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ABSTRACT

Motivation: Liquid chromatography tandem mass spectrometry
(LC-MS/MS) is the predominant method to comprehensively
characterize complex protein mixtures such as samples from
prefractionated or complete proteomes. In order to maximize
proteome coverage for the studied sample, i.e. identify as many
traceable proteins as possible, LC-MS/MS experiments are typically
repeated extensively and the results combined. Proteome coverage
prediction is the task of estimating the number of peptide discoveries
of future LC-MS/MS experiments. Proteome coverage prediction is
important to enhance the design of efficient proteomics studies.
To date, there does not exist any method to reliably estimate the
increase of proteome coverage at an early stage.
Results: We propose an extended infinite Markov model DiriSim to
extrapolate the progression of proteome coverage based on a small
number of already performed LC-MS/MS experiments. The method
explicitly accounts for the uncertainty of peptide identifications. We
tested DiriSim on a set of 37 LC-MS/MS experiments of a complete
proteome sample and demonstrated that DiriSim correctly predicts
the coverage progression already from a small subset of experiments.
The predicted progression enabled us to specify maximal coverage
for the test sample. We demonstrated that quality requirements on
the final proteome map impose an upper bound on the number
of useful experiment repetitions and limit the achievable proteome
coverage.
Contact: manfredc@inf.ethz.ch; jbuhmann@inf.ethz.ch

1 INTRODUCTION
Over the last few years, mass spectrometry-based proteomics
has emerged as the most powerful approach to comprehensively
characterize a proteome. The experimental workflows for mass
spectrometry-based proteomics have sufficiently advanced to enable
extensive exploration of complex biological samples (Domon and
Aebersold, 2006). While conceptional studies provided rough a
priori insights about the scope of these workflows (Eriksson
and Fenyo, 2007), there are still no means to dynamically
infer the a posteriori potential, i.e. to predict the increase in
proteome coverage for their real-world implementations. This
work contributes the extended infinite Markov model DiriSim to
predict proteome coverage (in terms of peptide discoveries) upon
repetition of liquid chromatography tandem mass spectrometry (LC-
MS/MS) experiments. By explicitly modeling false and true positive
peptide identifications, DiriSim enables us to specify the maximally
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achievable proteome coverage for a specified quality constraint on
the final set of peptide discoveries.

The most successful strategy to achieve extensive proteome
coverage is referred to as shotgun proteomics. In its simplest
implementation, protein samples are extracted from their biological
source, subjected to enzymatic digestion and the resulting peptide
mixtures are finally analyzed by LC-MS/MS. More elaborate
strategies essentially adopt the same workflow, additionally
augmented by fractionation steps for proteins/peptides before LC-
MS/MS analysis. Finally, peptide identities are inferred from the
acquired fragment ion spectra and they are used to recover the
protein composition of the initial biological sample.

The complexity of the protein, and hence peptide mixtures,
poses a formidable challenge to mass spectrometrical analysis.
The reversed phase liquid chromatography step effectively reduces
the complexity of the peptide mixture by selecting peptides for
tandem mass spectrometry analysis according to their polarity. For
the duration of the LC-MS/MS experiment, the mass spectrometer
coupled to the liquid chromatography system constantly acquires
tandem mass spectra from eluting peptides. The elution time of a
particular peptide is defined by its polarity. Any time during the LC-
MS/MS experiment, the mass spectrometer is thus exposed to a local
peptide mixture that is less complex than the initial mixture (Fig. 1a).
Nevertheless, these mixtures are typically still far too complex to
allow the mass spectrometer to acquire tandem mass spectra for
all peptides in a single LC-MS/MS experiment. Consequently, LC-
MS/MS experiments are usually repeated extensively, in order to
increase the number of peptides for which tandem mass spectra are
acquired.

