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ABSTRACT

Motivation: Mathematical description of biological reaction
networks by differential equations leads to large models whose
parameters are calibrated in order to optimally explain experimental
data. Often only parts of the model can be observed directly. Given
a model that sufficiently describes the measured data, it is important
to infer how well model parameters are determined by the amount
and quality of experimental data. This knowledge is essential for
further investigation of model predictions. For this reason a major
topic in modeling is identifiability analysis.
Results: We suggest an approach that exploits the profile likelihood.
It enables to detect structural non-identifiabilities, which manifest in
functionally related model parameters. Furthermore, practical non-
identifiabilities are detected, that might arise due to limited amount
and quality of experimental data. Last but not least confidence
intervals can be derived. The results are easy to interpret and can
be used for experimental planning and for model reduction.
Availability: An implementation is freely available for MATLAB and
the PottersWheel modeling toolbox at
http://web.me.com/andreas.raue/profile/software.html.
Contact: andreas.raue@me.com
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Inferring cell biological questions by mathematical modeling of
reaction networks became a popular and powerful approach (Kitano,
2005). Tools to build models for complex reaction networks and
calibrate model parameters to experimental data are available
(Maiwald and Timmer, 2008; Schmidt and Jirstrand, 2006).
Statistical tests were established to evaluate, whether a model can
explain experimental data sufficiently, as well as to compare the
performance of different models or model extensions, e.g. Ghosh
and Samanta (2001).

∗To whom correspondence should be addressed.

Furthermore, it is usually desired to use an established model
for prediction of: model parameters such as rate constants or
initial concentrations; model trajectories such as time-courses of
experimentally unobserved species concentrations; model behaviour
under changed environmental conditions such as altered network
structure or different external stimulation. Since the considered
models are parametric, these predictions depend intrinsically on the
previously calibrated model parameters.

Due to technical limitations, e.g. availability of specific anti-
bodies, biological reaction networks are often only partially
observable. This means that not all species incorporated in a
model can be measured directly. Given a certain amount and
quality of experimental data measured under specific experimental
conditions, it is not assured that model parameters can be estimated
unambiguously. Frequently, experimental data are insufficient
considering the size of the model which results in parameters
that are non-identifiable (Swameye et al., 2003). Even identifiable
parameters can only be determined within confidence intervals,
which contain the true value of the parameter with a desired
probability (Lehmann and Leo, 1983). If model parameters are
not well determined also model predictions are not. Consequently,
the biological question that should be answered by the model,
might not be addressable. Our aim is to develop an approach that
enables evaluating which parameters are identifiable, thus infering
which model predictions are feasible. Provided that parameters are
identifiable, the question that follows is how large their confidence
intervals are, which indicates how reliable a model prediction is.

After introducing parameter estimation and discussing how
confidence intervals can be derived, different types of identifiability
are formulated. A brief overview of existing approaches for
identifiability analysis including their assets and drawbacks is
given. Subsequently, a novel approach for identifiability analysis
by exploiting the profile likelihood will be introduced. This
approach is able to detect both structural and practically non-
identifiable parameters and simultaneously calculates confidence
intervals. Since large models are under consideration, the approach
needs to be computationally feasible and its output should be
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interpretable even if depending on a high-dimensional parameter
space. Furthermore, the approach can be used for experimental
planning to suggest additional measurements that efficiently reduce
parameter uncertainties and for model reduction to tailor the model
complexity to the information content given by the experimental
data. Usage and benefit of the approach will be illustrated by
applying it to a model of the JAK-STAT signaling pathway, that
is calibrated to experimental data.

2 PROBLEM STATEMENT
Given a model M describing n species concentrations xi in a
reaction network by a system of ordinary differential equations
(ODE)

�̇x(t) = f (�x(t),�u(t),�p) (1)

�y(t) = g(�x(t),�s)+�ε(t) (2)

with internal model states �x(t), an externally given stimulus �u(t),
dynamic parameters �p, an m-dimensional mapping g of the internal
model states to the observables �y(t) involving scaling and offset
parameters �s. The measurement noise �ε(t) is assumed to be normally
distributed. For partially observed models, the dimension m of
observations is smaller than the dimensions n of internal model
states. Together with the initial concentrations �x(0) for Equation (1),
we define

θ ={�p,�x(0),�s} (3)

as set of parameters necessary to fully specify M. For parameters
in biological reaction networks, e.g. rate constants or initial
concentrations usually θ ∈R+\{0}. To avoid the natural lower
bound of zero, logarithmic parameter values will be used in the
following.

