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ABSTRACT

Motivation: MHC:peptide binding plays a central role in activating
the immune surveillance. Computational approaches to determine
T-cell epitopes restricted to any given major histocompatibility com-
plex (MHC) molecule are of special practical value in the development
of for instance vaccines with broad population coverage against
emerging pathogens. Methods have recently been published that are
able to predict peptide binding to any human MHC class I molecule.
In contrast to conventional allele-specific methods, these methods
do allow for extrapolation to uncharacterized MHC molecules. These
pan-specific human lymphocyte antigen (HLA) predictors have not
previously been compared using independent evaluation sets.
Result: A diverse set of quantitative peptide binding affinity
measurements was collected from Immune Epitope database (IEDB),
together with a large set of HLA class I ligands from the SYFPEITHI
database. Based on these datasets, three different pan-specific HLA
web-accessible predictors NetMHCpan, adaptive double threading
(ADT ) and kernel-based inter-allele peptide binding prediction
system (KISS) were evaluated. The performance of the pan-specific
predictors was also compared with a well performing allele-specific
MHC class I predictor, NetMHC, as well as a consensus approach
integrating the predictions from the NetMHC and NetMHCpan
methods.
Conclusions: The benchmark demonstrated that pan-specific
methods do provide accurate predictions also for previously
uncharacterized MHC molecules. The NetMHCpan method trained
to predict actual binding affinities was consistently top ranking
both on quantitative (affinity) and binary (ligand) data. However, the
KISS method trained to predict binary data was one of the best
performing methods when benchmarked on binary data. Finally,
a consensus method integrating predictions from the two best
performing methods was shown to improve the prediction accuracy.
Contact: mniel@cbs.dtu.dk
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Cytotoxic T lymphocytes (CTL) play a central role in defeating
intracellular infections with pathogens, such as viruses and certain
bacteria. The CTL T-cell receptor (TCR) recognizes foreign peptides
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in complex with major histocompatibility complex (MHC) class I
molecules on the surface of the infected cells. MHC class I molecules
preferably bind and present nine amino acid long peptides, which
mainly originates from proteins expressed in the cytosol of the
presenting cell. In most mammals, MHCs exist in a number of
different allelic variants each of which binds to a specific and very
limited set of peptides.

During the last decades, a number of prediction methods have
been developed to identify which peptides will bind a given MHC
molecule (see review Lundegaard et al., 2007). Today, the best
methods are able to predict MHC class I binding with very high
accuracy (Lin et al., 2008; Peters et al., 2006). The human class I
version of MHC, the human lymphocyte antigen (HLA), is expressed
by genes at three loci (HLA-A, -B, and -C) at chromosome 6.
Several hundred alleles expressing MHCs with slightly different
amino acid sequence are hosted at each locus, and each product
potentially binds a different set of peptides. Most of the available
data of MHC:peptide binding has been originating from a limited
number of alleles and thus prediction systems have been biased
towards these alleles. Lately, the number of available binding data
has increased significantly both in terms of amount of different
peptides and the number of different MHC alleles. This fact has
in itself influenced the MHC prediction systems that now cover a
large number of different HLA alleles (Peters et al., 2006). More
interestingly, however, it has enabled the development of new so
called pan-specific algorithms that can predict peptide binding to
alleles for which limited or even no experimental data are available
(Jacob and Vert, 2008; Jojic et al., 2006; Nielsen et al., 2007; Zhang
et al., 2005). A common feature of these pan-specific methods is
that they go beyond the conventional single allele approach, and
take both the peptide sequence and the MHC contact environment
into account. A large set of publicly available allele-specific MHC
class I predictors that predict peptide binding only to the alleles
on which they have been trained have been benchmarked latest
by Peters et al. (2006) and Lin et al. (2008). The pan-specific
predictors, on the other hand, have not to date been evaluated on
a large independent dataset. The Immune Epitope database (IEDB)
(Sette et al., 2005) is growing rapidly, and a large number of MHC
class I binding data has become available since the training of the
publicly available online versions of the pan-specific predictors.
In this work, 6533 such novel quantitative peptide binding affinity
measurements covering 33 different human MHC class I alleles were
collected. As the resources necessary for biochemical determination
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of MHC:peptide affinity are significant, many of the data-points are
presumably selected either based on other biological evidence or by
use of in silico predictions like the ones tested in this work. It is
known for a fact that NetMHC has been used to predict a number of
data subsequently measured and deposited in the IEDB database. To
test if this bias will give any difference in evaluation performance, a
second evaluation set of 5137 data points covering 27 HLA-I alleles
was created by removal of data-points identified by the authors of
the NetMHC and NetMHCpan methods. For evaluation of the ability
to distinguish between ligands and non-ligands, a set of 566 HLA
ligands covering 34 HLA class I alleles was created by download
from the SYFPEITHI database. For each evaluation dataset, peptide
data used in the training of the NetMHC-3.0 (Buus et al., 2003;
Nielsen et al., 2003) and NetMHCpan-1.0 (Nielsen et al., 2007)
methods was removed. The benchmark was run against adaptive
double threading (ADT ) (Jojic et al., 2006), the artificial neural
network (ANN)-based NetMHCpan-1.0 (Nielsen et al., 2007) and
the SVM-based: kernel-based inter-allele peptide binding prediction
system (KISS) (Jacob and Vert, 2008) methods. These methods are
all publicly available via web interfaces. In addition, the quality
of the pan-specific predictors was compared with one of the best
available conventional allele-specific MHC predictor: NetMHC-3.0
(Buus et al., 2003; Lundegaard et al., 2008; Nielsen et al., 2003).

