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ABSTRACT

Motivation: Protein complexes are important for understanding
principles of cellular organization and function. High-throughput
experimental techniques have produced a large amount of protein
interactions, which makes it possible to predict protein complexes
from protein–protein interaction (PPI) networks. However, protein
interaction data produced by high-throughput experiments are often
associated with high false positive and false negative rates, which
makes it difficult to predict complexes accurately.
Results: We use an iterative scoring method to assign weight to
protein pairs, and the weight of a protein pair indicates the reliability
of the interaction between the two proteins. We develop an algorithm
called CMC (clustering-based on maximal cliques) to discover
complexes from the weighted PPI network. CMC first generates all
the maximal cliques from the PPI networks, and then removes or
merges highly overlapped clusters based on their interconnectivity.
We studied the performance of CMC and the impact of our iterative
scoring method on CMC. Our results show that: (i) the iterative
scoring method can improve the performance of CMC considerably;
(ii) the iterative scoring method can effectively reduce the impact of
random noise on the performance of CMC; (iii) the iterative scoring
method can also improve the performance of other protein complex
prediction methods and reduce the impact of random noise on
their performance; and (iv) CMC is an effective approach to protein
complex prediction from protein interaction network.
Contact: liugm@comp.nus.edu.sg
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Protein complexes are important for understanding principles of
cellular organization and function. High-throughput experimental
techniques have produced a large amount of protein interactions,
which makes it possible to uncover protein complexes from protein–
protein interaction (PPI) networks. A PPI network can be modeled
as an undirected graph, where vertices represent proteins and
edges represent interactions between proteins. Protein complexes
are groups of proteins that interact with one another, so they are
usually dense subgraphs in PPI networks. Several algorithms based
on graph clustering, dense region finding or clique finding have
been developed to discover protein complexes from PPI networks,
including MCL (van Dongen, 2000), RNSC (Przulj and Wigle,
2003), MCode (Bader and Hogue, 2003), DPClus (Altaf-Ul-Amin

∗To whom correspondence should be addressed.

et al., 2006), CFinder (Adamcsek et al., 2006), PCP (Chua et al.,
2008) and IPCA (Li et al., 2008).

It has been noticed that protein interaction data produced by
high-throughput experiments are often associated with high false
positive and false negative rates due to the limitations of the
associated experimental techniques and the dynamic nature of
protein interaction maps, which may have a negative impact on the
performance of complex discovery algorithms. Many computational
approaches have been proposed to assess the reliability of high-
throughput protein interaction data. Some methods estimate the
overall error rate of a given PPI dataset (Deane et al., 2002; Deng
et al., 2003; D’haeseleer and Church, 2004). More complicated
methods seek to assess the reliability of individual interactions
(Gilchrist et al., 2004; Patil and Nakamura, 2005; von Mering et al.,
2002). Various information has been used in these methods, such as
gene annotations, gene expression and sequence homology. Several
methods use solely the topology of the protein interaction networks
(Chen et al., 2005; Goldberg and Roth, 2003; Saito et al., 2003). CD-
distance (Brun et al., 2003) and FSWeight (Chua et al., 2006) are two
measures calculated based on the number of common neighbors of
two proteins. They are initially proposed to predict protein functions,
and have been shown to perform well for assessing the reliability of
protein interactions (Chen et al., 2006).

Chua et al. (2008) have shown that by using FSWeight to remove
unreliable interactions and add new interactions with high FSWeight
score, the performance of several clustering algorithms can be
improved. In our previous work (Liu et al., 2008), we proposed
an iterative scoring method to assess the reliability of protein
interactions and predict new interactions, and it has been shown
to perform better than CD-distance and FSWeight. In this article,
we study the impact of this iterative scoring method on complex
discovery. We develop a simple algorithm called CMC (clustering-
based on maximal cliques) that uses maximal cliques to discover
complexes from weighted PPI networks. CMC first finds maximal
cliques from PPI networks, and then removes or merges highly
overlapped maximal cliques based on their interconnectivity.

The rest of the article is organized as follows. Section 2 introduces
the iterative scoring method. The complex discovery algorithm CMC
is described in Section 3, and experiment results are reported and
discussed in Section 4. Finally, Section 5 summarizes the article.

