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ABSTRACT

Motivation: Most experimental evidence on kinetic parameters is
buried in the literature, whose manual searching is complex, time
consuming and partial. These shortcomings become particularly
acute in systems biology, where these parameters need to be
integrated into detailed, genome-scale, metabolic models. These
problems are addressed by KiPar, a dedicated information retrieval
system designed to facilitate access to the literature relevant for
kinetic modelling of a given metabolic pathway in yeast. Searching for
kinetic data in the context of an individual pathway offers modularity
as a way of tackling the complexity of developing a full metabolic
model. It is also suitable for large-scale mining, since multiple
reactions and their kinetic parameters can be specified in a single
search request, rather than one reaction at a time, which is unsuitable
given the size of genome-scale models.
Results: We developed an integrative approach, combining public
data and software resources for the rapid development of large-
scale text mining tools targeting complex biological information. The
user supplies input in the form of identifiers used in relevant data
resources to refer to the concepts of interest, e.g. EC numbers, GO
and SBO identifiers. By doing so, the user is freed from providing
any other knowledge or terminology concerned with these concepts
and their relations, since they are retrieved from these and cross-
referenced resources automatically. The terminology acquired is used
to index the literature by mapping concepts to their synonyms, and
then to textual documents mentioning them. The indexing results
and the previously acquired knowledge about relations between
concepts are used to formulate complex search queries aiming at
documents relevant to the user’s information needs. The conceptual
approach is demonstrated in the implementation of KiPar. Evaluation
reveals that KiPar performs better than a Boolean search. The
precision achieved for abstracts (60%) and full-text articles (48%)
is considerably better than the baseline precision (44% and 24%,
respectively). The baseline recall is improved by 36% for abstracts
and by 100% for full text. It appears that full-text articles are a much
richer source of information on kinetic data than are their abstracts.
Finally, the combined results for abstracts and full text compared with
the curated literature provide high values for relative recall (88%) and

∗To whom correspondence should be addressed.

novelty ratio (92%), suggesting that the system is able to retrieve a
high proportion of new documents.
Availability: Source code and documentation are available at:
http://www.mcisb.org/resources/kipar/
Contact: i.spasic@manchester.ac.uk; dbk@manchester.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Systems biology (SB) has emerged as an approach to studying
biological systems by understanding how the heterogeneous parts
combine to form the whole (Henry, 2003) through systematic
integration of technology, biology and computation (Hood, 2003;
Kell, 2006). At the heart of SB is an iterative interplay between (i)
mathematical/computational simulation of a biological system and
(ii) experimental measurements of parameters and variables with
which a model can be populated and/or validated. A principal goal
of SB is to develop and exploit appropriate methods for detailed,
genome-scale, metabolic modelling: the virtual cell, which can
be used to simulate the dynamic aspects of biological systems
(e.g. kinetic behaviour) in silico. While the structure of such
systems is now relatively well known (Herrgård et al., 2008;
Michal, 1999), access to the required kinetic parameters such as
the Michaelis constant, Km, and the catalytic constant, kcat, remains
a big challenge.

Most experimental evidence on kinetic parameters is buried in
the scientific literature. However, its manual searching is time
consuming and complex (Hull et al., 2008), and we anticipate that
text mining (TM) technologies (Ananiadou et al., 2006; Jensen et al.,
2006) may be appropriate for this. Currently, most TM applications
for metabolic modelling focus on qualitative information (e.g. Ding,
et al., 2002; Hoffmann et al., 2005; Humphreys et al., 2000;
Rzhetsky et al., 2004; Yuryev et al., 2006). In addition, Humphreys
et al. (2000) extract quantitative information (e.g. temperature and
concentration) related to the participants of metabolic reactions.
Only Hakenberg et al. (2004) focus on quantitative information
related to the kinetics of metabolism. The main difficulty such
applications face is the complexity of the problem: metabolic
pathways involve various chemical alterations of relatively
small molecules and are subject to stoichiometric constraints.
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Consequently, mining the literature for metabolic information
cannot be tackled effectively with simple approaches based
on co-occurrence information (Rzhetsky et al., 2004). While such
approaches produce good results for some types of relations between
biological entities (e.g. protein–protein interactions), they are not
applicable to relations between enzymes in metabolic pathways,
because enzymes catalysing successive reactions in a pathway are
rarely mentioned in the same text passage (Hoffmann et al., 2005).