Using one of a range of database search engines, tandem mass
spectra are then assigned to peptide giving rise to a series of
peptide-spectrum matches (Nesvizhskii et al., 2007). Note that
peptide-spectrum matches are typically highly redundant, i.e. the
number of peptide discoveries covered by the peptide-spectrum
matches is typically much smaller than the total number of peptide-
spectrum matches. Not all peptide-spectrum matches are correct.
Various approaches are available to estimate the reliability of
peptide-spectrum matches (Elias and Gygi, 2007; Keller et al.,
2002). Target–decoy strategies have shown to be a generic and
reliable strategy to estimate false discovery rates for peptide-
spectrum matches, i.e. the expected fraction of false positive peptide
assignments (Elias and Gygi, 2007). At this point, the preliminary
result of a series of LC-MS/MS experiments reduces to a series of
peptide-spectrum matches that is additionally characterized by some
false discovery rate.

Shotgun proteomics studies should ideally be designed such that
proteome coverage, i.e. the number of discovered peptides increases
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Fig. 1. Illustration of an LC-MS/MS experiment. (a) Liquid chromatography fractionation generates a sequence of local peptide ensembles from the initial
ensemble. Each of these ensembles is derived from the initial ensemble by pooling peptides of similar polarity. The sequence of ensembles features descending
overall polarity in the course of the experiment. During the experiment peptides πt are drawn from the sequence of ensembles and analyzed by the mass
spectrometer coupled to the liquid chromatography system. (b) Graphical representation of the infinite Markov model. The initial ensemble is represented
by its peptide distribution G0. G0 is assumed to have a Dirichlet process prior with concentration parameter γ and uniform distribution H over the protein
database D as base probability measure. Local ensembles for which representative peptides have been detected are represented explicitly. Each of these
ensembles is indexed by its representative peptide i and characterized by its peptide distribution Gi. Gi is assumed to be sampled from a biased Dirichlet
process with G0 as base probability measure. The peptide πt following the series π1,...,πt−1 = i of detected peptides is sampled from Gi. Each peptide πt

gives rise to an observable fragment ion spectrum st , defining the peptide-spectrum match (st,πt). The error model for peptide-spectrum matches is omitted
for clarity. See Section 2.5 for details.

efficiently with consecutive measurements. For a given series
of already performed LC-MS/MS experiments, this requirement
translates into the task of estimating the required number of
additional experiments that have to be performed to achieve a
reasonable increase in proteome coverage. If the estimated effort
turns out to be too large, it might be more convenient to consider
other experimental setups to analyze the underlying sample. Besides
simply giving existing workflows a try, there have been approaches
to rationally design promising setups according to statistical analysis
of the already acquired peptide-spectrum matches (Brunner et al.,
2007). To the best of our knowledge, no method specifies the
remaining potential of the currently performed experiments by
predicting their proteome coverage progression.

To close this gap, we present DiriSim, an extended infinite Markov
model for LC-MS/MS experiments that yields a posterior prediction
of the proteome coverage progression. DiriSim explicitly accounts
for true and false positive peptide-spectrum matches by modeling a
set of LC-MS/MS experiments as a mixture of an infinite Markov
model (Beal et al., 2002) and an error model distribution. The
expected proteome coverage progression for additional experiments
is estimated by sampling from the posterior predictive distribution.
We have assessed this approach by cross validation on a set of

37 LC-MS/MS measurements of a complete proteome sample. We
show that the extended infinite Markov model outperforms simple
extrapolation methods and correctly predicts proteome coverage
progression. Extrapolation of the proteome coverage progression
further enabled us to specify the maximal coverage of the test set.

2 METHODS
The data utilized by DiriSim consists of a list of LC-MS/MS experiments
where peptide-spectrum matches have been generated by searching against
a protein database D. Each peptide-spectrum match (s,π ) corresponds to a
tandem mass spectrum s and its peptide assignment π ∈D. Each LC-MS/MS
experiment Rl defines a series of nl peptide assignments π (l) =π

(l)
1 ,...,π

(l)
nl .

A fraction q of all peptide-spectrum matches is assumed to be erroneously
assigned.