2 THE ITERATIVE SCORING METHOD
Many methods have been proposed to assess the reliability of protein
interactions. These methods usually assign a score to each protein
pair such that the higher the score is, the more likely the two
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proteins interact with each other. The intuition behind the iterative
scoring method is simple: if the score of an interaction reflects its
reliability, then the scored interactions should better represent the
actual interaction network than the initial binary ones, and we should
be able to further improve score computation by recomputing the
score of each protein pair using the scored interactions. Here, we
use a variant of CD-distance to calculate the score of protein pairs,
and we call it AdjustCD. Given a pair of proteins u and v, AdjustCD
of edge (u,v) is defined as follows:

AdjustCD(u,v)= 2|Nu ∩Nv|
|Nu|+λu +|Nv|+λv

where λu and λv are used to penalize proteins with very few
neighbors [as in FSWeight (Chua et al., 2006)], and they are defined
as follows:

λu =max

{
0,

∑
x∈V |Nx|
|V | −|Nu|

}

λv =max

{
0,

∑
x∈V |Nx|
|V | −|Nv|

}

Based on the definition, if the degree of a vertex u is below the
average degree, then it is adjusted to the average degree.

The iterative version of AdjustCD is defined as follows:

wk(u,v)=
∑

x∈Nu∩Nv
(wk−1(x,u)+wk−1(x,v))∑

x∈Nu
wk−1(x,u)+λk

u +∑
x∈Nv

wk−1(x,v)+λk
v

where wk−1(x,u) is the score of (x,u) in the (k−1)-th iteration.
Initially, if there is an edge between x and u in the original PPI
network, then w0(x,u) = 1, otherwise, w0(x,u) = 0. The two terms,
λk

u and λk
v are also defined based on weighted degree:

λk
u =max

⎧⎨
⎩0,

∑
x∈V

∑
y∈Nx

wk−1(x,y)

|V | −
∑
x∈Nu

wk−1(x,u)

⎫⎬
⎭

λk
v =max

⎧⎨
⎩0,

∑
x∈V

∑
y∈Nx

wk−1(x,y)

|V | −
∑
x∈Nv

wk−1(x,v)

⎫⎬
⎭

It is not difficult to see that w1(u,v)=AdjustCD(u,v). CD-distance
and FSWeight can be iterated in a similar way.

In our previous work (Liu et al., 2008), we have shown that the
iterative scoring method can improve functional homogeneity and
localization coherence of top ranked interactions, and the iterative
scoring method reaches the best performance when k = 2, and the
subsequent iterations do not improve the performance further. The
convergence of the iterative scoring method is shown in Section 5 of
Supplementary Materials. In the rest of the article, we use AdjustCDi

to denote the iterative scoring method with k = i.

3 THE CMC ALGORITHM
The CMC algorithm uses maximal cliques to identify dense
subgraphs from PPI networks, and it consists of three steps. In the
first step, it finds all the maximal cliques from the weighted PPI
network; in the second step, it ranks the cliques according to their
weighted density; finally, it merges or removes highly overlapped
cliques.

Although enumerating all maximal cliques is NP-hard, this does
not pose a problem in PPI networks because PPI networks are

usually sparse. CMC uses the Cliques algorithm proposed by Tomita
et al. (2006) to find maximal cliques. The Cliques algorithm uses a
depth-first search strategy to enumerate all maximal cliques, and it
can effectively prune non-maximal cliques during the enumeration
process.

Next, CMC assigns a score to each clique, and ranks cliques in
descending order of their score. The score of a clique C is defined
as its weighted density:

score(C)=
∑

u∈C,v∈C w(u,v)

|C|·(|C|−1)

where w(u,v) is the weight of the interaction between u and v
calculated using AdjustCD or other scoring methods. Proteins in a
larger clique are more likely to have more common neighbors than
proteins in a smaller clique, so the edges within a larger clique are
likely to have higher weights than those in a smaller clique. Thus, if
the density of two cliques is the same, the weighted density of the
larger clique is likely to be higher than that of the smaller clique.