In many areas where different predictors have been developed, it
has been demonstrated how consensus methods defined by averaging
over several different predictions can improve the prediction
accuracy beyond that of each individual predictors (Bujnicki et al.,
2001). This is often due to the fact that the methods have been
trained on different data and thus have learned potentially different
features of the sequence space. However, also methods trained on
the exact same data can contribute with non-redundant information
and thus gain superiority by combination, as shown for example
in Nielsen et al. (2007), Nielsen et al. (2003) and Petersen et al.
(2000). Although such so-called meta predictors have been tried
several times for MHC class II prediction (Huang et al., 2006;
Karpenko et al., 2008; Mallios, 2001), no such scheme has to our
knowledge been published using the wide diversity of MHC class I
predictors. To investigate the possible benefits of such an approach,
the predictions of the individual methods were compared with a
consensus method defined by averaging the allele-specific MHC
NetMHC-3.0 and pan-specific NetMHCpan-1.0 predictors.

2 MATERIALS AND METHODS

2.1 Datasets
The 9mer peptides associated with quantitative binding data were retrieved
from the Immune Epitope Database and Analysis Resource (IEDB).

All peptides used in the training of NetMHC and NetMHCpan
methods were discarded. This resulted in a dataset of 6533 experimental
measurements covering 33 HLA-I alleles. These data were released after
a point of time when the methods NetMHC-3.0, NetMHCpan-1.0 and
ADT were trained and published. By doing so, it can be assured that the
data had not been used in training of the above methods. This dataset is
named EvaluationSet-1. Table 1 (panel A) gives an overview of dataset
EvaluationSet-1.

There was a concern that a significant part of the data deposited into IEDB
dataset was selected for measurement by the NetMHC prediction method. In
this way the dataset could be biased and in favor of NetMHC and possibly
NetMHCpan as well. To test this, all data submitted to the IEDB database
by the authors of the NetMHC and NetMHCpan methods, were removed

and this resulted in a dataset containing 5137 data points covering 27 HLA-I
alleles. This dataset is called EvaluationSet-2. Table 1 (panel B) summarizes
the data in dataset EvaluationSet-2. Alleles in both datasets containing less
than 10 data points were not included in the evaluation. Note, that both
EvaluationSet-1 and EvaluationSet-2 have a very high ratio of binding versus
non-binding peptides (50% on average). This highly non-biological fraction
of binders (due to the procedure used to select peptides for experimental
validation) will make the predictive performance values lower than on the
biological data, where the ratio of binders to non-binders is of the order 1–2%
(Nielsen et al., 2003; Yewdell and Bennink, 1999).

2.2 Endogenously presented peptides
Both the NetMHCpan and ADT methods were trained only on quantitative
peptide MHC binding data. The KISS method on the other hand was trained
on qualitative binding versus non-binding data from a broad range of data
sources including IEDB (Sette et al., 2005), SYFPEITHI (Rammensee et al.,
1999), Los Alamos HIV database (http://www.hiv.lanl.gov) and MHCBN
(Bhasin et al., 2003). To test if this inherent difference in the training data
would make the NetMHCpan and ADT perform advantageous on quantitative
data and the KISS method favor qualitative data, an evaluation set of HLA

Table 1. Overview of dataset EvaluationSet-1, dataset EvaluationSet-2 and
the SYFPEITHI dataset EvaluationSet-3