The following sections describe how to predict the progression of
proteome coverage conditioned on the given data. In summary, this estimate
is achieved by sampling from the posterior predictive distribution given
a series of LC-MS/MS experiments and counting the amount of newly
discovered peptides.

Section 2.1 briefly introduces Dirichlet processes and how these can
be used to formally characterize peptide distributions arising in shotgun
proteomics experiments. Section 2.2 characterizes the distribution from
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which peptides are sampled during an ideal LC-MS/MS experiment without
false positive peptide-spectrum matches. Section 2.3 describes how to sample
a series of peptides from such a distribution. Section 2.4 first describes how
to sample from this distribution conditioned on the given data and second
how to predict the progression of proteome coverage from the a posteriori
sampled trajectories. Section 2.5 completes the framework description by
introducing a component accounting for false positive peptide-spectrum
matches.

Unless otherwise noted, in the following π will denote a series of sampled
peptides πt . Capital italic latin letters like G,H will denote distributions.

2.1 Dirichlet processes priors for peptide distributions
In the course of a shotgun proteomics experiment, peptides are sampled
from an unknown distribution and then identified by mass spectrometrical
analysis. This distribution is defined by the biological sample contributing
a characteristic set of proteins/peptides and by the experimental setup
enriching/depleting particular types of proteins/peptides. The more samples
we draw from this distribution, i.e. the more experiments we perform, the
better we are able to characterize the distribution and thereby predict the
future progression of peptide discoveries.

The incremental estimation procedure is captured by a non-parametric
Bayesian technique, denoted as Chinese restaurant processes (Blackwell
and MacQueen, 1973). The Chinese restaurant process can be envisioned
as a schematic task where n customers are to be seated in a restaurant with
an infinite number of tables. At each table a particular dish is served that is
denoted by its number in the menu. The first customer is seated at the first
table and offered the corresponding dish π1. The t-th subsequent customer
is offered his dish πt after having been seated either at an already populated
table or at a new unpopulated table according to the following probabilities:

P(πt = i |π1,...,πt−1,γ ) =
{ ni

t−1+γ
populated table

γ
t−1+γ

next unpopulated table
(1)

where ni corresponds to the number of customers already sitting at the table
serving dish i. In case a customer happens to be seated at a new table, the
dish served at this table is drawn from the base probability measure H . γ is
referred to as the concentration parameter of the process. The larger γ , the
higher the chances that a new customer is seated at a new table. The more
customers have already been seated, the less likely it will open up a new
table.

Let us now assume that we do not know γ and have seated n customers.
We want to estimate how many tables will be occupied, or equivalently
how many different dishes will be served after m additional customers have
been seated. In a first step, we characterize the seating distribution by fitting
γ according to the observed seating arrangement, i.e. the more tables we
find populated the larger we choose γ . We can now simulate m additional
seating events using the γ estimate and thereby estimate the number of tables
occupied afterwards.

By identifying dishes with peptides and, respectively, customers with
mass spectra, we obtain a simple model to sample peptide assignments,
i.e. simulate experiments and in particular estimate the expected number
of new peptide discoveries. Although being overly simple, this model
captures an essential property of shotgun proteomics experiments. While
always allowing to discover a novel peptide with non-zero probability, the
overall progression of new discoveries slows down for a growing number of
experiments.

It turns out that a Chinese restaurant process with concentration parameter
γ implements draws πt from a discrete distribution G that itself is drawn from
a prior distribution referred to as Dirichlet process DP with concentration
parameter γ and base probability measure H (Antoniak, 1974; Ferguson,
1973):

G |γ,H ∼ DP(γ,H)
πt |G ∼ G

(2)

Dirichlet processes have proven to be useful to formally express and deal with
the uncertainty of an unknown discrete distribution, e.g. mixing distributions
of mixture models. In this work, we assume Dirichlet process priors for
distributions over peptides and sample from them by using the Chinese
restaurant process construction.