Even mining the literature for an individual metabolic reaction
is difficult, since such a reaction is typically not named explicitly,
hence it cannot be treated like a named entity. Reactions are complex
events with different entities having specific roles (e.g. substrates,
products or enzymes). Instead of names, reactions are often referred
to by their descriptions, e.g. ‘the breakdown of hydrogen peroxide
into water and oxygen (2H2O2 → H2O + O2) which is catalyzed
by the enzyme catalase’. Although the exact phrasing cannot be
predicted reliably, search queries combining the names of the
reaction participants may help retrieve documents relevant to the
reaction, e.g.

‘hydrogen peroxide’ AND water AND oxygen AND catalase

However, the problem is further complicated by high levels
of both variation (a single concept is expressed by a number of
synonyms, e.g. D-glucopyranose, dextrose, D-glucose and grape
sugar refer to the same compound) and ambiguity (a single
name refers to multiple concepts, e.g. reaction may describe ‘an
interaction of chemical entities’, but also ‘a response to some
treatment, situation, or stimulus’) (Spasic et al., 2005). Therefore,
it is unrealistic to expect a user to supply both knowledge and
terminology concerned with every reaction s/he may be interested
in, especially not in the case of genome-scale metabolic modelling.
In addition, searching for information about ‘one-concept-at-a-time’
(e.g. a reaction) is not suitable for large-scale literature mining
(Müller et al., 2004; Shatkay, 2005).

Hence, we developed KiPar as a dedicated information retrieval
(IR) system to facilitate access to the literature relevant for the
problem of kinetic modelling of metabolism. Given an input
consisting of a metabolic pathway, a subset of its reactions and a
set of required kinetic parameters, the system retrieves documents
that are likely to contain a value of a given parameter applicable
to a given reaction. As a result, the user is provided with a
literature starter pack for studying the kinetic aspects of a particular
metabolic pathway, where individual documents cover the kinetics
of individual reactions of the pathway. To facilitate the navigation
among and inside the retrieved documents, each document is
annotated with relevant information, i.e. particular parameter(s)
and reaction(s) that apply to it. By doing so, KiPar aims to
reduce the time involved in the kinetic modelling of metabolic
pathways.

The system is ‘high-throughput’ in two ways. First, the system
allows multiple reactions in a single search request. Second, apart
from specifying the reactions and parameters of interest, the user
is freed from providing any other knowledge and terminology
of relevance or formulating complex search queries. Instead, the
system retrieves relevant knowledge and terminologies from public
data resources on the fly, and combines the retrieved information
automatically to perform complex literature searches that are
completely transparent to the user.

2 METHODOLOGY

2.1 Problem specification
KiPar is a computer application for the retrieval of textual documents likely
to contain parameters required for kinetic modelling of a given metabolic
pathway in yeast. During the retrieval process different types of information
are considered (Fig. 1). Based on the requirements of kinetic metabolic
modelling, we identified the core information that needs to be supplied as
user input (given in bold type set in Fig. 1). These include: (i) the enzymes
catalysing the reactions of interest, (ii) a pathway to which these reactions
belong, and (iii) the parameters whose values are required for kinetic
modelling. Within the context of a metabolic reaction, the remaining types
of information are enzyme dependent and can be retrieved from public data
resources. Given an enzyme, the known information about (i) the compounds
acting as substrates/products of the reaction catalysed, and (ii) the genes
encoding the enzyme can be retrieved from the KEGG ENZYME database
(DB) (Kanehisa et al., 2008). Such information is retrieved automatically,
and therefore need not be specified explicitly as a part of the user input.

2.2 Input specification
Given the terminological variability (Spasic et al., 2005) of biomedical
sublanguages (Friedman et al., 2002; Harris, 2002), KiPar does not accept
free-text descriptions as input. Instead, the user is asked to specify identifiers
used in relevant biomedical ontologies and DBs. Enzymes are specified by
EC numbers as their identifiers in KEGG ENZYME (Kanehisa et al., 2008;
KEGG, 2008), e.g. 2.7.1.1 is used to request information on hexokinase.
Further, a pathway is specified by the Gene Ontology (GO) terms (Ashburner
et al., 2000; GO, 2008), whose entries describe it as a biological process, e.g.
GO:0006096 is used for glycolysis. Finally, the required kinetic parameters
are specified by the corresponding Systems Biology Ontology (SBO) terms
(Le Novere, 2006; SBO, 2008), e.g. SBO:0000025 is used to represent
kcat . By supplying widely recognized identifiers for the concepts, rather
then their possibly ambiguous names, we facilitate subsequent integration
of information acquired from disparate public data resources.

