial and custom-
made genomic microarrays enable copy number analysis at a
very high resolution, with several hundred thousand measure-
ment points. As a consequence of the large amount of data
generated from such experiments, the use of automatic
procedures for the assignment of copy number profiles to test
DNA, i.e. copy number profiling, has become an essential step in
the analysis of array-CGH data. Subsequently, several methods
have recently been proposed. A summary and comparison of
some early methods is provided by Lai et al. (2005).
The majority of methods assume a model with Gaussian dis-

tributions for which the means and, in some cases, the variance
change at unknown breakpoints. The task of finding such
breakpoints is often referred to as segmentation (Willenbrock
and Fridlyand, 2005). The common approach shared by these
methods is to identify breakpoints in a manner that maximizes
the likelihood probability distribution function (pdf) (Hupe et al.,
2004; Myers et al., 2004; Olshen et al., 2004; van de Wiel et al.,
2007). The number of breakpointsmay be controlled by a penalty
that is extracted from the likelihood and increases with the
number of breakpoints. A summary of thesemethods is provided
by Picard et al. (2005). Non-likelihood-based approaches
include, e.g. smoothing methods (Eilers and de Menezes, 2005;
Hsu et al., 2005; Tibshirani and Wang, 2007) and a clustering-
based approach (Wang et al., 2005). Finally, Hidden Markov
Models (HMMs) have been used by Engler et al. (2006),
Fridlyand et al. (2004), Marioni et al. (2006), Rueda and Dı́az-
Uriarte (2007), Shah et al. (2006) and Stjernqvist et al. (2007).
HMM-based approaches seem promising since copy number

changes between DNA segments are naturally modeled by
transition events between hidden states in the model. Fridlyand
et al. (2004) proposed a discrete-index HMM approach in which
the optimal segmentation of clones is found by likelihood
maximization using a derived number of Gaussian distributions
with state-specific means and fixed variance. The number of
states is selected using a penalty, based on the AIC or BIC
criterion, and for each model the means are estimated using
partitioning among medoids. The HMM parameters are reesti-
mated using a backward–forward algorithm and the optimal
state sequence, i.e. a path in theHMM, is reconstructed using the
Viterbi algorithm. No information regarding the genomic
distance or overlap between clones is taken into account in
that method. An extension of this method was proposed by
Marioni et al. (2006) in which the state transition probabilities
depend on the distance, defined as the difference in midpoints,
between genomically adjacent clones. Stjernqvist et al. (2007)
proposed a continuous-index HMM in which state changes are
determined by transition rates and may occur at any base pair.
The number of states in their model is determined as in the
discrete-index HMMs. The HMM parameters are estimated
using a Monte Carlo EM (MCEM) approach and the realiza-
tions of the Markov chain are generated using a number of
Markov Chain Monte Carlo (MCMC) simulations. Since both
the MCEM and MCMC approaches are non-deterministic by
nature, the predicted copy number breakpoints may differ
between runs. Although Stjernqvist et al. (2007) may produce
the finest resolution breakpoints, their computation times are
infeasible. For instance, as reported by Stjernqvist et al. (2007),
analyzing a single chromosome took about 25CPU hours with a

four-state model. Extrapolating this to a normal array-CGH
project of, for example, 100 experiments with 24 chromosomes
each yields an expected execution time of 60 000CPU hours, i.e.
2500 days or 6.8 years.
The HMM-based methods described above infer the number

of hidden states through model selection and perform copy
number profiling/segmentation separately for each chromo-
some. Such approaches may easily overfit the model parameters
to local effects in the chromosomes. Interpretation of results
becomes questionable in cases in which inferred means and
variances of the Gaussian distributions associated with a certain
state differ between chromosomes. In some situations, however,
one might prefer chromosome-wise models over genome-wide
ones. Segmentation methods with chromosome-wise models are
appropriate to detect relative copy number alterations between
loci or mosaicism in the same chromosome when the actual copy
number is not of interest (Rueda and Dı́az-Uriarte, 2007).
A number of discrete-index HMM-based methods with

genome-wide parameter estimation has been proposed to
avoid overfitting the HMM parameters to chromosomal
characteristics. Shah et al. (2006) proposed a four-state
HMM in which the parameters are estimated by pooling
across samples using block Gibbs sampling. Engler et al. (2006)
suggested a three-state Gaussian mixture HMM in which the
HMM parameters are not only considered common across
chromosomes but also across samples. A slightly different
approach was proposed by Rueda and Dı́az-Uriarte (2007) who
fitted a non-homogeneous HMM via a large number of
reversible jump MCMC iterations. In contrast to the other
HMM-based methods, the number of states is not explicitly set
or selected using a penalty but inferred through Bayesian model
averaging. Rueda and Dı́az-Uriarte (2007) further proposed
transition probabilities that converge towards equality at the
(within-array) maximum interprobe distance.