2.2 Infinite Markov model for LC-MS/MS experiments
During an LC-MS/MS experiment, peptides designated for tandem mass
spectrometry are sampled from a multitude of unknown distributions (Fig. 1).
This section describes how to model these distributions with an infinite
Markov model.

The peptides in the initial ensemble are distributed according to an
unknown discrete distribution G0. We assume a Dirichlet process prior
DP(γ,H) for G0 with base probability measure H and concentration
parameter γ . H is assumed to be the uniform distribution over the peptides
defined by the protein database D. Note that the prior DP(γ,H) does not
necessarily identify G0 with H , i.e. the uniform distribution over the protein
database D.

Peptides are not directly sampled from G0 in an LC-MS/MS experiment
(Fig. 1). In the course of liquid chromatography, the mass spectrometer is
exposed to a subpopulation of the initial ensemble, confined to members
within a time-dependent polarity range. Depending on the time point t,
peptides are thus sampled from a characteristic peptide distribution Gt that
is ‘related’ to G0. The prior for Gt has to capture the dependency on G0.
We particularly require the support of Gt to be contained in the support
of G0. While retaining flexibility, this requirement is met by choosing the
prior for Gt to be a Dirichlet process with base probability measure G0 and
concentration parameter β (Teh et al., 2006).

Due to technical difficulties to reproduce absolute time courses for a series
of LC-MS/MS experiments, we abstain from explicitly modeling polarity
and, thereby, Gt . Instead, we represent time or, respectively, ensemble
polarity by peptide identities. We denote Gi as the local peptide distribution
at the time points where peptide i has been identified. Assume that we have
sampled πt−1 = i in the course of an experiment. Since πt−1 = i is indicative
for the current polarity, we assume the subsequent peptide πt to be sampled
from the local distribution Gi (Fig. 1).

This representation induces a Markov chain whose states correspond to
the identified peptides. We assume each state sequence π to begin at a
distinguished start state π∗, i.e. we assume π0 ∼δπ∗ . Following (Beal et al.,
2002), we define the prior of Gi to be a biased Dirichlet Process DPi with
base probability measure G0, concentration parameter β and additional prior
weight α on state i. Thereby, α explicitly controls the rate of sampling self-
transitions πt =πt−1 = i. Having a Dirichlet process prior on G0, the number
of sampled states is not fixed a priori and steadily grows with the number of
sampled transitions. Due to the Dirichlet process prior on the local probability
distributions Gi, the occurrence of transitions evolves in a similar fashion.
We obtain the full characterization of the distribution that is sampled in the
course of an LC-MS/MS experiment:

G0 |γ,H ∼ DP(γ,H)
Gi |α,β,G0 ∼ DPi(α,β,G0)
πt |πt−1 = i ∼ Gi

π0 ∼ δπ∗

(3)

2.3 Sampling sequences of peptide identifications
In the following, we describe how to sample series of peptides from the
distribution defined in the preceding section. Assume that α,β,γ,H,q are
given and m series π =π (1),...,π (m) are to be sampled sequentially.

We assume each series π (k) to begin at a distinguished start state π∗.
π can be sampled in ascending order. To see this, assume that we already
sampled the trajectory π0,π1,...,πt−1. In order to sample the subsequent
peptide, we have to specify the distribution for πt |π0,π1,...,πt−1,α,β,γ,H.
Starting from the hierarchy of Dirichlet processes (3) and after integrating
out Gπt−1 and G0 we obtain a nested variant of the Chinese restaurant process
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construction (1) for the infinite Markov model:

P(πt = j |π0,π1,...,πt−1 = i,α,β,γ,H)=

=

⎧⎪⎪⎨
⎪⎪⎩

[ nii(t)+α ]·Ti(t) self
[ nij(t) ]·Ti(t) non-self
[ β ·[ no

j (t) ]·To(t) ]·Ti(t) new target
[ β ·[ γ ]·To(t) ]·Ti(t) new state

(4)

nij(t) corresponds to the number of occurrences of observing the transition
from peptide i to peptide j in the series π0,...,πt−2. no

j (t) denotes how
many times peptide j has been observed as a new transition target in the
series π0,...,πt−1. Ti(t) is shorthand for (

∑
j nij(t)+α+β)−1 and To(t) for

(
∑

j n
o
j +γ )−1.