Input information together with the configuration parameters are specified
in an XML format described using XML Schema language. This enabled us
to deploy Pedro, a model-driven data capture tool (Garwood et al., 2004),
for interactive manipulation of input data (see Supplementary Material 1 for
a screenshot of the user interface).

2.3 Workflow
Figure 2 depicts the structure of the system, numbered in a logical sequence of
the elementary acts that it performs. Given the high-level input specification
(box 1), KiPar employs a range of integrated bioinformatics strategies
(mostly based on web services) to harvest reaction-specific terms (e.g. an
enzyme, compounds acting as substrates/products, and the genes encoding
the enzyme) from publicly available biological DBs (box 2): KEGG,
PubChem (PubChem, 2008), ChEBI (ChEBI, 2008; Degtyarenko et al.,
2008), SGD (Cherry et al., 1998; SGD, 2008) and CYGD (CYGD, 2008;
Güldener et al., 2005). The problem of terminological variability is further
tackled by collecting additional synonyms from the UMLS (Bodenreider,
2004; UMLS, 2008) (box 3). The collected terms are used to support a
transition from conceptual to textual space. In order to query the literature for

Fig. 1. Different types of information considered.
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information required for a kinetic model of a given pathway (box 4), KiPar
first indexes the literature with relevant concepts (i.e. pathway, enzymes
and kinetic parameters specified by the user as well as related compounds
and genes retrieved from KEGG). The indexing process involves mapping
each concept to a query based on the synonyms acquired in the previous
steps (see Supplementary Material 2 for an illustration). For example, the
following query was generated automatically to search for information on
enzyme with EC number 2.7.1.40:

"2.7.1.40"[RN] OR
"pyruvate kinase"[TEXT:noexp] OR
"phosphoenolpyruvate kinase"[TEXT:noexp] OR (Q1)
"phosphoenol transphosphorylase"[TEXT:noexp]

To keep indexing within a context of kinetic modelling for yeast, each
query is further constrained with a user-specified combination of keywords.
We have chosen the following constraint based on the analysis of a sample
of relevant documents:

(((brewer OR baker OR budding) AND yeast) OR
((S OR Saccharomyces) AND cerevisiae)) AND
(enzyme OR reaction OR substrate OR product) AND (Q2)
(kinetic OR parameter OR constant OR concentration
OR rate)

The indexing query (e.g. Q1 AND Q2) is then passed to Entrez (Entrez,
2008), an IR system that enables access to information from many NCBI
DBs (Wheeler et al., 2008), including two literature DBs, PubMed (PubMed,
2008) and PubMed Central (PMC, 2008). By taking advantage of its search

facilities (including indexing, document annotations, search term tagging,
query expansion, etc.), we effectively avoid the need to locally store and
manage a document collection (e.g. with an IR library such as Lucene).
Instead, only information gathered about concepts, terms, documents (but
not the documents themselves) and their relations (e.g. mapping of concepts
to the documents that mention them) is stored in a local DB, which is
then queried for relevant information within the indexed documents. Each
document is scored using a weighted formula that combines different types
of information considered (i.e. enzymes, compounds, genes, pathways and
kinetic parameters) following the structure given in Figure 1:

S = ωm ·Sm +ωk ·M(K)
Sm = ωp ·M(P) +ωr ·max

e∈E
{Sr (e)}

Sr = ωε ·M({e})+ωc ·M(Ce)+ωg ·M(Ge)

(1)

where ωm and ωk , are the weights given to metabolic and kinetic information,
and ωp, ωr , ωε , ωc and ωg are the weights used for pathways, reactions,
enzymes, compounds and genes. K , P and E represent the concepts specified
as user input, i.e. kinetic parameters, pathway-related concepts and enzymes.
Given e as an enzyme from E, Ce denotes a set of compounds involved in
the reaction catalysed by the enzyme, whereas Ge is a set of Saccharomyces
cerevisiae genes encoding the enzyme. M(A) is the percentage of concepts
from the set A matching the document.