2 APPROACH

In this article we propose a novel HMM-based statistical
method for copy number profiling, called segmental maximum
a posteriori (SMAP). In Section 3.1 we describe a hetero-
geneous discrete-index HMM for copy number assignments
that takes into account information about genomic position
and overlap between clones. The fundamentals of our method
for copy number profiling based on segmental a posteriori
maximization are given in Section 3.2. By adapting a maximum
a posteriori (MAP) approach, we enable the incorporation of
user-controllable a priori (prior) information in the profiling
process. For instance, intensity ratios often deviate from
expected values due to normal cell admixture in the test DNA
or insufficient blocking of repetitive elements that are present
within different clones on the array during hybridization
experiments. Prior knowledge about such variations is thus
important and can, therefore, be supplied to our method. Noise
in the data may also affect the assignment of clones to copy
numbers. Assuming that such errors are Gaussian distributed,
we are able to model the noise (using a Gaussian distribution)
for each considered copy number. Using prior knowledge about
distributions for the considered copy number levels and a given
set of parameters for the HMM as a start solution, the most
probable copy number assignments are inferred by alternating
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optimization of the copy number assignments and genome-wide
optimization of the parameters.
In Section 4 we report the results of genomic profiling on

both synthetic data and on a set of glioblastoma multiforme
(GBM) samples and compare the predictions of SMAP with the
predictions of DNACopy (Venkatraman and Olshen, 2007) and
BioHMM (Marioni et al., 2006).

3 METHODS

Copy number profiling aims at classifying clones to discrete copy
number classes based on their intensity ratios and chromosomal
positions. For a given sequence, of length T, of (genomically ordered)
clones and the corresponding sequence of observed intensity ratios
O¼ {o1, . . . , oT}, start positions Sp¼ {sp1, . . . , spT}, end positions
Ep¼ {ep1, . . . , epT}, and chromosome identifiers Ch¼ {ch1, . . . , chT},
such that cht2 {1, . . . ,C} (1� t�T), we wish to infer the most plausible
sequence of copy number assignments Q¼ {q1, . . . , qT}.

3.1 An HMM for copy number assignments

Wemodel the copy number assignments using anHMM(Rabiner, 1990).
An HMM, in our context, is a pairH¼ (S,�), where S ¼ fsig

N
i¼1 is a set of

N copy number states, such that qt2S (1� t�T), and �¼ (�,A,�) are
parameters for the model. The si2S (1� i�N) are called copy number
states since the fundamental task is to associate clones with copy
numbers. We advocate the use of a biologically motivated six-state
model, proposed by van de Wiel et al. (2007), rather than the
conventional three-state model, since these states will capture double
deletion, single deletion, normal, gain, double gain and amplification.
However, the model is not restricted to six states; a different number of
statesmay be used if desired by the user. Using anHMM, the sequence of
clones is traversed in one direction only, according to chromosomal
position (chromosome and start position) of clones, simultaneously
moving between the hidden copy number states in the model. The
probability of starting in copy number state si (1� i�N) for clone one is
specified by the initial probabilities, � ¼ f�ig

N
i¼1. Each pair of copy

number states is connected by HMM specific transition probabilities
A ¼ faijg

N
i; j¼1 that specify the probabilities of transition between states si

and sj (1� i, j�N) between any two consecutive clones in the sequence.
Inspired by the ideas of Marioni et al. (2006), Colella et al. (2007) and
Rueda andDı́az-Uriarte (2007), we incorporate distance-based transition
probabilities, Ad ¼ fadijg

N
i; j¼1, in the model that takes into account the

genomic distance d between any two consecutive clones t and tþ 1
(1� t5T),

adijXaij � � � aij �
1

N

� �
; ð1Þ

� ¼
1� exp � d

L

� �
if d40

0 otherwise
; d ¼ stþ1 � et:

(

In contrast to Rueda and Dı́az-Uriarte (2007), we do not assume
convergence of transition probabilities at the (within-array) maximum
inter-probe distance since such a value will depend solely on the array
platform used. Rather, a length parameter L (specified in base pairs)
is used to control the convergence of transition probabilities towards
1/N. The following constraints restrict the HMM; 8i, j2 {1, . . . ,N} :PN

j¼1 aij ¼ 1,
PN

i¼1 �i ¼ 1 and 0� aij,�i� 1. It follows from Equation
(1) that

PN
j¼1 a

d
ij ¼ 1 (8i2 {1, . . . ,N}) is guaranteed for any d2Z.