Allele # Allele # Allele #

Panel A: EvaluationSet-1
A0101 446 A2902 329 B3501 77
A0201 442 A3002 329 B3901 106
A0202 194 A3101 224 B4001 230
A0203 193 A3301 224 B4002 92
A0206 198 A6801 224 B4402 92
A0301 329 A6802 202 B4403 92
A1101 217 B0702 231 B4501 92
A2301 329 B0801 119 B5101 77
A2402 367 B1501 114 B5301 67
A2403 111 B1801 92 B5401 66
A2601 428 B2705 98 B5801 102

Panel B: EvaluationSet-2
A0101 354 A2601 305 B3501 75
A0201 347 A2902 328 B4001 85
A0202 192 A3002 328 B4002 91
A0203 191 A3101 222 B4402 91
A0206 196 A3301 222 B4403 91
A0301 213 A6801 222 B4501 91
A1101 214 A6802 200 B5101 75
A2301 328 B0702 88 B5301 66
A2402 366 B1801 91 B5401 65

Panel C: SYFPEITHI dataset EvaluationSet-3
A0101 1157 A3001 669 B3501 736
A0201 3089 A3002 92 B4001 1078
A0202 1447 A3101 1869 B4002 118
A0203 1443 A3301 1140 B4402 119
A0206 1437 A6801 1141 B4403 119
A0301 2094 A6802 1434 B4501 114
A1101 1985 A6901 833 B5101 244
A2301 104 B0702 1262 B5301 254
A2402 197 B0801 708 B5401 255
A2403 254 B1501 978 B5701 59
A2601 672 B1801 118 B5801 988
A2902 160 B2705 969

Allele, name of the alleles; #, number of peptides.
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ligands were downloaded from the SYFPEITHI database (Rammensee et al.,
1999). Only data restricted to HLA alleles covered by all methods and not
included in the training of any of the three methods NetMHCpan, ADT
and KISS were included. This set consists of 566 HLA ligands restricted
to 33 different HLA-A and -B alleles. For every peptide, the source protein
was found in the UniProt database (The UniProt Consortium, 2008). The
source protein was split into overlapping 9mer peptide sequences, and all
peptides except the annotated HLA ligand were taken as negative. When
using this definition of positive and negative peptides, one has to take into
account that some peptides will falsely be classified as negatives because
the SYFPEITHI database is incomplete. Since the MHC class I molecules
are very specific, binding only a highly limited repertoire of peptides,
this misclassified proportion will, however, be very small (Yewdell and
Bennink, 1999). Further, the KISS method does not provide prediction
values for peptides included in the training. These peptides were removed
from the negative set. For each protein–HLA ligand pair, the predictive
performance was estimated as the AUC value (Swets, 1988). This benchmark
dataset is referred to as EvaluationSet-3, and is summarized in Table 1
(panel C).

All benchmark datasets 1–3 are available online at http://www.cbs.dtu.dk/
suppl/immunology/pan-eval.php.

2.3 Prediction methods
All predictions were made using public web interfaces with default
parameters of the method in question. Table 2 gives a summary of the
different methods in terms of data resources and release dates.

NetMHC-3.0: http://www.cbs.dtu.dk/services/NetMHC/
NetMHCpan-1.0: http://www.cbs.dtu.dk/services/NetMHCpan-1.0/
Adaptive Double Threading:
http://atom.research.microsoft.com/hlabinding/hlabinding.aspx
KISS: http://cbio.ensmp.fr/kiss/

Due to the late release date of the KISS method, it is likely that some overlap
between the present evaluation set and the training set exists. Indeed close
to 3% of the data in the EvaluationSet-1 are present in the training data for
the KISS method. It is hence likely that the performance of the KISS method
was slightly overestimated.

2.4 Criteria for performance
Several performance measures can be used to evaluate the prediction
performance of a given method.As a first assumption the methods included in
the benchmark give predictions that are linearly proportional to the logarithm
of the actual measurement of affinity. The intuitive assessment is, therefore, to
evaluate the strength of this correlation. Such a quantifiable relationship can
be found with the Pearson correlation coefficient (Pearson CC) (Press et al.,
1992). In cases where there is no linear relation between the prediction scores
and the binding affinity, it is more appropriate to use the Spearman’s Rank-
order correlation (Spearman’s RC) (Press et al., 1992). For an indication
of how well the methods can separate peptide binders from peptide non-
binders, the area under the receiving operator characteristics curve (AUC)
(Swets, 1988) was calculated using the generally accepted affinity threshold
of 500 nM.