Thousands of maximal cliques may be generated from a PPI
network and many of them overlap with one another. The highly
overlapped cliques should be removed to reduce result size. It is
also desirable to merge highly overlapped cliques to form bigger
yet still dense subgraphs as complexes are not necessarily fully
connected and PPI data may be incomplete. CMC uses the inter-
connectivity between two cliques to decide whether two overlapped
cliques should be merged together or not. The interconnectivity
between two cliques C1 and C2 is defined based on the connectivity
between the non-overlapping part of the two cliques:

inter-score(C1,C2)

=
√∑

u∈(C1−C2)

∑
v∈C2

w(u,v)
|C1−C2|·|C2| ·

∑
u∈(C2−C1)

∑
v∈C1

w(u,v)
|C2−C1|·|C1|

Given a set of cliques ranked in descending order of their score,
denoted as {C1,C2,...,Ck}, the CMC algorithm removes and merges
highly overlapped cliques as follows. For every clique Ci, CMC
checks whether there exists clique Cj such that Cj has a lower score
than Ci and |Ci ∩Cj|/|Cj|≥overlap_thres, where overlap_thres is
a predefined threshold for overlapping. If such Cj exists, then
CMC uses the interconnectivity score between Ci and Cj to decide
whether to remove Cj or merge Cj with Ci. If inter-score(C1,C2)≥
merge_thres, then Cj is merged with Ci, otherwise, Cj is removed.
Here, merge_thres is a predefined threshold for merging.Algorithm 1
shows the pseudo-codes of the CMC algorithm. In the rest of the
article, we call the dense subgraphs generated by CMC clusters.

4 RESULTS
In this section, we first describe the datasets and evaluation methods
used in our experiments, and then study the performance of CMC
and the impact of the iterative scoring method on CMC. We compare
CMC with three other clustering algorithms: MCL (van Dongen,
2000), MCode (Bader and Hogue, 2003) and CFinder (Adamcsek
et al., 2006). CFinder is a software tool based on the CPM algorithm
(Palla et al., 2005). Due to the limitation of space, we show only
some of the figures in the article. More results can be found in
Supplementary Materials.
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Algorithm 1 CMC Algorithm
Input:

G is a weighted PPI network;
overlap thres is the overlapping threshold;
merge thres is the merging threshold;

Output:
set of dense subgraphs (clusters) discovered from G;

Description:
1: Generate the set of maximal cliques from G using the Cliques

algorithm;
2: Calculate the score of every clique, and rank them in descending

order, denoted as = {C1 , C 2 , · · · , Ck };
3: for all Ci ∈ C do
4: for all Cj ∈ and Cj is after Ci do
5: if |Ci Cj | / |Cj | ≥ overlap thres then
6: if inter - score (Ci , Cj ) ≥ merge thres then
7: Ci = Ci

⊃

⊃

Cj ;
8: = − Cj ;
9: output the clusters in C;

C

C

CC

Table 1. Reference complex sets

Size Density

Datasets #cmplx #proteins Max Avg Median Avg Median

MIPS 162 1171 95 14.93 9 0.408 0.318
Aloy 63 544 34 9.22 7 0.747 0.833

4.1 Datasets
We use a combined PPI dataset containing yeast protein interactions
generated by six individual experiments, including interactions
characterized by mass spectrometry technique by Ho et al. (2002),
Gavin et al. (2002, 2006) and Krogan et al. (2006), and interactions
produced using two-hybrid techniques by Uetz et al. (1999)
and Ito et al. (2001). This dataset contains 4671 proteins and
20 461 interactions, among which 11 487 interactions have common
neighbors.

Two reference sets of protein complexes are used in our
experiments. The first set comprises of hand-curated complexes from
MIPS (Mewes et al., 2004) and the other set is generated by Aloy
et al. (2004). For both sets, we keep only those complexes with size
no less than 4. Table 1 shows the number of complexes, number
of proteins, the maximal, average and median size, and the average
and median density of the complexes in the reference complex sets.