The probability of observing a specific intensity ratio for clone
t (1� t�T) given that the HMM is in state sj, called the emission
probability, is naturally defined to be Gaussian distributed, i.e

bsj ðotÞXpðotjqt ¼ sj;�Þ; such that ð2Þ

otjqt ¼ sj;� � Nðotj!jÞ,

where �¼ {!1¼ (�1, �1), . . . ,!N¼ (�N, �N)} are parameters, i.e. means
and SDs, for Gaussian distributions associated with each state. Note

that Equation (2) assumes independency between clones because the
emission probability only depends on state sj and observation ot. This
may not hold when clones on the array overlap in terms of genomic
position (Stjernqvist et al., 2007). The overlap of clones may introduce
dependency in terms of intensity ratio between clones, e.g. aberration
breakpoints may occur within a clone that partially overlaps with
another, and longer clones may completely encompass shorter ones.

To deal with such dependency, we propose an extension of Equation
(2) that incorporates knowledge of previous copy number assignments,
i.e. assignments done before the current clone in the sequence for the
clones that overlap with the current. The emission pdf is extended
rather than the transition probabilities to enable the incorporation of
overlap information from multiple clones rather than just the preceding
clone in the observation sequence. The fraction of overlap between, for
instance, the clones r and t, o(r, t), is calculated as

oðr; tÞ ¼
max min epr;eptð Þ�max spr;sptð Þ

ept�spt
; 0

� �
if chr ¼ cht

0 otherwise
:

(
ð3Þ

Let olapt denote the set of previous clones that overlaps with clone
t and Qolapt the corresponding set of copy number states. Formally,
olaptX {1� r� t� 1 : o(r, t)40} and QolaptX {qr : r2 olapt}. We define
a new emission probability, b0sj ðotÞ (1� j�N) (1� t�T), distributed as
a mixture of Gaussian distributions,

b0sj ðotÞXpðotjQolapt ; qt ¼ sj;�Þ ¼ � bsj ðotÞ þ
X

r2olapt

�r bqr ðotÞ ð4Þ

where � and �r are mixing proportions that weights the influence of the
states according to overlap of clones, i.e.

� ¼ 1þ
X

r2olapt

oðr; tÞ

 !�1

and �r ¼ �oðr; tÞ : ð5Þ

If no clone is overlapping with the current one then b0sj ðotÞ ¼ bsj ðotÞ.
Note that we do not log2-transform the intensity ratios, since such a

transformation does not preserve the difference between theoretical
values.

3.2 Copy number profiling by segmental

a posteriori maximization

Given the observed intensity ratios O ¼ fotg
T
t¼1 and chromosomal

positions P¼ {Sp, Ep, Ch} for a sequence of clones covering the whole
or part of a genome, we can use the HMM to infer statistically the
single best sequence of copy number assignments from multiple paths
in the HMM; one per chromosome, Q ¼ fqtg

T
t¼1 ¼ fQCh1 ; . . . ;QChC g,

where Chc¼ {r2 {1, . . . ,T} : chr¼ c} and each qt2S. It may sometimes
be desirable to train the HMM chromosome-wise, as discussed in
Section 1. In such a case, one HMM is used per chromosome. Below,
we consider the genome-wide approach.

The probability of a certain sequence of copy number assignments
given a sequence of observations, chromosomal positions and known
parameters � is given by the a posteriori (posterior) pdf:

pðQjO;P; �Þ ¼
pðQjP; �ÞpðOjQ;P; �Þ

pðOjP; �Þ
; ð6Þ

where p(Q|P, �) is called the a priori (prior) pdf of the copy number
states, p(O|Q,P, �) is called the likelihood of the observed intensity
ratios and p(O|P, �) is a normalization constant. Hence, the most
probable sequence of copy number assignments Q* can be inferred by
posterior maximization, i.e. Q*¼ argmaxQ[p(Q,O|P, �)].

In our case � is unknown so, inspired by the approach of Gauvain
and Lee (1992), we choose to find the most plausible state sequence
Q* by maximizing the joint posterior probability of Q and � given
O and P, i.e.