Table 2. Prediction methods

Method Data source Date

NetMHCpan-1.0 IEDB, in house data August, 2007
NetMHC-3.0 IEDB, in house data, SYFPEITHI August, 2006
ADT IEDB July, 2006
KISS IEDB, SYFPEITHI, LANL, and MHCDB December, 2007

Data source gives the source of data used to train the method. Date gives date of
publication.

2.5 Statistical analysis of results
Binomial tests were used to evaluate the statistical significance of the
observed difference in predictive performance between the different
methods. P-values <0.05 were taken to define a significant result. For each
dataset, the number of alleles where one method outperformed one another
was counted. Performing a one-tailed binomial test based on this count,
and the number of alleles (excluding ties) in the dataset gives the P-value
for accepting the null-hypothesis that the first method does not outperform
the other. On the other hand, a significant P-value leads to the rejection
of the null-hypothesis and to the acceptance of the alternative hypothesis,
which states that the first method does consistently outperform the other.
Note that some alleles in the benchmark data share highly similar binding
specificities, making the assumption that predictions for different alleles are
independently false. This could imply that the quoted P-values in some case
should be interpreted with caution.

2.6 Consensus method
A consensus method was defined as the simple average of the raw log-
transformed prediction scores from the NetMHC-3.0 and NetMHCpan-1.0
methods.

3 RESULTS
The results are divided into three sections according to the dataset
used for testing: EvaluationSet-1, EvaluationSet-2, and the HLA
ligand set in EvaluationSet-3. Within the first two sections, tests
were conducted with the three different criteria for performance:
Pearson’s CC, Spearman’s RC and AUC. For the HLA ligand data
only AUC was applied.

3.1 EvaluationSet-1
Figure 1 summarizes the predictive performance of the different
methods on the data in EvaluationSet-1.

The figure suggests the ranking of the different methods
as follows: Consensus > NetMHCpan-1.0 > NetMHC-3.0 > ADT
> KISS.

The ADT method appears to achieve a higher performance value
when measured in terms of the Spearman’s RC compared with the
Pearson’s CC. This could be explained by the fact that the prediction
made by the method is a kind of unitless energy, which might not

Fig. 1. Benchmark performance for EvaluationSet-1. The average predictive
performance for the different methods included in the benchmark in terms
of the Pearson’s CC, the Spearman’s RC and the AUC.
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be linearly correlated to the logarithm of the binding affinity. For
such methods, the Spearman’s RC and the AUC values are therefore
more appropriate measures of predictive performance.

The details of the evaluation as estimated in terms of the AUC
values is shown in Table 3 (data for the Pearson’s CC and Spearman’s
RC is shown in Supplementary Table S1a and c, respectively).

From the data in Table 3, it is clear that not one single method was
consistently superior in predictive performance to all other methods.
By way of example, the NetMHCpan-1.0 method outperformed
NetMHC-3.0 for 20 of the 33 alleles, but had a lower or equal
performance for the remaining 13 cases.

By performing one-tailed binomial tests on the difference in
performance scores, the significance of such observed differences in
predictive performance could be assessed. In doing so, the following
ranking of the different methods as measured in terms of the AUC

Table 3. The performance for EvaluationSet-1 measured in terms of the
AUC

Allele # MHC Pan ADT KISS Cons #b

A0101 446 0.931 0.913 0.848 0.880 0.927 148
A0201 442 0.921 0.923 0.871 0.858 0.927 1331
A0202 194 0.738 0.768 0.699 0.658 0.755 649
A0203 193 0.896 0.890 0.750 0.730 0.897 761
A0206 198 0.776 0.768 0.727 0.495 0.780 741
A0301 329 0.781 0.803 0.777 0.753 0.798 615
A1101 217 0.878 0.887 0.848 0.822 0.889 762
A2301 329 0.803 0.825 0.776 0.603 0.820 96
A2402 367 0.831 0.825 0.775 0.811 0.832 131
A2403 111 0.862 0.916 0.905 0.825 0.919 85
A2601 428 0.908 0.921 0.789 0.843 0.922 93
A2902 329 0.746 0.755 0.736 0.685 0.766 68
A3002 329 0.650 0.741 0.675 0.591 0.726 29
A3101 224 0.865 0.877 0.866 0.817 0.873 489
A3301 224 0.926 0.923 0.886 0.834 0.931 184
A6801 224 0.880 0.891 0.890 0.829 0.890 498
A6802 202 0.865 0.885 0.841 0.707 0.884 397
B0702 231 0.812 0.818 0.677 0.715 0.822 268
B0801 119 0.777 0.790 0.661 0.642 0.814 31
B1501 114 0.769 0.726 0.677 0.757 0.749 272
B1801 92 0.782 0.787 0.813 0.713 0.798 81
B2705 98 0.884 0.856 0.717 0.764 0.882 88
B3501 77 0.795 0.773 0.733 0.672 0.787 274
B3901 106 0.779 0.759 0.535 0.632 0.810 36
B4001 230 0.883 0.907 0.789 0.764 0.912 72
B4002 92 0.623 0.766 0.751 0.662 0.717 39
B4402 92 0.784 0.784 0.604 0.738 0.818 44
B4403 92 0.736 0.772 0.582 0.683 0.798 34
B4501 92 0.627 0.619 0.671 0.729 0.661 49
B5101 77 0.698 0.731 0.676 0.630 0.717 85
B5301 67 0.711 0.803 0.693 0.734 0.778 106
B5401 0.893 0.878 0.898 0.844 0.898 81
B5801 102 0.832 0.777 0.748 0.789 0.817 162