4.2 Evaluation methods
One evaluation method we use is to match the generated clusters
with reference complex sets, and calculate recall (sensitivity) and
precision at complex and complex-protein pair level, respectively.
Let S be a cluster, C be a reference complex, VS be the set of proteins
contained in S and VC be the set of proteins contained in C. We define
the matching score between S and C as the Jaccard index between
VS and VC .

match_score(S,C)= |VS ∩VC |
|VS ∪VC |

Given a threshold match_thres, if match_score(S,C)≥match_thres,
then we say S and C match each other. In most of our
experiments, we set match_thres = 0.5, which requires that |Vs ∩
Vc|≥|VS |+|VC |/3. For example, if |VS | = |VC | = 8, then the overlap
between S and C should be at least 6.

Given a set of reference complexes C ={C1,C2,...,Cn} and a set
of predicted complexes P ={S1,S2,...,Sm}, recall and precision at
complex level are defined as follows:

Recallc = |{Ci|Ci ∈C∧∃Sj ∈P,Sj matches Ci}|
|C|

Precisionc = |{Sj|Sj ∈P∧∃Ci ∈C,Ci matches Sj}|
|P|

Recall and precision at complex–protein pair level are defined as
follows:

Recallp =
∑n

i=1max{overlap(Ci,Sj)|∀Sj that matches Ci}∑n
i=1 |Ci|

Precisionp =
∑m

j=1max{overlap(Sj,Ci) |∀Ci that matches Sj}∑m
j=1 |Sj|

where overlap(Ci,Sj)=|VCi
∩VSj

|. In Section 7 of Supplementary
Materials, we use an example to illustrate how to compute recall
and precision at complex and complex–protein pair level.

A protein complex can only be formed if its proteins are localized
within the same compartment of the cell, so we also use localization
coherence of complexes to measure the quality of the complexes.
We use cellular component terms from Gene Ontology (Ashburner
et al., 2000), and select only informative GO localization terms. A
GO term is informative if no less than 30 proteins are annotated with
this term and none of its descendant terms are annotated to no less
than 30 proteins (Zhou et al., 2002).

Let L={L1,L2,...,Lk} be a set of localization groups, where each
group contains a set of co-localized proteins. The co-localization
score of a complex is defined as the maximal fraction of proteins in
this complex that are in the same localization group among those
proteins with localization annotations. The co-localization score of
a set of complexes C is defined as the weighted average score over
all complexes:

loc_score(C)=
∑

C∈C max{overlap(C,Li)|i=1,2,...,k}∑
C∈C |{p|p∈C∧∃Li ∈L,p∈Li}|

4.3 Efficiency analysis
Our experiments were conducted on a PC with Intel(R) CoreTM2
Duo CPU of 2.33 GHz and 3.25 GB RAM. The third and fourth
columns in Table 2 show the total running time of CMC and
the time for finding maximal cliques under different PPI dataset
settings. The last two columns shows the total number of maximal
cliques generated and the number of final clusters. The overlap_thres
is set to 0.5 and merge_thres is set to 0.25. We also exclude
clusters with size <4 from output. In Table 2, ‘Original’ means the
original PPI network; ‘Weighted’means the PPI network is weighted
using AdjustCD2 and interactions with a score of 0 are removed;
‘Weighted+top-20000’ means that the top-20000 new interactions
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ranked by AdjustCD2 are added to the weighted network; and
‘Original+random 204610’ means that 204 610 random interactions
are added to the original PPI network.

Table 2 shows that even with 10 times of additional interactions in
the original network, finding maximal cliques still takes <2 s on our
machine. This indicates that even though finding maximal cliques is
NP-hard, it is feasible to apply it on PPI networks as PPI networks
are usually sparse.

4.4 The effect of overlap_thres and merge_thres
In this experiment, we study the effect of the two thresholds
overlap_thres and merge_thres on the performance of CMC.
Figure 1 shows recall and precision of the clusters generated by CMC
under different parameter settings on Aloy reference set. The PPI
network is weighted using AdjustCD2, and no further interactions
are removed except those with a score of 0. No new interactions are
added. The matching threshold match_thres is set to 0.50.