The outcome ‘self’ denotes a self-transitions πt =πt−1. Accordingly,
‘non-self’ corresponds to already observed transitions πt �=πt−1. Note the
distinguished role of self-transitions by the prior weight α. While the event
‘new target’ refers to the discovery of a new transition to a peptide already
observed in another context, ‘new state’ denotes the discovery of a yet
unobserved peptide. It is straight forward to sample the random variable
πt |π0,π1,...,πt−1 = i,α,β,γ,H since its distribution has a closed form and
only depends on the given parameters and quantities defined by the series of
preceding peptide assignments.

2.4 Posterior prediction of proteome coverage
progression

This section describes how to sample peptide series conditioned on already
observed series. This task translates to sampling the posterior predictive
distribution for πnew given the observed peptides π . Proteome coverage
progression for future experiments is estimated by approximating the
expected number E [|U (πnew)| |π,H] of new peptide discoveries U (πnew)
upon posterior predictive sampling.

The posterior predictive distribution for πnew |π,H has no closed form.
For sufficiently large series π , the posterior predictive distribution can be
reasonably approximated by πnew |π,θML,H where θML corresponds to the
maximum likelihood estimate for θ := (α,β,γ )

θML = argmax
θ

n∏
t=1

P(πt |π0,...,πt−1 = i,θ ,H) (5)

We predict the proteome coverage progression by approximating
E [|U (πnew)| |π,H] by averaging over a set of trajectories π1,π2,... sampled
from πnew |π,θML,H as described in Section 2.3.

2.5 Proteome coverage progression with false
identifications

Sequences π of peptide assignments were assumed to be perfect in the
preceding sections. Obviously this assumption does not hold in practice.
This section describes an extension of the infinite Markov model by an error
model that is able to deal with series of peptide assignments that are afflicted
with a non-zero false discovery rate q.

We observe that false positive peptide assignments map to the decoy
database in a non-redundant fashion, i.e. 83% of all decoy peptide discoveries
of the test dataset (see Section 3) are supported only by a single peptide
assignment. Assuming that false positive peptide assignments distribute like
decoy peptide assignments (Elias and Gygi, 2007), we approximate the
distribution of false positive peptide assignments with H, i.e. the uniform
distribution over the protein database. In order to model the fraction q of
false positive peptide assignments, we assume that peptide assignments are
sampled from a mixture model with two components. The first component
accounting for the true positive peptide assignments is given by the infinite
Markov model as described in Section 2.2. The second component is given
by the distribution of false positive peptide assignments, i.e. H . Component
weights are chosen according to the false discovery rate q. Consequently, the
first and second component are weighted 1−q or q, respectively.

Series of peptide assignments are generated by sampling each peptide
assignment πt either from the infinite Markov model as described in
Section 2.3 or directly from H , according to the components weights.
Posterior sampling requires the estimate θML from an already observed
series π . Exact computation of θML though involves an intractable sum over
configurations of false positive peptide assignments. We approximate θML

by assuming that the number of false positive peptide assignments equals
the expected value n(1−q) and that these distribute uniformly over π . This
assumption allows us to approximate P(π |θ ,H,q) with adjusted transition
counts, e.g. n̂ij := (1−q)nij .

θML ≈ argmax
θ

n∏
t=1

P(πt | n̂ij(t),n̂i(t),n̂
o
j (t),n̂o(t),θ ,H) (6)

Proteome coverage progression is then predicted as described in Section 2.4.

3 RESULTS
In the following, we show results that first, demonstrate that
prediction of proteome coverage progression is a non-trivial task
that is not solved satisfactory by simple extrapolation methods and
second, that the extended infinite Markov model can confidently
predict proteome coverage progression from a small number of
already performed experiments and third, that we can identify the
putative number of LC-MS/MS experiments to be carried out until
reaching maximal coverage.