Q� ¼ argmax
Q

max
�

pðQ; �jO;PÞ½ �

¼ argmax
Q

max
�

pðQ;OjP; �Þpð�Þ½ �; ð7Þ
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where Q* is called the segmental MAP estimate of Q. It can be shown
that, starting with any parameter estimate �(m), alternate maximization
over Q and � gives a sequence of estimates with non-decreasing values
of p (Q, �|O,P) (Gauvain and Lee, 1992), i.e.

pðQðmþ1Þ; �ðmþ1ÞjO;PÞ � pðQðmÞ; �ðmÞjO;PÞ; ð8Þ

with

QðmÞ ¼ argmax
Q

pðQ;OjP; �ðmÞÞ
� �

and ð9Þ

�ðmþ1Þ ¼ argmax
�

pðQðmÞ;OjP; �Þpð�Þ
� �

: ð10Þ

p(�) in Equation (10) denotes the prior pdf for the parameters � and is
defined as

pð�Þ ¼ pð�ÞpðAÞpð�Þ ¼
YN
i; j¼1

pðaijÞ
YN
i¼1

pð�iÞpð�iÞpð�iÞ: ð11Þ

The choice of priors for the parameters is important since it will
influence the maximization of Equation (10). We control the variance of
the state distributions by assigning a variant of Jeffrey’s prior (Jaynes,
2003) to �i that controls the minimal allowed SD, i.e. �i �

�min

�i
(1� i�N). The ability to adjust the mean of the state distributions to
data is controlled by Gaussian priors for the means centered around
expected copy number ratios, i.e. �i � Nð�expected

i ; ��Þ, where �expected
i

and �� are parameters specified by the user. For instance, a normal cell
contamination of the test sample of 40% yields an expected ratio of
(1�0.6þ 2�0.4) / 2¼ 0.7 for heterozygous deletions (assuming reference
sample is diploid). We use uniform Dirichlet priors for the transition
and initial probabilities, i.e. �, ai�Dir(�) (1� i�N), where ½�j�

N
j¼1 ¼ 1.

Based on the previous reasoning Equations (9,10) and Gauvain and
Lee (1992), we propose a SMAP algorithm for copy number profiling
(see Fig. 1). Recall that the (sub) optimal copy number assignments is a
combination of multiple, chromosome-wise, paths in the HMM, i.e. at
iteration m we have QðmÞ ¼ fQ

ðmÞ

Ch1
; . . . ;QðmÞ

ChC
g. Maximization of

Equation (9) is done by chromosome-wise runs of a modified Viterbi
algorithm (Viterbi, 1967) in which the characteristics of our model, in
terms of genomic distance [Equation (1)] and overlap [Equation (4)]
between clones, is taken into account. Finding the parameters � that
maximize Equation (10) is, however, harder. There does not exist any
known algorithm that guarantees finding the global optimum of
Equation (10). In SMAP, we choose to locally maximize Equation (10)
by a gradient-based method.

The gradient descent method is a simple scheme that can be used to
find the parameters � that maximize Equation (10). We seek to
minimize the function

f ð�Þ ¼ �log ½pðQjP; �ÞpðOjQ;P; �Þpð�Þ� ð12Þ

by iteratively updating any parameter �j2 � according to the formula

�ðkþ1Þ
j ¼ �ðkÞj � 	ðkÞj

@f

@�j

	 

�¼�ðkÞ

ð13Þ

where 	ðkÞj is a positive step size parameter called the learning rate.
Formula (13) guarantees that f (�(k))� f (�(k� 1)) at any iteration k.
To speed up the computation time of Equation (10) we use an
individual learning rate adaptation scheme (Bagos et al., 2004,
ALGORITHM 1), where the individual learning rates are updated
with respect to the change of partial derivatives, i.e.

	ðkÞj ¼ min 	ðk�1Þ
j aþ; 	max

� �
; if

@f

@�j

	 

�¼�ðkÞ

�
@f

@�j

	 

�¼�ðk�1Þ

4 0 ; and

	ðkÞj ¼ max 	ðk�1Þ
j a�; 	min

� �
otherwise:

In the latter case, the partial derivative is set to zero in the current iteration
for smooth adaptation. a� and aþ control the change of learning rate;
a value of 1 for a� and aþ means standard gradient descent.	min and	max

control the minimum and maximum allowed learning rates, respectively.
In the following analyses, we set a� , aþ , 	min and 	max to 0.5, 1.2, 10� 4

and 0.5, respectively, as recommended by Bagos et al. (2004).
During gradient descent we restrict the ability to adjust the variances

of the state distributions by a weighting of the corresponding partial
derivatives. The weights, 
 i (1� i�N), coupled to each copy number
state, si2S, restrict the influence of each contained clone on the
corresponding state distribution, i.e. 
i¼ (|{t2 {1, . . . ,T} : qt¼ si}|)

� 1.