Figure 1 shows that CMC is more sensitive to merge_thres
than to overlap_thres. For recall and precision at complex level,
it reaches the best performance when merge_thres = 0.25. At
complex–protein pair level, when merge_thres is decreased from

Table 2. Running time (in seconds)

#PPIs Total MaxClq #max_clqs # clusters

Original 20461 0.734 s 0.219 s 2877 134
Weighted 11487 0.391 s 0.110 s 2877 205
Weighted + top-20000 31487 7.172 s 0.625 s 20689 464
Original + random 204610 225071 4.437 s 1.328 s 6369 1218
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Fig. 1. Precision versus recall on reference complex set Aloy under different
parameter settings. The first number in the legend of the two figures is
overlap_thres and the second number is merge_thres. The PPI network is
weighted using AdjustCD2.

1 to 0.25, precision decreases slightly for the top ranked clusters,
but when more clusters are included, precision increases. When
merge_thres = 0.15, precision at both complex level and complex–
protein pair level is lower than that when merge_thres = 0.25.
We also observed that localization coherence score decreases with
the decrease of merge_thres. This may be caused by the fact that
when merge_thres is smaller, more cliques are merged together
and clusters are getting larger. When overlap_thres = 0.5 and
merge_thres = 1, co-localization score is 0.910. It decreases to 0.866
when merge_thres = 0.25, and drops to 0.827 when merge_thres
= 0.15. Average cluster size increases from 5.88 to 7.79 when
merge_thres is changed from 1 to 0.25.

The results on MIPS reference set is similar to that on Aloy,
when the PPI network is weighted using AdjustCD2 (see Fig. 1 in
Supplementary Materials). When the PPI network is weighted using
AdjustCD1, CMC achieves the best performance when merge_thres
= 0.15, while on the unweighted PPI network, CMC achieves the
best performance when merge_thres = 0.5 (see Fig. 2 and 3 in
Supplementary Materials). In the remaining experiments, we always
set overlap_thres to 0.5, and set merge_thres to 0.25 if the PPI
network is weighted using AdjustCD2, 0.15 if the PPI network is
weighted using AdjustCD1 and 0.5 if the PPI network is unweighted.

4.5 Purifying and expanding PPI networks
The weights of interactions reflect their reliabilities. Interactions
with low scores are likely to be false positives, and protein pairs
that are not included in the original PPI network but have high
scores may be false negatives. In this experiment, we study whether
removing interactions with low scores and adding new interactions
with high scores will improve the performance of CMC.

Figure 2 shows recall and precision of the clusters generated by
CMC on Aloy reference set when different amounts of PPIs are
added or removed. We can see that adding interactions with high
scores does not have a significant impact on precision and recall
except that when too many new interactions are added, precision
drops slightly. This is probably because merging overlapped cliques
together already has the effect of adding missing interactions,
and these missing edges are likely to have high scores since the
corresponding protein pairs share some common neighbors.

When new interactions are added, localization coherence score
decreases; when interactions with low scores are removed,
localization coherence score increases. For example, when top
10 000 interactions are added, co-localization score decreases from
0.866 to 0.784. When only top 6000 interactions in the original
network are retained, that is, the bottom 5487 interactions with low
score are removed, co-localization score increases from 0.866 to
0.899. More results on MIPS reference set and when the PPI network
is weighted using AdjustCD1 can be found in Supplementary
Materials (Figs 4 and 5, and Table 2).

We have also studied the impact of removing and adding
interactions on the performance of MCL, MCode and CFinder.
MCL and CFinder show similar performance to CMC, and they
achieve the best performance when only top 6000 interactions
are retained and no new interactions are added (see Figs 6–9
in the Supplementary Materials). However, MCode shows a big
improvement when new interactions are added. It has the best
performance when 3000 new interactions are added (see Figs 10
and 11 in the Supplementary Materials).
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Fig. 2. Precision versus recall on reference complex set Aloy when different
amount of interactions are removed or added. The score of the protein pairs
are calculated using AdjustCD2. In the legend of the two figures, ‘all-N’
means all the interactions in the original network with a score larger than 0 are
retained and top N new interactions that are not in the original PPI network
are added; ‘6000-0’ means only the top 6000 interactions in the original
network are retained. overlap_thres = 0.5, merge_thres = 0.25, match_thres
= 0.50.