We conducted simulation studies to ensure that we can confidently
estimate α,β,γ . Therefore, we generated a dataset by simulating
peptide series with false discovery rate of 1% as described in
Section 2.5. Parameters α,β,γ were chosen in a range also observed
in the real-world test dataset that is introduced later. We assessed the
estimates on 20 simulated series, each corresponding to multiple
LC-MS/MS experiments. Each set of 20 series was chosen to be of
length ranging from 1000 to 15 000 peptide assignments. For each of
these series we estimated α,β,γ as described in Sections 2.4 and 2.5
(Fig. 2). It can be seen that α,β,γ can be reasonably recovered even
from the smallest training series. The larger the series grows the
more precise the estimates become. The approximations introduced
in Section 2.5 to account for false positive peptide assignments do
not compromise the parameter estimates. Considering the equivalent
of six or more LC-MS/MS experiments already yielded satisfactory
estimates.

We assessed DiriSim’s ability to predict proteome coverage
progression for real LC-MS/MS experiments. We consider proteome
coverage to be the number of peptide discoveries, i.e. the number of
different peptides represented in the series of peptide assignments.
We were particularly interested to see how many LC-MS/MS
experiments are needed to confidently extrapolate the progression
of peptide discoveries. We expected that confident extrapolation
is feasible after training DiriSim on a small training series of
peptide assignments corresponding to a small number of LC-MS/MS
experiments.

To this end, we applied DiriSim to a test dataset covering 37
LC-MS/MS experiments of the complete Drosophila melanogaster
proteome (Schmidt et al., 2008). Peptide-spectrum matches were
generated by searching against a target–decoy protein database
(tryptic, ≤1 missed cleavage), for details see (Schmidt et al., 2008).
For our study, we selected top-scoring peptide-spectrum matches
mapping to the target database at a false discovery rate of 1% as
described in (Elias and Gygi, 2007). By this means, we finally
considered 61 582 peptide-spectrum matches. We generated training
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Fig. 2. θML estimate on simulated data. Performance is evaluated for different training set sizes, i.e. series of peptide assignments (psm) of length ranging from
1000 to 15 000. Performance is reported as log odds of predicted and true parameter value. Results are shown for parameters α,β,γ , respectively, governing the
events of self-transitions (a), new transitions (b) and globally new discoveries (c). It can be seen that the parameters can be confidently estimated considering
a training series of 10 000 peptide assignments.

series of varying size by subsampling the dataset, extrapolated
the progression of peptide discoveries for each training series and
compared to the observed progression of the complete dataset.

In total, we subsampled 120 training series of peptide
assignments. Note that the subsampling procedure has to preserve
the peptide assignments order within the individual LC-MS/MS
experiments. Therefore, we generated the training series by
subsampling complete LC-MS/MS experiments. We subsampled 1,
2, 3, 4, 5 and 10 LC-MS/MS experiments, giving rise to 6 training
series of peptide assignments. By repeating this step 20 times we
generated a total of 120 training series. For instance, one of the
training series comprised the series of 1139 peptide assignments
defined by the two LC-MS/MS experiments with index 14 and
18 (out of all 37 experiments). The 120 training series varied in
size, ranging from 596 to 20 277 peptide assignments, i.e. covering
up to one-third of the complete dataset’s peptide assignments.
Note that two training series that were generated by subsampling
the same number of LC-MS/MS experiments do not necessarily
comprise the same number of peptide assignments. This is due to
the heterogeneous number of peptide assignments contributed by
the individual LC-MS/MS experiments.