4 RESULTS

In order to evaluate the predictive performance of SMAP, we
have profiled a synthetic data set with overlapping and
unevenly positioned clones (Section 4.2). Eight configurations
of SMAP were tested with the following characteristics; with or
without overlap consideration, standard or distance-based
transition probabilities and chromosome-wise or genome-wide
HMMs. Furthermore, we report the performance of SMAP
(with overlap consideration, distance-based transition prob-
abilities and genome-wide HMM) in an array-CGH study
where test and reference samples are hybridized on a tiling 32K
BAC array (array design and protocols for hybridization and
scanning are described in Supplementary Material). The study
(Section 4.3) considers genome-wide copy number profiling of a
set of glioblastoma multiforme samples. In this data set 	87%
of the clones overlap. In both evaluation studies, we have
compared the predictions of SMAP with the results of
DNACopy (Venkatraman and Olshen, 2007) and BioHMM
(Marioni et al., 2006). Profile plots illustrating the results of the
various configurations of SMAP and the other two methods on
both data sets are available as Supplementary Material.

4.1 Comparison setup

DNACopy is a non-parametric method based on circular
binary segmentation (CBS) that identifies breakpoints of copy
number segments by successive splitting of segments. A pruning
algorithm is subsequently applied to control the number of

Fig. 1. The SMAP algorithm. The SMAP procedure takes as input a

start solution of parameters and prior information. The process of joint

posterior maximization is done by alternating optimization of the copy

number assignments, with fixed parameters and optimization of the

parameters, with fixed assignments, until no significant improvements

can be made (i.e. improvement below a given threshold �). During

optimization, we consider logarithmic probabilities due to machine

precision limitations.
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identified breakpoints. This method is considered state-of-the-
art and has been proven to perform well on both synthetic and
real data (Willenbrock and Fridlyand, 2005). BioHMM is
briefly described in Section 1.
In contrast to SMAP, both DNACopy and BioHMM are

segmentation methods, i.e. the model states or their equivalent
correspond to segment means rather than to copy numbers and
the fundamental task of these methods is to find the optimal
splitting of segments. Some approaches have been suggested to
transform the segment means to copy numbers or aberration
classes based on thresholds (e.g. Willenbrock and Fridlyand,
2005) or by constraining the means in the segmentation process
(Chen et al., 2006). The latter approach seems more robust,
though the method is not yet available. Segmentation
approaches also come with the problem of proposing segment
means too close to each other thus requiring further post-
processing. To deal with this issue we applied the mergeLevels
function (Willenbrock and Fridlyand, 2005) on the predicted
profiles of both DNACopy and BioHMM prior to comparison
with SMAP.
DNACopy (version 1.10.0) and BioHMM (version 1.4.0)

were run with default parameter settings on log2 transformed
intensity ratios through the snapCGH (Smith et al., 2007)
R (R Development CoreTeam, 2007) package available in
Bioconductor 2.0 (Gentleman et al., 2004). The protocol for
preprocessing and normalization, the parameter settings used
for SMAP and the raw data are available as Supplementary
Material. To guarantee a fair comparison, we used the same
parameter settings (default settings) for SMAP in both studies.

4.2 Evaluation of aberration detection in synthetic data

The synthetic data of Willenbrock and Fridlyand (2005)
contains simulated array-CGH hybridization measurements
from 500 samples, each containing 20 chromosomes of 100
measurement points. The measurements are, however, con-
sidered independent since no overlap between clones exists in
the data. Furthermore, the interclone distances are evenly

distributed. To test the characteristics of SMAP, we have
generated new synthetic data from the same protocol
(Willenbrock and Fridlyand, 2005) although with some
modifications. Clone lengths and interclone distances were
sampled from the 32K BAC array and copy number break-
points were sampled to specify specific base pair locations in the
chromosomes rather than at specific clones. The intensity ratio
for each clone was then determined from the overlap with
simulated segments. In detail, the intensity ratio for clone t,
overlapping with segments S with true copy numbers C was
calculated as:

ot ¼
p �
P

s2S Cs � oðs; tÞ þ ð1� pÞ � 2

2
þ � ;

where p is the proportion of tumor cells in the test sample and
2�N(0, �). p and � were sampled according to Willenbrock
and Fridlyand (2005).
Table 1 (overall) summarizes the estimated sensitivity and