The total score, S, is calculated as a weighted sum of the scores obtained
for metabolic, Sm, and kinetic, M(K), information. Sm is in turn calculated
as a weighted sum of the scores obtained for pathway-related information,
M(P), and the maximal score obtained for an individual reaction, Sr (e). The
latter is maximized, since it is not likely that all relevant reactions will be
discussed in a single document. In this way, we are looking for any of the

Fig. 2. Architecture diagram of KiPar.
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relevant reactions individually. Finally, the score for a reaction catalysed
by an enzyme e is calculated as a weighted sum of the scores obtained for
the enzyme itself—M({e}), the related compounds—M(Ce), and the related
genes—M(Ge).

The actual scoring is implemented as an SQL query over the local DB. In
this manner, the querying ability of the DB management system is effectively
combined with that of Entrez in order to address typical drawbacks of
Boolean querying (which combines search terms using logic operators AND,
OR and NOT): (i) a suitable query may be difficult to formulate due to
the complexity of information needs, (ii) the relative importance of the
search terms cannot be specified and (iii) it is difficult to rank the retrieved
documents by their relevance (Wiesman et al., 1997).

Finally, documents with the highest score are presented to the user in
HTML format (box 5). The results produced represent links to the original
documents annotated with the matching concepts (linked to their entries
in the relevant DBs) and quantitative data. The annotation helps a user to
determine which information each document contains.

2.4 Output
The retrieval results are summarized in an HTML file (see Supplementary
Material 3 for the screenshots of output). The summary page provides: a
legend explaining the annotations in the retrieved documents, the input
information and the configuration used, the total number of documents
retrieved and a link to the ranked list of retrieved documents. For each
retrieved document, the following information is provided: citation details,
an annotated abstract, a score with the matching concepts, and the PubMed ID
(PMID). Additional information available for full-text documents includes:
the PMC ID and an annotated local copy of the article. We use an HTML
format of the full paper where available, because it preserves the logical
structure of the paper as well as the formatting, which may provide clues
for automatic text processing (e.g. italicized text can be used to indicate
potential organism names). However, much of the work on enzyme kinetics
dates back to the 1960s, and although the time coverage of PMC now reaches
back to the 1950s, these publications are currently not available in HTML.
For instance, out of the top 100 papers retrieved for glycolysis, 15 were
not available in HTML format. As part of United Stated National Library
of Medicine (NLM’s) digitization project, archival content that is not yet
available in electronic form is scanned and saved in the PDF ‘image plus
text’ format, where the text obtained from a scanned page image using optical
character recognition (OCR) is layered invisibly over the image. The OCR
text can then be used for full-text searching. PMC users do not have direct
access to the OCR text, but it can be extracted from the PDF files. In the
absence of the preferred HTML format, we extract ASCII text from a PDF
file. Both formats are further handled in the same manner.

The full text of a publication is annotated with the concepts of interest.
Practically, this involves mapping the synonyms acquired for these concepts
onto the text, annotating their occurrences with HTML <a> tags of specific
classes, and linking them to their entries in the relevant external DBs, e.g.:

<a class=‘compound’ href= ‘http://www.genome.jp/dbget-bin/
www_bget?compound+C00031’>glucose</a>

As a result, an annotated HTML version of the paper is presented to the user
in which terms denoting relevant concepts are highlighted, colour-coded and
clickable with links to their descriptions in public DBs.

2.5 Implementation details
KiPar is implemented in Java and is distributed as a standalone Java
application. It is an open source product, which can be used by software
developers interested in modifying the functionality of KiPar or simply
reusing some of its components as part of different bioinformatics
applications. The supporting web site provides the information necessary
to install and use KiPar. The Java application uses a local DB for storing
and processing relevant information harvested from external resources.

Therefore, in order to run KiPar, it is required to set up a local DB for
which the schema is provided. We tested KiPar with a DB hosted on a
PostgreSQL (PostgreSQL, 2008) system, but other DB management systems
supporting SQL should work with KiPar by changing the driver information
in the configuration file. A local copy of the PubChem DB can be configured
and used in the same manner. Other examples of configurable parameters
include literature DB choice, UMLS connection details, the weights used for
document scoring, export options, etc.

3 RESULTS

3.1 Evaluation
A primary goal of KiPar is to retrieve literature relevant for the
kinetic modelling of a particular metabolic pathway. We evaluated
the retrieval of abstracts from PubMed and of full-text articles from
PMC separately, and contrasted the results. We evaluated the system
using three pathways in yeast: glycolysis, the pentose phosphate
pathway and the citrate cycle (see Supplementary Material 4–6).
Here, we present a detailed evaluation using yeast glycolysis
(Pritchard and Kell, 2002; Teusink et al., 2000) as an example of
a well-studied pathway. Evaluation of the other two pathways is
available in Supplementary Material.