4.6 The impact of the iterative scoring method and
comparison of four clustering methods

In this experiment, we study the impact of the iterative scoring
method on the performance of the four clustering algorithms under
different k values. For MCL, we set inflation to 1.8; for MCode,
we set depth to 100, node score percentage to 0, and percentage for
complex fluffing to 0.2 as suggested by Brohee and van Helden
(2006). For CFinder, we set k-clique size to 4. For the other
parameters, we use their default values.

Table 3 shows the performance of the four clustering methods
when the interactions are weighted using AdjustCD under different
k values. The matching threshold is set to 0.50. Under this
matching threshold, if we match the clusters generated by CMC
with random complexes generated by swapping members among
reference complexes, the precision and recall are always 0 over
1000 runs. The maximal recalls of CMC under different matching
thresholds are shown in Table 3 of the Supplementary Materials.

All the algorithms have considerable improvement on weighted
networks than on the original unweighted network. CMC and
CFinder both show similar performance in the two cases when k = 2
and k = 20, which is better than their respective performance when
k = 1. MCL and MCode both show similar performance in the two
cases when k = 1 and k = 2, which is better than their respective
performance when k = 20. Therefore, k = 2 is a safe choice for all
the four clustering methods.

CMC shows the highest recall among the four clustering
algorithms, but its precision is lower than CFinder and MCL when
it reaches its maximal recall. However, under the same recall,
CMC has higher precision than other algorithms (see Fig. 12 in

Table 3. The impact of the iterative scoring method on the performance of four clustering methods

Scoring method: AdjustCD match_thres=0.50

Aloy (#complexes: 63) MIPS (#complexes: 162)

Clustering Avg loc_ #matched #matched #matched #matched
methods k #clusters size score clusters Precision complexes Recall clusters Precision complexes Recall

CMC 0 172 9.83 0.823 53 0.308 53 0.841 42 0.244 55 0.340
1 121 9.42 0.897 50 0.413 49 0.778 41 0.339 51 0.315
2 148 8.50 0.899 57 0.385 56* 0.889 44 0.297 56* 0.346

20 146 8.78 0.891 56 0.384 56* 0.889 43 0.295 56* 0.346

CFinder 0 103 13.84 0.528 39 0.379 38 0.603 34 0.330 40 0.247
1 76 12.86 0.724 38 0.500 38 0.603 30 0.395 34 0.210
2 95 11.66 0.713 44 0.463 43 0.683 36 0.379 46 0.284

20 95 11.77 0.718 44 0.463 43 0.683 37 0.389 49 0.302

MCL 0 372 9.40 0.638 27 0.073 27 0.429 30 0.081 37 0.228
1 120 10.18 0.848 49 0.408 49 0.778 40 0.333 51 0.315
2 116 10.31 0.856 52 0.448 52 0.825 41 0.353 51 0.315

20 110 10.75 0.849 49 0.445 49 0.778 37 0.336 47 0.290

MCode 0 61 7.31 0.849 20 0.328 20 0.317 18 0.295 22 0.136
1 103 7.42 0.913 35 0.340 35 0.556 30 0.291 39 0.241
2 88 8.67 0.897 34 0.386 34 0.540 29 0.330 39 0.241

20 82 10.28 0.838 29 0.354 29 0.460 23 0.280 32 0.198

For CMC, MCL and CFinder, we retain only the top 6000 interactions, and no new interactions are added. For MCode, we retain all the interactions with non-zero score and add
top 3000 new interactions with the highest score. The 2nd column is the number of iterations k of the iterative scoring method, and k = 0 means the PPI network is unweighted. The
3rd column is the number of clusters generated, the 4th and 5th column is the average size and co-localization score of generated clusters.
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Fig. 3. Precision versus recall at complex level on Aloy reference set
when different amount of interactions are randomly removed. Score method:
AdjustCD2, overlap_thres = 0.5, merge_thres = 0.15, match_thres = 0.50.

Supplementary Materials). The average co-localization score of
the clusters generated by CMC is higher than those generated by
CFinder and MCL. It is possible that some of the unmatched clusters
generated by CMC are unknown complexes. We have annotated the
clusters generated by CMC using GO terms. Among the 85 clusters
that do not match any complex in MIPS or Aloy, 67 of them have
common GO terms that are annotated to at least half of their members
(see CMC_unmatchedclusters.xls in Supplementary Materials).