specificity of predicting gains and deletions in the synthetic data
set. The normal (non-aberrant) level for BioHMM and
DNACopy was determined in an interval-based manner as in
Willenbrock and Fridlyand (2005). Deletions and gains were
then defined as everything below or above the interval
categorizing normal, respectively. Sensitivity for gain is the
proportion of predicted gained segments among the truly
gained segments, whereas specificity for gain is the proportion
of truly predicted non-gained segments among the truly non-
gained segments. The same definitions hold for deletions. The
results indicate similar performances between the different
SMAP configurations, although slightly better when the
overlap-based emission pdf is used. Both DNACopy and
BioHMM perform slightly worse.
To examine whether the predictive performance of SMAP

around breakpoints will benefit from the overlap model, we
calculated sensitivity and specificity for gain and deletions in
700 kb large windows (two times the maximum clone length)
around the true breakpoints. The results are summarized in
Table 1 (window). The overlap consideration of SMAP

Table 1. The overall median (med) and interquartile range (IQR) of sensitivity (sens) and specificity (spec) for deletion and gain for the compared
methods on the synthetic data with overlap and at windows of 700 kb around each true breakpoint

Method Overall Window

Deletion Gain Deletion Gain

sens spec sens spec sens spec sens spec

med IQR med IQR med IQR med IQR med IQR med IQR med IQR med IQR

SMAP (o, d, g) 0.93 0.13 1.00 0.0048 0.94 0.11 1.00 0.0049 0.84 0.28 0.98 0.036 0.87 0.21 0.97 0.032
SMAP (d, g) 0.89 0.20 1.00 0.0037 0.91 0.16 1.00 0.0034 0.74 0.40 0.98 0.036 0.75 0.35 0.98 0.033
SMAP (o, g) 0.93 0.16 1.00 0.0036 0.93 0.13 1.00 0.0035 0.82 0.30 0.98 0.031 0.84 0.26 0.98 0.031
SMAP (g) 0.87 0.29 1.00 0.0027 0.89 0.20 1.00 0.0026 0.69 0.48 0.98 0.027 0.71 0.40 0.98 0.024
SMAP (o, d, c) 0.92 0.17 1.00 0.008 0.93 0.13 0.99 0.009 0.84 0.26 0.98 0.033 0.85 0.23 0.97 0.035
SMAP (d, c) 0.90 0.22 1.00 0.0026 0.92 0.15 1.00 0.0026 0.76 0.36 0.98 0.026 0.81 0.30 0.98 0.025
SMAP (o, c) 0.92 0.17 1.00 0.0067 0.93 0.14 1.00 0.0066 0.84 0.26 0.98 0.033 0.85 0.24 0.97 0.035
SMAP (c) 0.90 0.23 1.00 0.0026 0.92 0.16 1.00 0.0028 0.76 0.37 0.98 0.025 0.80 0.30 0.98 0.025
DNACopy 0.89 0.19 1.00 0.0036 0.89 0.24 1.00 0.0033 0.63 0.32 0.96 0.057 0.63 0.34 0.94 0.059
BioHMM 0.89 0.19 0.99 0.016 0.89 0.22 1.00 0.0034 0.64 0.33 0.94 0.074 0.61 0.32 0.95 0.057

Results for BioHMM and DNACopy are compiled after merging segments by mergeLevels. For the SMAP methods, o, d, g, and c denote overlap consideration, distance-
based transition probabilities, genome-wide HMM and chromosome-wise HMMs respectively.
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contribute to the highest sensitivities although still having the
highest specificities among the compared methods. The worst
results in this configuration are delivered by DNACopy and
BioHMM.

4.3 Copy number profiling of GBM

Gliomas are common and frequently malignant primary tumors
of the central nervous system that arise from glial cell lineage.
GBM is the most malignant type of gliomas (histological grade
IV according to the World Health Organization). Patients
diagnosed with GBM have a very poor prognosis and a median
survival of 51 year. From a previous study (Diaz de Ståhl et al.,
2005) we selected three samples for genome-wide copy number
profiling on the 32K array. These samples are part of a larger
genome-wide array-CGH GBM study (T. Diaz de Ståhl et al.,
manuscript in preparation).
During profiling with SMAP, we monitored the improve-

ment of log p(Q, �|O,P) (Fig. 2). The results clearly show that a
single Viterbi run on the data given the initial parameters would
have yielded a lower log probability than that achieved using
the SMAP approach with alternating optimization of copy
number assignments and HMM parameters (15% average
improvement). Table 2 summarizes the adaptation of !i