Ave 6533 0.807 0.820 0.754 0.734 0.828 8799

Allele, name of alleles; #, number of peptides in the evaluation set; MHC, NetMHC-3.0;
Pan, NetMHCpan-1.0; Cons, the consensus method; #b, number of binders in the data
used for NetMHC-3.0 training. The best performing method is highlighted in bold for
each allele.

values was found. (Similar results were found for the Pearson’s and
Spearman’s Rank correlation).

Consensus > NetMHCpan-1.0 � NetMHC-3.0 > ADT � KISS

Here ‘>’ indicates a significant difference (P < 0.05) and ‘�’
indicates a non-significant difference. The methods can based on
this be grouped into (Consensus), (NetMHCpan-1.0, NetMHC-
3.0) and (ADT, KISS). The grouping indicates that the Consensus
method performed significantly better than both NetMHCpan-1.0
and NetMHC-3.0, and both of the latter performed significantly
better than any of the rest; ADT and KISS performed at the same
level. Details of the statistical analysis are found in Supplementary
Table S1b, d and f.

3.2 EvaluationSet-2
Figure 2 summarizes the predictive performance of the different
methods on the data in EvaluationSet-2.

The figure gives the average predictive performance for
the different methods included in the benchmark in terms
of the Pearson’s CC, the Spearman’s RC and the AUC. Details of
the evaluation in terms of the AUC values are shown in Table 4
(further evaluation performance values are shown in Supplementary
Tables S2a, c and e, respectively).

For the results shown in Figure 2, the following rank of the
different prediction methods was found

Consensus > NetMHCpan-1.0 > NetMHC-3.0 > ADT > KISS

The significance of this ranking was assessed using a one-tailed
binomial test. In terms of the AUC values, the following results
were obtained;

Consensus � NetMHCpan-1.0 > NetMHC-3.0 > ADT > KISS,

where ‘>’ indicates a significant difference (P < 0.05) and ‘�’
indicates a non-significant difference. The methods could therefore
be grouped as (Consensus, NetMHCpan-1.0), (NetMHC-3.0), (ADT )
and (KISS). For the EvaluationSet-2, the analysis thus did not show
a significant difference between the Consensus and NetMHCpan-
1.0 methods. However, all neural network methods (Consensus,
NetMHCpan-1.0 and NetMHC-3.0) were, also for this benchmark,
shown to significantly outperform both ADT and KISS methods.
Details of the analysis are found in Supplementary Table S2b, d and f.

Fig. 2. Benchmark performance for EvaluationSet-2. The average predictive
performance for the different methods included in the benchmark in terms
of the Pearson’s CC, the Spearman’s RC and the AUC.
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Table 4. The performance for EvaluationSet-2 measured in terms of the
AUC