Input used to specify information about glycolysis included 21
SBO concepts related to kinetic modelling, 2 GO concepts related
to the pathway itself and 13 enzymes that catalyse individual
reactions from the given pathway. In addition, information about
31 compounds and 31 genes related to the given enzymes was
retrieved automatically from KEGG. Using the synonyms acquired
automatically from the relevant DBs, all concepts were mapped to
the matching documents. As a result, 4149 abstracts from PubMed
were indexed as well as 28 587 articles from PMC. The indexed
documents were scored automatically using the formula (1). The
weights were chosen intuitively. Equal weights were given to
metabolic (ωm = 50) and kinetic (ωk = 50) information; otherwise,
it would be likely to retrieve documents that contain kinetic data for
irrelevant reactions, or conversely documents describing relevant
reactions with no kinetic data reported. The weights given to
specific aspects of metabolic information have been distributed to
emphasize individual reactions (ωr = 80) from a pathway (ωp = 20).
The remaining weights given to enzymes (ωε = 60), compounds
(ωc = 30) and genes (ωg = 10) reflect the strength of their association
to a reaction, an enzyme being most strongly associated, since
specific compounds may take part in many different reactions (e.g.
water) and genes encoding the enzyme may not even be mentioned
when discussing a reaction. The choice of weights can significantly
influence the results (Fagin and Wimmers, 2000; Shatkay, 2005), so
further work is needed to determine the optimal weights. On this
occasion, we performed a sensitivity analysis and concluded that
small changes in weights (±5 and ±10) do not incur significant
changes on the performance except in an extreme case when
zero-weight is given to genes (see Supplementary Material 7).

The average score for abstracts and full papers was 15.26 and
10.73, respectively. Documents whose score was higher than the
average were considered for retrieval: 45 out of 17 million abstracts
from PubMed and 238 full papers out of 71 120 from PMC. A
high disproportion between the relative numbers of abstracts and
full papers retrieved can be observed immediately. An analysis
of the distribution of indexed concepts across documents shows
that the relative numbers of indexed documents differ by three

1407

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/25/11/1404/331612 by guest on 10 April 2024

http://www.genome.jp/dbget-bin/


[11:46 14/5/2009 Bioinformatics-btp175.tex] Page: 1408 1404–1411

I.Spasić et al.

Table 1. Documents indexed with concepts of the five types (see Section 2)

Concept

type

Abstracts Full-text articles

Total

number

Percentage

of indexed

abstracts

Percentage

of PubMed

abstracts

Total

number

Percentage

of indexed

articles

Percentage of

PMC articles

Pathway 212 5.11 0.01 × 10−3 1470 5.14 0.02

Enzyme 1153 27.79 0.07 × 10−3 2420 8.47 0.03

Compound 3681 88.72 0.22 × 10−3 27971 97.85 0.39

Gene 182 4.39 0.01 × 10−3 1858 6.50 0.03

Kinetics 233 5.62 0.01 × 10−3 1146 4.01 0.02

All 4149 100 0.24 × 10−3 28587 100 0.40

orders of magnitude between abstracts and full-text articles (Table 1,
columns 4 and 7). These results are bound to be somewhat skewed,
because PubMed and PMC differ significantly in their coverage of
biomedical literature. For this reason, we compared full text against
the abstract for the top 10 papers retrieved from PMC, 9 of which
were judged to be relevant by domain experts. As expected, the
average number of relevant concepts mentioned in the full text of
a paper (16.8) significantly outweighs their number in the abstract
(1.5). In other words, <9% of concepts relevant for kinetic metabolic
modelling are mentioned in the abstract. Given the complexity of
targeted information and consequently the formula (1) for scoring
the documents that contain it, the fact that on average no more than
two relevant concepts will be mentioned in the abstract points out
that such documents probably will not be retrieved if only abstracts
are searched. Indeed, the retrieval results for PubMed and PMC
overlapped on just a single article (PMID 16584566), even though
PubMed contains abstracts for a great majority of the articles from
PMC.