We studied the number of times that complexes and clusters
are being matched. For the CMC algorithm, on Aloy dataset, the
matching between complexes and clusters is almost one-to-one.
There is only one or two clusters (complexes) are matched with
two complexes (clusters). On the MIPS dataset, there are more
matched complexes than matched clusters. We found that almost all
complexes are matched to at most one clusters except one or two are
matched with two clusters, and most of the clusters are also matched
with at most one complex, except that one cluster is matched with
five or six complexes, and about five clusters are matched with more
than one but less than five complexes. The statistics of the other three
clustering methods are pretty similar.

We have also compared the iterative scoring method with two
other scoring methods (Friedel et al., 2008; Krogan et al., 2006).
These two methods calculate confidence scores from tandem affinity
purification data using machine learning techniques, and they then
use MCL to find complexes. The results show that CMC is relatively
stable with respect to different scoring methods, and it performs
better than MCL. MCL is more sensitive to different scoring
methods, and it performs better when the interaction networks
are scored using AdjustCD2 (see Section 6 in the Supplementary
Materials).

4.7 Random addition and deletion
In this experiment, we study the robustness of CMC by randomly
removing and adding interactions. After randomly removing and
adding interactions, we use AdjustCD to score the resulting PPI
network, and retain only the top 6000 interactions. No new
interactions with high score are added. Figure 3 shows precision and
recall at complex level when different numbers of interactions are
randomly removed, and the PPI network is scored using AdjustCD2.
When more than 20% interactions are removed, the performance
of CMC decreases significantly. CMC shows similar behavior
when PPI networks are weighted using AdjustCD1 and AdjustCD20

(Fig. 13 in Supplementary Materials).
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Fig. 4. Precision versus recall at complex level on Aloy reference set when
different amount of interactions are randomly added. overlap_thres = 0.5,
match_thres = 0.5.

Figure 4 shows precision and recall at complex level when
different amounts of random interactions are added to the PPI
network. When k = 1, the performance of CMC drops dramatically
when the amount of random interactions added is equal to the
number of interactions in the original PPI network. The situation
gets better when k = 2. When k = 20, the performance of CMC
drops greatly only when the amount of random noise added is 10
times of the number of interactions in the original PPI network. It
shows that the iterative scoring method makes the CMC algorithm
more robust to random noise. The same results are also observed for
other clustering algorithms (see Figs 17–22 in the Supplementary
Materials). We have compared the edge weights on the original
network and noisy networks when they are weighted usingAdjustCD
under different k values. The results show that when k ≥20, the edge
weights of the noisy networks are very close to that on the original
network when <500% noise are added (Table 4 in Supplementary
Materials).

5 CONCLUSION AND DISCUSSION
In this article, we use an iterative method to weight PPI networks
and develop a maximal clique-based algorithm CMC to discover
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complexes from weighted PPI networks. The PPI weighting method
plays several roles in the CMC algorithm. First, it assigns low scores
to unreliable interactions, thus reducing their impact on complex
discovery. This is why CMC is more robust to random noise when
PPI networks are iteratively weighted. Second, it helps rank clusters
properly by favoring larger clusters and clusters with fewer external
connections. Our experiment results show that iterating AdjustCD
can yield scores that better indicate the reliability of interactions,
thus improving the performance of CMC considerably. The iterative
scoring method also makes CMC more robust to random noise, and
can improve the performance of other complex prediction algorithms
as well, especially when there is lots of noise.

We observe that the average density of the clusters generated
by CMC is higher than that of the clusters generated by MCL. The
average density of the complexes in MIPS is much lower than that of
the complexes inAloy reference set (Table 1).All the four algorithms
have much higher precision and recall on Aloy dataset than on MIPS
dataset. This indicates that it is difficult to uncover complexes with
low density even with MCL, which is expected to be able to uncover
clusters with low density. In the future work, we will explore some
heuristics to expand cliques and try to find clusters with relatively
low density.
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