Allele # MHC Pan ADT KISS Cons #b

A0101 354 0.925 0.910 0.859 0.872 0.921 148
A0201 347 0.916 0.918 0.866 0.847 0.921 1331
A0202 192 0.742 0.773 0.702 0.659 0.760 649
A0203 191 0.892 0.885 0.746 0.733 0.892 761
A0206 196 0.779 0.773 0.730 0.497 0.784 741
A0301 213 0.834 0.858 0.840 0.754 0.852 615
A1101 214 0.885 0.887 0.848 0.828 0.892 762
A2301 328 0.802 0.824 0.775 0.601 0.819 96
A2402 366 0.831 0.825 0.775 0.810 0.831 131
A2601 305 0.828 0.849 0.793 0.721 0.844 93
A2902 328 0.746 0.754 0.736 0.688 0.765 68
A3002 328 0.649 0.740 0.674 0.589 0.724 29
A3101 222 0.863 0.875 0.865 0.818 0.871 489
A3301 222 0.926 0.922 0.887 0.835 0.931 184
A6801 222 0.879 0.890 0.889 0.829 0.889 498
A6802 200 0.865 0.884 0.842 0.707 0.883 397
B0702 88 0.790 0.795 0.723 0.701 0.798 268
B1801 91 0.783 0.788 0.815 0.715 0.800 81
B3501 75 0.793 0.769 0.729 0.672 0.783 274
B4001 85 0.838 0.927 0.820 0.781 0.904 72
B4002 91 0.629 0.767 0.748 0.672 0.720 39
B4402 91 0.787 0.784 0.597 0.736 0.818 44
B4403 91 0.742 0.772 0.575 0.680 0.800 34
B4501 91 0.621 0.624 0.683 0.729 0.657 49
B5101 75 0.692 0.725 0.674 0.635 0.710 85
B5301 66 0.708 0.803 0.690 0.730 0.777 106
B5401 65 0.890 0.874 0.898 0.840 0.895 81

Ave 190 0.801 0.822 0.770 0.729 0.824 8125

Allele, name of alleles; #, number of peptides in the evaluation set; MHC, NetMHC-3.0;
Pan, NetMHCpan-1.0; Cons, the consensus method; #b, number of binders in the data
used for NetMHC-3.0 training. The best performing method is highlighted in bold for
each allele.

3.3 Training performance
It is clear from the performance values on the two evaluation
sets, that the overall ranking of the different pan-specific methods
included in the benchmark for quantitative predictions is Consensus,
NetMHCpan-1.0, ADT and KISS. In order to investigate if the
higher performance of the NetMHCpan-1.0 method is due to the
quality and size of the training data, the predictive performance
of the NetMHCpan-1.0 and ADT methods were compared when
trained on an identical dataset. The dataset and data partitioning
were taken from the work by Peters et al. (2006). The dataset
consists of more than 29 000 quantitative HLA peptide-binding
data covering 35 HLA-A and HLA-B alleles. The performance
was estimated in terms of the AUC value for each allele. The
performance values for the ADT method were taken from the ADT
server web site. The average performance values were 0.92 and
0.87 for the NetMHCpan-1.0 and ADT methods, respectively. The
NetMHCpan-1.0 achieved the highest predictive performance for
34 of the 35 alleles, making this difference highly statistically
significant (P < 10−5, binomial test). The details of the analysis are
given in Supplementary Table S3. This result strongly indicates that
the performance gain of the NetMHCpan-1.0 method is not solely
due to a difference in the training data, but also is caused by the

Fig. 3. Histogram of the average predictive performance of the alleles in
the EvaluationSet-1 as a function of the numner of binding pepdite in the
training data for same allele. Each methods is trained on the data in the Peters
et al. (2006) dataset.

algorithmic differences between the two methods. This analysis can
further be extended to demonstrate the power of the pan-specific
methods to interpolate binding motif information from neighboring
HLA molecules, enabling prediction of binding motifs for HLA
molecules for which no or only limited binding data exist. Such an
analysis has been carried out in detail in the original NetMHCpan-1.0
publication (Nielsen et al., 2007), where it was demonstrated how a
pan-specific prediction method could accurately be used to describe
the binding motif for hereto uncharacterized HLA molecules. To
give further support for the power of the pan-specific approach,
Figure 3 shows the predictive performance of the NetMHCpan-1.0,
ADT and NetMHC-3.0 methods when all methods are trained on the
Peters et al. (2006) dataset and evaluated on the EvaluationSet-1.
This figure displays a histogram of the predictive performance of
the three methods for the different alleles in the evaluation set as a
function of the number of peptide binders in the training data for
each allele.