2.1 Parameter estimation
The agreement of experimental data with the observables predicted
by the model is measured by an objective function, commonly the
weighted sum of squared residuals

χ2(θ )=
m∑

k=1

d∑
l=1

(
yD

kl −yk(θ,tl)

σD
kl

)2

(4)

where yD
kl denotes d data-points for each observable k, measured at

time-points tl . σD
kl are the corresponding measurement errors and

yk(θ,tl) the k-th observable as predicted by parameters θ for time-
point tl . The parameters can be estimated numerically by

θ̂ =argmin
[
χ2(θ )

]
. (5)

For normally distributed observational noise �ε∼N(0,σ 2), this
corresponds to the maximum likelihood estimate (MLE) of θ and

χ2(θ )=const−2·log(L(θ )) (6)

where L(θ ) is the likelihood. In the following, χ2 will be used as
placeholder for the likelihood. Furthermore, an appropriate model
M that sufficiently describes the available experimental data is
assumed.

2.2 Confidence intervals
A confidence interval [σ−

i ,σ+
i ] of a parameter estimate θ̂i to a

confidence level α signifies that the true value θ∗
i is located within

this interval with probability α. In the following, asymptotic and
finite sample confidence intervals will be introduced.

2.2.1 Asymptotic confidence intervals Confidence intervals can
be derived from the curvature of the likelihood, e.g. the Hessian
matrix H=∇T∇χ2|

θ̂i
. Using the covariance matrix C=2·H−1

of the parameter estimates, asymptotic confidence intervals are
given by

σ±
i = θ̂i ±

√
χ2(α,df )·Cii (7)

where χ2(α,df ) is the α quantile of the χ2-distribution with df
degrees of freedom, as explained in Press et al. (1990). The
choice of df yields two different types of confidence intervals:
df =1 gives pointwise confidence intervals that hold individually
for each parameter, df =#θ being the number of parameters
gives simultaneous confidence intervals that hold jointly for all
parameters.

Asymptotic confidence intervals are a good approximation of the
actual uncertainty of θ̂i, if the amount of experimental data is large
compared to #θ and/or the measurement noise is small. They are
exact if the observables �y depend linearly on θ . However, even
for the simplest reaction network the observables �y depend non-
linearly on θ and the amount and quality of experimental data is
often insufficient. Therefore, asymptotic confidence intervals might
not be appropriate (Joshi et al., 2006).

2.2.2 Finite sample confidence intervals Confidence intervals
can also be derived using a threshold in the likelihood. These
so called likelihood-based confidence intervals are defined by a
confidence region

{θ |χ2(θ )−χ2(θ̂ )<�α} with �α =χ2(α,df ) (8)

whose borders represent confidence intervals (Meeker and Escobar,
1995). The threshold �α is the α quantile of the χ2-distribution
and represents with df =1 and df =#θ pointwise, respectively,
simultaneous confidence intervals to a confidence level α [see
Equation (7)]. Likelihood-based confidence intervals are considered
superior to asymptotic confidence intervals for finite samples (Neale
and Miller, 1997).

2.3 Identifiability
A parameter θi is identifiable, if the confidence interval [σ−

i ,σ+
i ] of

its estimate θ̂i is finite. Two phenomena accounting for parameters
to be non-identifiable will be discussed here. Structural non-
identifiability is related to the model structure independent of
experimental data which is extensively discussed, e.g. Cobelli and
DiStefano III (1980). In contrast, practical non-identifiability also
takes into account the amount and quality of measured data, that
was used for parameter calibration. Practical non-identifiability is
less clearly defined in literature, therefore an independent definition
will be given.