(1� i�N) to the GBM samples. In sample G20856, the
means of Gaussian distributions were adjusted from 0.7 and
1.3 to 0.76 and 1.23 for the HMM states associated with copy
number 1 and 3, respectively. Such complementary adjustments
towards 1.0 are expected as, e.g. normal cell admixture affects
the observed intensity ratios of both gains and deletions.
A slightly higher SD than expected can be seen for copy
number states 3 and 4. The optimal SD of the Gaussian
distribution associated with copy numbers �5 is more than four
times the expected deviation. Higher SD for this state than the
other states can be seen for all GBM samples. This is due to
higher spreading of experimental data above lower copy
number distributions.
A profile plot for the whole genome of sample G24460 is

given in Figure 3. The two most common alterations in GBM,
trisomy 7 and monosomy 10, were identified together with
partial deletions of chromosomes 6 and 9 and trisomies of
chromosomes 19 and 20. Moreover, a 	5Mb region of homo-
zygous deletion on 9p.21 was identified that encompasses
the CDKN2A (MIM 600160) (cyclin-dependent kinase
inhibitor 2A) gene, which is commonly deleted in a wide
variety of tumors and is known to be an important tumor
suppressor gene.
In order to evaluate the characteristics and performances of

SMAP we compared our results on the GBM data set with the
results of DNACopy and BioHMM. Following the recommen-
dations of Willenbrock and Fridlyand (2005), we applied
mergeLevels to the segmentation results of DNACopy and
BioHMM. The number of unique state means predicted per
sample was then reduced from an average of 87.7 and 53.3 to an
average of 43 and 44, respectively. The average number of states
per chromosome and sample was reduced from 7.7 and 3.7 to 3.3
and 3.3, respectively. In contrast to these averages, the average
number of (clone-assigned) states per sample identified with
SMAP was five (four, six and five for sample G20856, G24460
and G20975, respectively). It should be stressed that the means
associated with these states are equivalent across the genome
of a sample, since SMAPuses the sameHMMparameters for the

whole genome rather than one model per chromosome, which
is the case for the other two methods. Consequently, interpreta-
tion of the segment means of DNACopy and BioHMM
remains questionable, making a straight forward comparison
between predicted copy numbers impossible. This is apparent in
Figure 4A, in which a snapshot of chromosome 12 of sample
G20856 is shown. All three methods identified two states in the
chromosome. SMAP identified a 	2Mb region of single copy
number gain (state mean 1.23) whereas DNACopy and
BioHMM suggested a region with altered mean of 1.05 and
1.06, respectively, that stretches 	11Mb.
SMAP was able to identify subtle changes in copy number in

the analyzed samples. Figure 4B shows 7Mb contained in a

Table 2. The initial (�(1), �(1)) and optimized values (�*, �*) of !i

(1� i�N) on the GBM samples

Copy
number

G20856 G24460 G20972

�(1) �(1) �* �* �* �* �* �*

0 0.40 0.10 0.40 0.05 0.47 0.11 0.40 0.05
1 0.70 0.10 0.76 0.11 0.77 0.12 0.77 0.12
2 1.00 0.10 1.02 0.11 1.00 0.11 1.01 0.10
3 1.30 0.10 1.23 0.14 1.23 0.14 1.23 0.14
4 1.60 0.10 1.65 0.26 1.66 0.25 1.69 0.27
�5 4.00 0.10 4.05 0.42 4.09 1.16 4.09 0.43
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partial trisomy of chromosome 7 in sample G24460. Both
BioHMM and DNACopy predicted the whole region as a
trisomy (by equal segment mean of 1.19). SMAP, however,
identified a diploid region of 	0.5Mb (state mean 1.0).
Moreover, SMAP identified the amplification of the EGFR
(MIM 131550) (epidermal growth factor receptor) gene around
54.5Mb, commonly amplified in glioblastoma (Rasheed et al.,
2002), while the other two methods did not.
Although sensitive to subtle changes in intensity ratios,

SMAP benefits from the overlap consideration in that segments
of clones with deviations in intensity ratio are ignored if the
overlap of clones at a previous state is sufficiently prominent.
Such an example is given in Figure 4C, in which SMAP shares
the prediction of gain at 41Mb with BioHMM but ignores the
gain at 46Mb predicted by BioHMM. This is due to the
genomic overlap of clones at this location. No gain was
identified by DNACopy in this region.
On average, SMAP, DNACopy and BioHMM identified

147, 51 and 1599 breakpoints per sample, respectively. At these
breakpoint locations, the average fraction of overlap between
clones with non-equal state is 0.20, 0.40 and 0.61. Although it is
still questionable how to determine the exact breakpoint
location (in base pairs), as discussed by Stjernqvist et al.
(2007), the overlap consideration of SMAP narrows the
putative regions.