We extrapolated the progression of peptide discoveries for each
training sequence and compared to the observed progression of the
complete dataset. Therefore, we estimated α,β,γ and estimated the
expected proteome coverage progression by averaging over 50 series
sampled from the posterior predictive distribution of the extended
infinite Markov model (see Sections 2.4 and 2.5). Goodness of the
prediction was evaluated as rmsd from the observed progression
of the complete dataset. Training series in corresponding to six or
more average LC-MS/MS experiments (approximately 1600 peptide
assignments) yield good matches (Fig. 3a and b). These results
demonstrate that first, the principles governing the yield of LC-
MS/MS experiments seem to be well captured by the extended
infinite Markov model and second, proteome coverage progression
can be confidently predicted from a considerably small set of
experiments.

We compared DiriSim with other extrapolation methods.
We chose two simple general purpose extrapolation methods since
there do not exist specific methods for proteome coverage prediction.

We first considered an extrapolation scheme that linearly
extrapolated proteome coverage progression of the last LC-
MS/MS experiment of a training series. Second, we considered
the extrapolation of a logarithmic regression (y=alogx+b). We
assessed prediction performance on the 120 training series as
described above and observed that DiriSim clearly outperforms both
extrapolation methods (Fig. 3c). These results indicate that proteome
coverage prediction is a non-trivial task that is not solved satisfactory
by ad hoc extrapolation methods.

We further extrapolated the coverage progression 5-fold beyond
the range covered by the test dataset (Fig. 4a). The progression
of peptide discoveries for all peptide assignments shows a linear
increase. Since DiriSim explicitly models true and false positive
samples, we could exclusively monitor the series of true positive
peptide assignments. We observe a pronounced divergence of the
progression for all assignments and the exclusively true positive
ones. We particularly see that the progression of true positive
discoveries stagnates considerably. While the fraction of false
positive peptide assignments is constantly held at 1%, the fraction
of false positive peptide discoveries at the end of the predicted
progression amounts to >30%. The fraction of false positives
among the novel discoveries beyond the range of the test set
even surmounts 60%. Tolerating a limited amount of false positive
peptide discoveries, bounds the maximal number of possible peptide
discoveries as well as the number of experiments having to be
performed (Fig. 4b). For instance, assume that we require that at
most 15% of all peptide discoveries are false positive. This constraint
restricts the maximally achievable coverage since we can discover
at most 5000 distinct true positive peptides. According to Fig. 4a we
will have reached this point after having acquired 90 000 peptide
assignments.

4 DISCUSSION
To date, it is not clear beforehand how often to repeat an LC-
MS/MS experiment on a single biological sample in order to
efficiently achieve satisfactory proteome coverage. Furthermore, the
maximally achievable proteome coverage with a particular method
is not known. We address these issues by presenting DiriSim,
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Fig. 3. Prediction of proteome coverage progression for a dataset comprising 37 LC-MS/MS experiments each giving rise to a series of peptide assignments
(psm). We generated 120 training series of varying size (train psm) by subsampling complete LC-MS/MS experiments. We predicted the progression of
proteome coverage (peptide discoveries) for each training series and compared to the progression observed for the series of the complete dataset. (a)
Prediction accuracy for the 120 training series. Prediction accuracy is given as root mean square deviation (rmsd) from the observed progression of peptide
discoveries. (b) Concatenated training and respective predicted progressions (black) from the largest three training series [corresponding items in (a) are
encircled] compared to observed progression (red). Vertical lines denote the size of the training series. Vertical lines overlap due to similar sizes around
20 000. (c) Comparison of DiriSim with linear extrapolation of proteome coverage progression of last LC-MS/MS experiment in training series (linear) or
respectively extrapolation of logarithmic regression of training series (log). Box plot of log odds of rmsd [log(rmsdDiriSim/rmsdcompare)] for DiriSim and
compared method (linear, log) on the 120 training series. Median log odds for comparison with the extrapolation methods linear and log are lower than 0,
indicating weaker performance than DiriSim.
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Fig. 4. The 5-fold extrapolation beyond the range of the test dataset. (a) Observed progression of the test dataset in red, predicted progression with standard
deviations of all (black) and only true positive (green) peptide discoveries. The progression of true positive discoveries stagnates considerably. (b) Relates the
absolute number of true positive (tp) peptide discoveries to the fraction of false positive discoveries (fdr peptide discoveries). The fraction of false positive
peptide discoveries grows steadily with the total amount of peptide discoveries. Quality requirements on the final set of peptide discoveries limit the maximally
achievable proteome coverage as well as the sensible number of LC-MS/MS experiments.

a framework to predict the progression of proteome coverage for
LC-MS/MS experiments.