The figure clearly demonstrates that for alleles characterized by
a large set of peptide binders (>100) both single allele (NetMHC-
3.0) and pan-specific (NetMHCpan-1.0) methods achieved similar
predictive accuracy. For alleles characterized by no or limited
binding data in the training, the figure on the other hand show
the power of the pan-specific NetMHCpan-1.0 method. For these
alleles, the single allele method, NetMHC-3.0 failed to produce
accurate predictions whereas the pan-specific method, NetMHCpan-
1.0, maintained a high accuracy. One extreme allele is the HLA-
B*3901 that is absent from the training data. This allele is naturally
unpredictable by the NetMHC-3.0 method, but is predicted with
an accuracy of 0.26 by the NetMHCpan-1.0 method (data not
shown). These results thus clearly demonstrate the power of the
pan-specific methods to go beyond the data in the training set and
accurately predict binding also for uncharacterized HLA molecules.
Intriguingly, it seems that the lower predictive performance of the
ADT method is consistent and independent of the number of peptide
binding examples in the training data, suggesting that the linear
algorithm underlying the ADT method has poorer predictive power
compared with the higher order neural network algorithm underlying
the NetMHCpan-1.0 method.
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To allow for a comparison of the predictive performance of
the different methods, a Table S4 was included in Supplementary
Material comparing the predictive performance as stated in the
original publication, and the corresponding evaluation performance
for each allele in EvaluationSet-1. The analysis of the data
demonstrates that all methods have around 10% drop in predictive
performance when comparing the evaluation set to the training set.

3.4 HLA ligand data
Next, the performance on the HLA ligand EvaluationSet-3 was
analyzed. The results of this analysis are shown in Table 5.

Table 5. Predictive performance for the HLA ligand dataset EvaluationSet-3
dataset as measured in terms of the AUC.

Allele N pan ADT KISS

A0201 104 0.955 0.925 0.948
A0207 4 0.961 0.867 0.933
A0301 5 0.986 0.977 0.987
A1101 3 0.959 0.966 0.889
A2402 2 0.998 0.988 0.998
A2602 2 0.903 0.809 0.989
A2603 1 0.807 0.898 0.977
A3101 3 0.981 0.978 0.982
A3301 2 0.918 0.798 0.632
A6602 7 0.956 0.989 0.978
A6603 2 0.999 0.999 0.996
A6801 7 0.992 0.987 0.993
A6802 1 0.999 0.999 0.994
B0702 14 0.990 0.982 0.986
B0801 20 0.986 0.829 0.962
B0802 3 0.997 0.924 1.000
B1509 1 0.866 0.842 1.000
B1801 35 0.993 0.990 0.992
B2702 2 0.989 0.987 0.996
B2703 9 0.992 0.964 0.987
B2704 23 0.985 0.951 0.984
B2705 58 0.985 0.966 0.987
B2706 25 0.980 0.945 0.980
B2709 26 0.982 0.940 0.984
B3901 61 0.967 0.563 0.884
B4001 4 0.998 0.987 0.983
B4101 12 0.978 0.915 0.689
B4402 27 0.988 0.927 0.983
B4403 1 0.970 0.967 0.997
B4501 4 0.975 0.937 0.990
B4701 18 0.909 0.604 0.789
B4901 101 0.992 0.903 0.861
B5001 8 0.990 0.955 0.801
B5101 1 1.000 1.000 1.000

Ave per allele 34 0.968 0.919 0.945

Ave per protein 566 0.976 0.886 0.931

Allele gives the allele name. N gives the number of HLA ligands included in the
benchmark for each allele. Pan (NetMHCpan-1.0), ADT and KISS give the AUC
values averaged over all ligand:protein pairs for a given HLA allele for each of the
three prediction methods included in the benchmark. Ave per allele gives the average
of the per-allele performance values. Ave per protein gives the average over all 566
ligand:protein pairs included in the benchmark. For each allele, the best performing
method is highlighted in bold.

From this table, it is apparent that the KISS method did perform
significantly better when it came to HLA ligand identification
compared with the prediction of quantitative peptide binding
affinities. Taking the average performance per allele, the rank of
the three methods is

NetMHCpan-1.0 > (�) KISS > ADT

Where ‘>’ as before indicates a significant difference (P < 0.05),
and ‘�’ indicates a non-significant difference. The KISS method
thus significantly outperformed the ADT method when it came
to HLA ligand identification. When looking at the performance
per protein, the NetMHCpan-1.0 method significantly outperformed
both the other methods (>). However, when grouping the data for
the different alleles did the KISS and NetMHCpan-1.0 methods
achieve similar predictive performances (�). There are many
possible reasons for this difference in relative rank of the different
methods depending on the type of evaluation data. The most
important reason is probably the source of training data. The
KISS method was trained on HLA ligand data, and thus implicitly
incorporates both the potential bias in the data imposed by the
experimental method used to detect the ligands as well as signals
from other players in the MHC class I presentation pathway
like TAP and proteasome. This additional information is not
incorporated into the NetMHCpan-1.0 and ADT method, since
these are trained only on in vitro derived quantitative peptide:MHC
binding data.