A standard set of evaluation measures used to quantify the IR
results includes precision (the percentage of retrieved documents
that are relevant) and recall (the percentage of relevant documents
retrieved) (Baeza-Yates and Ribeiro-Neto, 1999). Domain experts,
presented with the retrieved documents ordered by the score
calculated [see formula (1)], helped distinguish between true
positives (i.e. relevant documents retrieved) and false positives (i.e.
irrelevant documents retrieved) by reading the retrieved literature
and judging the relevance of individual documents. Precision is
obtained by dividing the number of true positives by the number
of documents retrieved, while recall requires the number of true
positives to be divided by the total number of relevant documents.
Therefore, it is more difficult to estimate recall, as it requires
a comprehensive set of relevant documents. For this purpose,
we attempted to use information from SABIO-RK, a DB of
biochemical reactions, their kinetic equations with their parameters
and the experimental conditions under which these parameters were
measured (Wittig et al., 2006). We searched the information on
the required kinetic parameters for all reactions in the glycolysis
pathway and collected the corresponding citations (given as PMIDs)
provided by human curators at SABIO-RK. A total of 60 PubMed
citations were collected in this manner, out of which only 6 existed
in PMC. The small number of citations is bound to underestimate
the recall. Therefore, we were not able to properly estimate the
recall. However, we compared the results achieved by KiPar

and a baseline method, which represents a search performed by
Entrez using a Boolean query that combines the preferred names
of enzymes, kinetic parameters and organism of interest, e.g.:
(“alcohol dehydrogenase" OR … OR “phosphoglycerate mutase")
AND (“Michaelis constant" OR … OR “equilibrium constant") AND
“Saccharomyces cerevisiae". Given the top 50 retrieved documents,
Figure 3 compares precision of the two methods and the numbers of
true positives. Since the ratio between the numbers of true positives
preserves the ratio between the recall values, they can be used to
relate recall to that of the baseline method.

Overall, the evaluation of the approach used in KiPar helped to
identify 30 relevant citations from PubMed and 24 relevant citations
from PMC. From Figure 3, we can see that the numbers of relevant
citations (i.e. true positives) retrieved by the baseline method from
PubMed and PMC were 22 and 12, respectively. By comparing the
numbers of true positives, we see improvement over the baseline
performance: the recall achieved by KiPar is 36% better for abstracts
and 100% better for full-text documents.

Combining abstracts and full-text documents gives a total of 53
citations (there was one citation in common), which is comparable
with the number of citations provided at SABIO-RK. This means
that the system’s recall is comparable with that achieved by human
curators. We can provide better insight into the retrieval results using
user-oriented measures of IR performance such as relative recall and
novelty ratio (Baeza-Yates and Ribeiro-Neto, 1999). In the absence
of the total number of relevant documents, recall is approximated
by relative recall, which is calculated as the ratio between the
number of relevant documents retrieved and the number of relevant
documents previously known to the user. Novelty ratio represents
the ratio between the number of relevant documents retrieved that
were previously unknown to the user and the number of all relevant
documents retrieved. Overall, we achieved high values for both
measures: 88.33% for the relative recall and 92.45% for the novelty
ratio. High novelty ratio implies that by complementing information
already available in specialized DBs, the system reveals many new
documents previously unknown to the user, thus highlighting the
need for such a TM tool.As for the types of information retrieved, the
analysis of the results revealed that they represent a good coverage
of the pathway: no relevant documents were retrieved for only 2 out
of 13 reactions. By facilitating navigation through huge volumes
of scientific literature and highlighting the key results within the
relevant documents, we see that KiPar provides valuable support to
those interested in kinetic modelling of metabolism. In this respect,
precision and recall should be judged relative to the number of
person-hours saved [e.g. other studies report a 70% reduction in
curation time with the use of TM support (Donaldson et al., 2003)].

All processing, including indexing, is done on the fly. The
execution time consumed depends on a pathway (i.e. the number
of concepts needed to describe it). We averaged the times recorded
for the three pathways used for evaluation to provide an estimation
of the time required to retrieve and annotate the literature for an
individual pathway. The time required for indexing of PubMed and
PMC with pathway-related concepts is approximately the same:
just over 14 min. However, a significant difference in the number
of indexed documents in the two DBs (Table 1) is reflected in
the amount of time needed to complete the subsequent operations
(Table 2). Most of the run time is consumed to export an annotated
version of a full-text article. This operation includes downloading
an article, a possible conversion from PDF to ASCII, and annotation
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Fig. 3. Precision and number of true positives for the top 50 documents.