2.3.1 Structural non-identifiability A structural non-
identifiability arises from a redundant parameterization in the
formal solution of �y(t), due to an insufficient mapping g of

1924

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/25/15/1923/213246 by guest on 18 April 2024



[14:37 26/6/2009 Bioinformatics-btp358.tex] Page: 1925 1923–1929

Structural and practical identifiability analysis

θ
1

θ 2

0 10
0

10

θ
1

θ 2

0 10
0

10

θ
1

θ 2

0 10
0

10A B C

Fig. 1. Contour plots of χ2(θ ) for a two-dimensional parameter space, shown in non-logarithmic scale for illustrative reasons. Shades from black to white
correspond to low and high values of χ2, respectively. Thick white lines display likelihood-based confidence regions and white stars the optimal parameter
estimates θ̂ . Left panel: a structural non-identifiability along the functional relation h(θ )=θ1 ·θ2 −10=0 (dashed line). The likelihood-based confidence region
is infinitely extended. Middle panel: a practical non-identifiability. The likelihood-based confidence region is infinitely extended for θ1 →+∞ and θ2 →+∞,
lower confidence bounds can be derived. Right panel: both parameters are identifiable.

internal model states �x to observables �y in Equation (2). The set of
ambiguous parameters θsub ⊂θ may be varied without changing
the observables �y(t), hence keeping χ2(θ ) on a constant value.
The redundant parameterization manifests as functional relations �h
between the parameters θsub, representing a manifold with constant
χ2 in parameter space

χ2(θ )=χ2(θ̂ ) ⇔ �h(θsub)=0. (9)

Consequently, the parameter estimates θ̂sub and, respectively,
the internal model states �x(t) affected by these parameters are
not uniquely identified. Confidence intervals of a structurally
non-identifiable parameter θi ∈θsub are infinite [−∞,+∞] in
logarithmic parameter space considered here. Hence, its value
cannot be estimated at all. A direct detection of a redundant
parameterization in the analytic form of �y(t) is hampered, because
Equation (1) can only be solved analytically in special cases.

χ2(θ ) in a two-dimensional parameter space can be visualized
as a landscape. A structural non-identifiability results in a perfect
flat valley, infinitely extended along the corresponding functional
relation, as illustrated in Figure 1, left panel.

Since a structural non-identifiability is independent of the
accuracy of available experimental data, it cannot be resolved
by a refinement of existing measurements, e.g. by reducing the
measurement noise �ε(t). The only remedy is a qualitatively new
measurement which alters the mapping g, e.g. by increasing the
number of observed species. A parameter is structural identifiable,
if a unique minimum of χ2(θ ) with respect to θi exists.

2.3.2 Practical non-identifiability A parameter that is structurally
identifiable may still be practically non-identifiable. This arises
frequently if amount and quality of experimental data is insufficient
and manifests in a confidence interval that is infinite. Please note
that the asymptotic confidence interval of a structural identifiable
parameter estimate may be large, but is always finite because Cii >0
[see Equation (7)]. Therefore, it is not possible to infer practical non-
identifiability using asymptotic confidence intervals. We propose a
definition that is inspired by likelihood-based confidence intervals
[see Equation (8)]:

Definition 1. A parameter estimate θ̂i is practically non-
identifiable, if the likelihood-based confidence region is infinitely

extended in increasing and/or decreasing direction of θi, although
the likelihood has a unique minimum for this parameter.

This means that the increase in χ2 stays below the threshold �α for
a desired confidence level α in direction of θi. Similar to a structural
non-identifiability, the flattening out of the likelihood can continue
along a functional relation. The confidence interval of a practically
non-identifiable parameter is not necessarily extended infinitely to
both sides. There can be a finite upper or lower bound of the
confidence interval [σ−

i ,σ+
i ] where either σ−

i =−∞ or σ+
i =+∞.

In a two-dimensional parameter space, a practical non-
identifiability can be visualized as a relatively flat valley, which is
infinitely extended. The height distance of the valley bottom to the
lowest point θ̂ never excesses �α , as illustrated in Figure 1, middle
panel.

Along a practical non-identifiability, the observable �y change
only negligibly remaining compliant with the given measurement
accuracy. Nevertheless, model behavior in terms of internal states �x
might vary strongly. Improving the detection of typical dynamical
behavior by increasing the amount and quality of measured data
and/or the choice of measurement time-points tij will ultimately
resolve a practical non-identifiability, yielding finite likelihood-
based confidence intervals (Fig. 1, right panel). Inferring how to
decrease confidence intervals most efficiently is the subject of
experimental planning, which will be discussed later on.