5 IMPLEMENTATION

SMAP is implemented in R (R Development Core Team, 2007)
and C and is available from Bioconductor 2.1 (Gentleman et al.,
2004) in its current version, 1.2.0. Moreover, SMAP has been
integrated as an analysis plug-in within the Linnaeus Centre
for Bioinformatics Data Warehouse (Ameur et al., 2006).

6 DISCUSSION AND CONCLUSIONS

In this article we present a novel method for DNA copy
number profiling, called SMAP, that associates intensity ratios
measured on a genomic microarray to discrete copy numbers.

SMAP is based on segmental a posteriori maximization, a
method in which, in our context, the most plausible assign-
ments of DNA copy numbers to measurement points are found
by maximizing the joint posterior probability of the parameters
of a HMM and the HMM state sequence (copy number
assignments). We propose a heterogeneous discrete-index
HMM that deals with the dependency between clones due to
genomic position (Section 3.1). Firstly, we include distance-
based transition probabilities under the assumption that the
probabilities of possible transition events between two clones
should converge towards equality when their positions are
genomically distant. Secondly, using a mixture model based on
genomic overlap between clones we propose a method of
dealing with the introduced dependency in terms of measure-
ment values when analyzing tiling arrays. By using a MAP
scheme, we enable the exploitation of prior knowledge about
the data to provide flexibility and to enhance the ability to
adapt the analysis to data sources with various characteristics.
For instance, knowledge about normal cell admixture in the test
DNA and the presence of noise in the data, which may cause
intensity ratios to deviate from expected values, is crucial
information that can be integrated in the process. A discussion
regarding parameter settings of SMAP is included in the
Supplementary Material. The inclusion of parameter optimiza-
tion in the method further enables the adaptability of the
HMM to observed data, restricted by prior probabilities and
allows generation of the most plausible HMM model that
describes the data.
We report superior performances of breakpoint prediction on

synthetic data when compared with two other methods (Section
4.2). In a GBM study on the 32K BAC array (Section 4.3), we
demonstrate that SMAP is able to identify both large-scale
regions (Fig. 3) and changes affecting only single features on the
array (singletons) with aberrant DNA copy number (Fig. 4B).
Moreover, SMAP benefits from the overlap consideration in
that transition events due to changes in intensity ratio are
weighted against genomic overlap of previous clones (Fig. 4C).
Furthermore, SMAP does not suffer from extensive computa-
tion time, a problem that is apparent with the continuous-index
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HMM approach of Stjernqvist et al. (2007). Analysis of the
GBM samples took 7.5 CPU seconds on average per sample on a
MacBook Pro Intel Core Duo 2GHz. Analysis of the GBM
samples shows that SMAP readily recognizes already known
and usually very large genetic aberrations in GBM. The vast
majority of these tumor-related abnormalities, which are usually
subtle, predominantly involving singleton changes, are identified
by SMAP using only a single array hybridization. This is
convincing evidence of SMAPs power. We have shown that,
using a biologically motivated six-state model (van deWiel et al.,
2007) and genome-wise adaptation of model parameters, the
identified distributions associated with each copy number
become intuitive. This is not always the case with the compared
segmentation approaches DNACopy and BioHMM, apparent
in Figure 4A. These promising results provide a solid basis for
unbiased identification of singletons that should be validated
using an alternative methodology.
A possible future extension of SMAPwould be to combine the

results of profiling the observations using different orderings
compatible with the overlap of clones. In its present form,
SMAP traverses the observation sequence in one direction only
(according to start position). This is due to the fundamental
Markov chain criterion that the observations are represented as
a chain of events. Although this does not restrict the mere
ordering of clones, the behavior of SMAP may differ when the
clones are ordered differently.
Although the analyses presented in this article concern two-

channel microarray data from the 32K BAC array, this is not a
restriction of SMAP. The method can easily be applied on one-
channel microarray data, e.g. produced using Affymetrix, as
long as a reference exists that enables the calculation of intensity
ratios. We do not, however, consider allele specific copy number
association, a feature which will require further extensions and
may be considered in a future version of SMAP.
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