Table 2. Average run time for individual operations following indexing

Literature DB PubMed PMC

Operation Total Per doc Total Per doc

Score documents 45 s 13 ms 7.7 min 16 ms
Retrieve document details 29 s 890 ms 3 min 1.8 s
Export results 1.3 min 2.4 s 80.8 min 48.5 s

of its content. The whole retrieval process of 100 full-text articles
is completed in 1 h and 45 min. We emphasize again that the main
goal of KiPar is to provide a literature starter pack for studying the
kinetic aspects of a metabolic pathway, and as such KiPar is not an
interactive system, i.e. it does not require sub-second response time.

3.2 Comparison to other systems
The idea of KiPar is to offer a way to retrieve information on complex
entities (metabolic pathways and the corresponding reactions). In
that respect, KiPar can be compared with MedBlast, an IR system
searching for documents about a given biological sequence (Tu
et al., 2004). MedBlast uses BLAST (Altschul et al., 1997) to
find the corresponding nucleic acid and protein sequences and
their homologues. This provides gene names, after which their
synonyms are looked up in a local thesaurus. This information is then

combined in a Boolean query and passed to Entrez, e.g. ATP5E AND
(‘Homo sapiens’ OR human [mh]). KiPar does similar processing
relevant for a pathway, but includes an additional layer to process
information obtained from Entrez to perform non-Boolean search,
which is more appropriate for the specific IR task at hand. An
alternative way to overcome the limitations of Boolean search
offered by Entrez is to launch multiple queries with different
combinations of search terms. For example, PubMatrix initiates
an Entrez query for each pair of search terms specified by a user
and computes a matrix of counts of their co-occurrence in the
literature as a way of measuring their associations (Becker et al.,
2003). Such statistical information extracted from the literature is
useful especially when explicit information about relations between
domain-specific concepts is not readily available. However, the
performance of biomedical TM applications depends on an active
use of domain knowledge as a support for more sophisticated
reasoning about the improvement of queries (Wiesman et al.,
1997). Therefore, many IR systems utilize a comprehensive body of
knowledge that is currently stored in biomedical ontologies. While
the use of wide-encompassing semantic networks such as UMLS
or MeSH was found to improve the results of IR (e.g. Aronson
and Rindflesch, 1997; Swanson et al., 2006), many tasks require
more fine-grained knowledge representation. Therefore, some IR
systems rely upon customized ontologies and/or thesauri, which are
most often maintained locally. For example, in order to support
queries such as ‘Given X, find all Y ’s’, where X or Y can be
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diseases, tissues, cell compartments, etc., PolySearch maintains nine
different thesauri, compendia or synonyms lists (Cheng et al., 2008).
Other systems go a step further by maintaining a semantically
annotated local corpus of documents in addition to local knowledge
and terminology resources, e.g. Textpresso (Müller et al., 2004),
EBIMed (Rebholz-Schuhmann et al., 2007). While improving the
quality of the results of IR, the decisions to maintain knowledge
and textual resources locally may also improve the efficiency of IR.
However, the preprocessing of results incurs the need to keep local
resources up-to-date, which may require frequent updates over large
data collections. KiPar makes extensive use of domain knowledge
(see Section 2.3), but it incorporates dynamic access to knowledge
resources through their web services. This avoids the need for
maintenance of complex local resources, but does require more time
to pull information from external resources on demand. The nature
of the specific IR task justifies such choice (see Section 3.1).

As for similar systems, we are aware of only one system
that addresses the problem of retrieving documents relevant for
kinetic modelling. (Hakenberg et al., 2004) developed a system
that classifies documents in terms of whether or not they contain
information regarding experimentally obtained kinetic parameters.
Our approach differs in several respects.

While the other system looks for kinetic parameters in general,
KiPar searches for kinetic data in the context of a defined ‘pathway’
and specific reactions therein. In that sense, KiPar tackles the
complexity of developing a full kinetic model of (yeast) metabolism
by a modular approach focusing on individual metabolic pathways.