DiriSim models a series of LC-MS/MS experiments as an infinite
Markov model, whose states correspond to peptides. We apply
DiriSim to extrapolate the proteome coverage progression of a small
number of already performed LC-MS/MS experiments. Note that
this task is different to the a posteriori inference of the state sequence
of these experiments. In contrast to previous applications (Beal et al.,
2002; Sohn and Xing, 2007), a posteriori inference of the state
sequence is furthermore not necessary, since the states (peptides)
are already assigned to the observable variables (tandem mass
spectra) by means of the corresponding peptide-spectrum matches.

Besides its application in proteome coverage prediction, the infinite
Markov model could though serve as a prior in a Bayesian peptide
identification setting and, in particular, prevent the accumulation
of false positive peptide discoveries coming along with increasing
dataset size.

LC-MS/MS experiments are typically analyzed by database
searching. The underlying protein databases are large but still of
finite size and therefore define a finitely large set of possibly
identified peptides. De novo sequencing approaches infer peptide
identities without relying on protein databases and thereby implicitly
support an infinite number of possible peptide identities. Using
an appropriate base probability measure H, the proposed infinite
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Markov model for LC-MS/MS experiments naturally lends itself to
predict the proteome coverage in this context.

We have shown that DiriSim correctly extrapolates proteome
coverage progression from at most 10 LC-MS/MS experiments
and outperforms ad hoc extrapolation methods. Proteome
coverage prediction appears to be a non-trivial task due to
the intricate dependency structure of an LC-MS/MS experiment.
DiriSim provides a comprehensive non-parametric Bayesian
characterization of an LC-MS/MS experiment that enabled us to
confidently predict proteome coverage. Although capturing the
dependencies of LC-MS/MS experiments, DiriSim remains a robust,
non-complex model since it only needs three parameters that are to
be learnt from data.

By explicitly modeling false and true positive peptide
assignments, DiriSim enables us to specify the maximally
achievable proteome coverage with regards to true positive peptide
discoveries. We have seen in the simulations that new peptide
discoveries from extensive repetition of LC-MS/MS experiments
mostly accumulate false positive discoveries. This observation
reflects the difference between the distributions for true and
false positive peptide assignments. While true positive peptide
assignments concentrate over a small subset of the protein database,
false positive peptide assignments distribute broadly over the protein
database and therefore mostly contribute false positive peptide
discoveries. Due to the exceedingly broad distribution of decoy
matches, we do not expect that errors possibly introduced by the
uniformity approximation compromise the observed accumulation
of false positive peptide discoveries. We conclude that performing
more and more experiments seeking for maximal coverage mainly
deteriorates the overall quality of the complete peptide discovery set.
Depending on the false discovery rate of the peptide assignments,
a quality requirement on the set of peptide discoveries imposes an
upper bound to the total number of experiments, which therefore,
potentially limits the maximally achievable proteome coverage
before the progression of true positive peptide discoveries is fully
saturated. This limitation accrues from the occurrence of erroneous
peptide-spectrum matches and their broad distribution over the
protein database. As long as peptide-spectrum matches are afflicted
with uncertainty, this reasoning holds for any proteome being
studied. It will though be interesting to apply DiriSim to other
datasets in order to study the quantitative impact of factors like
proteome size and experimental setup on the maximally achievable

proteome coverage. In summary, our results suggest that the design
of large shotgun proteomics studies should focus on efficiency not
only to save resources but, most importantly, to yield reliable peptide
discoveries.
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