4 DISCUSSION
The large amount of peptide binding data made available to the
scientific community has recently made the development of so-
called pan-specific MHC-binding methods possible. Such methods
are capable of providing accurate prediction of the peptide binding
strength to any MHC molecule of known protein sequence.
Large-scale benchmark evaluations of prediction algorithms for
peptide:MHC binding have been performed in several studies for
allele-specific methods (method trained on single allele data) (Bui
et al., 2005; Lin et al., 2008; Nielsen et al., 2003; Peters et al.,
2006; Yu et al., 2002). These studies have provided a ranking of
the vast list of methods publicly available for peptide:MHC binding
prediction and thereby aiding the non-expert user in selecting which
prediction method to use for a given task.

For pan-specific methods, however, no such benchmark has been
performed, and it remains unclear to what extent the publicly
available methods differ in accuracy. Also, it has not, in an
independent evaluation, been evaluated to what extent pan-specific
methods can compete with allele-specific methods for alleles already
represented in the peptide binding databases.

Here, such a large-scale benchmark has been carried out trying to
answer these questions. The predictive performance of three publicly
available pan-specific peptide:MHC binding prediction methods
NetMHCpan-1.0 (Nielsen et al., 2007), ADT (Jojic et al., 2006)
and KISS (Jacob and Vert, 2008) was compared on a large set
of quantitative peptide MHC binding data downloaded from the
IEDB database. The data were released on the IEDB database post-
training of the NetMHCpan-1.0, and ADT methods. Further, to test
if the data in the IEDB database had a potential bias due to large
data submissions from the authors involved in the NetMHC-3.0 and
NetMHCpan-1.0 methods, a second benchmark set was designed
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excluding data submitted to the IEDB by these authors. In the
benchmark, we further included one of the best available allele-
specific MHC binding prediction methods, NetMHC-3.0 (Buus
et al., 2003; Nielsen et al., 2003) as well as a consensus method
defined by integrating the prediction scores from the NetMHCpan-
1.0 and NetMHC-3.0 methods. The KISS method was trained
on qualitative (categorized) data and in order to investigate to
what extent this has implications for which type of the data this
method best predicts a qualitative benchmark dataset consisting
of HLA ligands downloaded from the SYFPEITHI database was
designed.

In both quantitative benchmark calculations it was found
consistently that the Consensus and NetMHCpan-1.0 methods
perform better than any of the other pan-specific methods. Further,
the NetMHCpan-1.0 method performed noticeably better than
NetMHC-3.0. Interestingly, the top ranking quantitatively trained
method did perform better or equal to the KISS method trained
on binary data when tested on this type of data (EvaluationSet-3).
The strong predictive power of the pan-specific prediction methods
was clearly illustrated in the benchmark calculation on HLA ligand
data. In this benchmark, a large fraction of the HLA alleles
(42%) were unknown to the NetMHCpan-1.0 method. For these
alleles the NetMHCpan-1.0 method achieved an average predictive
performance of 0.96 in terms of the AUC value. This AUC value
translates into a false positive ratio of 0.04, meaning that in a protein
of length 200 amino acids less than 10 peptides will have to be tested
in order to identify the ligand.

It is clear when comparing the NetMHC-3.0 and NetMHCpan-1.0
performances on a single allele basis (see Table 2 and Supplementary
Material) that the latter had a superior performance especially in the
cases where the training data for that particular allele was scarce. For
the data in the EvaluationSet-2, it was for instance found that the five
alleles with maximal difference in predictive performance between
the NetMHC-3.0 and the NetMHCpan-1.0 methods (HLA-B*4002,
HLA-B*5301, HLA-A*3002, HLA-B*4001 and HLA-B*5101) all
had a number of peptide binders in the training dataset that was
consistently less than 100. The NetMHC-3.0 method thus achieved
its poorest predictions for alleles covered by limited data (an average
of 66 in the examples shown here). Similar observations were found
using the data in EvaluationSet-1. Earlier work has shown a similar
result, namely that MHC binding prediction algorithms rely on
a sufficient number (in the order of 100) of peptide binders to
be available in order to achieve high predictive value (Yu et al.,
2002). This illustrates very nicely the limits faced when deriving
allele-specific predictive methods and strength of the pan-specific
approaches like NetMHCpan-1.0, to benefit from data of related
alleles.
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