The other system uses a machine learning (ML) approach, while
KiPar is rule based. ML offers more flexible knowledge acquisition,
since it does not require explicit knowledge elicitation through costly
and time-consuming interaction with domain experts. Instead it
can make use of knowledge implicitly embedded in the examples.
However, this requires the provision of a training set of examples,
which can again lead to substantial use of domain expertise. For
example, Hakenberg et al. (2004) trained their system on a set of
791 manually annotated documents, which meant about two person-
months of work. The knowledge that had to be explicitly specified in
KiPar is rather generic and of a structural nature; e.g. that a pathway
consists of reactions; reactions are catalysed by enzymes that convert
substrates to products; enzymes are encoded by genes; etc. More
specific knowledge (e.g. which compounds are involved in which
reactions and how they are referred to) is reused from the existing
data resources and as such is not an explicit part of the system.
This fact reduces the explicit elicitation of knowledge from domain
experts.

Hakenberg et al. (2004) retrieved papers from a locally stored
corpus of 4582 publications selected randomly from 12 journals
that focus on biological areas that make use of kinetic data. KiPar
queries much larger literature DB (e.g. the presently 17M abstracts
in PubMed) and stores locally only the indexing information and
not the actual documents. Also, KiPar searches over a complete set
of journals covered by PubMed and PMC. However, the choice of
journals covered by PMC is rather limited at the moment due to not
many journals taking part in this open access initiative.

The evaluation of the system of Hakenberg et al. (2004) reports
60% precision and 50% recall. In absolute numbers, the system
retrieved 127 documents of which 77 were relevant. At the same
time, it did not retrieve 78 out of 155 relevant documents. These
results show a significant advancement over the results they reported

for random selection (precision of 12%) and for simple keyword
search (precision of 20%). The performance of this system and
KiPar cannot be directly compared due to the differences in their
problem specifications (kinetics data in general versus kinetics data
for specific metabolic pathways and reactions). However, it can be
said that both systems show consistent improvements in comparison
to the keyword search and that they perform comparably well. There
is also room for the integration of the two methodologies, since
‘voting’ systems are known to outperform their components (Hastie
et al., 2001).

Finally, Hakenberg et al. (2004) report that they missed some
relevant papers because kinetic data are often presented in figures
and tables, which are inaccessible to their system. They used a
local corpus of documents converted from PDF to ASCII. During
this conversion all figures and tables included in PDF documents
as images were lost. In contrast, KiPar accesses the full-text
articles from PMC via Entrez, which does search through the
captions/legends of figures and tables in an article. The use of
Entrez for intermediary access to literature also eliminates the need
for KiPar to explicitly support typical processing involved in IR
such as tokenization, stemming, neutralization of spelling variants or
differences in nomenclature usage, estimating a term’s local weight
(i.e. within a document), etc., since Entrez already implements such
capability.

4 CONCLUSIONS
We have presented an integrative approach, combining a number
of publicly available data and software resources, for the time-
and cost-effective development of TM tools for IR, i.e. gathering
and filtering of relevant documents (Baeza-Yates and Ribeiro-Neto,
1999). Our approach to TM consists of the following steps: (i)
input: specify a set of concept identifiers used as entry points into
public data resources, (ii) acquire knowledge: use input information
to acquire other relevant information (other relevant concepts and
relations between them) from these and other cross-referenced
data resources, (iii) acquire terminology: use the data resources to
map concepts to known synonyms, (iv) indexing: map concepts to
matching textual documents using synonyms, (v) query literature:
use indexing results and relations between concepts to search for
information and (vi) export information: annotate a set of potentially
relevant documents with concepts of interest and cross-link to their
DB entries.

This approach has been demonstrated successfully in KiPar,
a TM application developed for retrieving documents discussing
enzyme kinetic parameters required for quantitative modelling
of yeast metabolism. There are two groups of users of this
specific application: (i) experimentalists who wish to compare
experimentally estimated values of kinetic parameters to those
reported in the literature, and (ii) mathematical modellers who wish
to incorporate known values of kinetic parameters into metabolic
models. These users are actively testing KiPar and their comments
are used to further improve its performance. At the same time, their
feedback will serve as a basis for adding information extraction (IE)
functionality to KiPar. IE selects specific facts about prespecified
types of entities and relationships of interest (Hobbs, 1993), and
in KiPar it will be used to convert free-text descriptions of kinetic
parameters into a structured format, which will enable importing
their values directly into formal representations of metabolic models
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[e.g. SBML (Hucka et al., 2003; SBML, 2008)]. At the moment,
a naïve approach is used to highlight potential descriptions in the
text. These annotations, combined with users’ feedback, will be
used to identify patterns for extracting information regarding kinetic
parameters.
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