3 EXISTING METHODS
Various methods exist to detect structural non-identifiability by a
priori analyzing the system equations (1) and (2), such as the Power
Series Expansion (Pohjanpalo, 1978), the Volterra and Generating
Power Series Approach (Lecourtier et al., 1987), the Similarity
Transform Approach (Vajda et al., 1989b) or differential algebraic
methods (e.g. Ljung and Glad, 1994). Unfortunately, these methods
become rapidly infeasible with increasing model size (Margaria
et al., 2001; White et al., 2001). Practical non-identifiability cannot
be detected, since experimental data are disregarded.

Another class of methods aims to detect non-identifiability by
flatness of likelihood, using simulated or experimental data. Here,
measures of curvature are computed, commonly using a quadratic
approximation of χ2 at the estimated optimum θ̂ , e.g. the Hessian
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or Fisher information matrix (Jacquez and Greif, 1985; Vajda
et al., 1989a; Yao et al., 2003). These methods are appropriate
if functional relations �h between the parameters emerging from
structural non-identifiability are linear. This is often not the case for
reaction networks modeled by ODE, because observables depend
non-linearly on the parameters. Practical non-identifiability cannot
be detected, because a quadratic approximation is not able to explain
increasing but limited behavior of χ2(θ ) as mentioned earlier.

An approach to detect structural non-identifiability by the
corresponding functional relations was introduced by Hengl et al.
(2007). It is able to detect flatness of likelihood for arbitrary models,
but it is not intended to detect practical non-identifiability.

Similar to a clear formal definition, an approach for explicit testing
of practical non-identifiability is not available to our knowledge. In
the following, we introduce a general approach to analyze arbitrary
models for structural and practical non-identifiability.

4 APPROACH
The idea of the approach is to explore the parameter space for
each parameter in the direction of the least increase in χ2. For
a structurally non-identifiable parameter this means to follow
the functional relations �h(θsub)=0. In case of a practically non-
identifiable parameter, the aim is to detect directions where the
likelihood flattens out.

A useful concept for this task is the profile likelihood (PL) χ2
PL

(Murphy and van der Vaart, 2000; Venzon and Moolgavkar, 1988).
It can be calculated for each parameter individually by

χ2
PL(θi)=min

θj 
=i

[
χ2(θ )

]
(10)

meaning re-optimization of χ2(θ ) with respect to all parameters
θj 
=i, for each value of parameter θi. Hence, the profile likelihood

keeps χ2 as small as possible alongside θi. Figure 1 illustrates
that the likelihood is explored in the desired way to detect non-
identifiabilities. An algorithm to calculate χ2

PL is described in the
Supplementary Material.

Structural non-identifiable parameters are characterized by a
flat profile likelihood [Equation (9)]. The profile likelihood of
a practically non-identifiable parameter has a minimum, but is
not excessing a threshold �α for increasing and/or decreasing
values of θi (see Definition 1). In contrast, the profile likelihood
of an identifiable parameter exceeds �α for both increasing and
decreasing values of θi. The points of passover represent likelihood-
based confidence intervals as defined in Equation (8) (Royston,
2007). By following the change of parameters θj 
=i along χ2

PL(θi),

the functional relations �h(θsub)=0 corresponding to a structural
non-identifiability can be recovered.

Experimental planning To improve certainty of a specific model
prediction, it would be valuable to suggest additional measurements
that efficiently resolve non-identifiability and narrow the confidence
interval of a parameter θi affecting this issue. The set of trajectories
along the profile likelihood of θi reveals spots where the uncertainty
of θi has the largest impact on the model. Additional measurements
at these spots are likely to efficiently reduce this uncertainty. The
amplitude of variability of the trajectories at these spots allows to
assess the necessary precision of a new measurement to provide
adequate data that is able to improve parameter identification.

Fig. 2. Network structure of the model and observables calibrated to
experimental data. A spline interpolation of pEpoR measurements serves as
external stimulus u. The double arrowhead denotes a delay reaction modeled
by a linear chain approximation.

The impact of new measurements can be evaluated by Monte
Carlo simulations. To this aim, the described analysis of the profile
likelihood is repeated, taking into account additional simulated data.
The resulting change of the profile likelihood and correspondingly
the resolution of non-identifiability and the narrowing of the
likelihood-based confidence intervals allow to justify the effort of
new measurements to gain a more confident model prediction.

Model reduction The approach can be used for model reduction by
considering a threshold �α with df =1 [see Equation (8)]. Assume
that a parameter θi is practically non-indentifiable for decreasing
parameter value. Consider a reduced model M∗ with simplified
kinetics concerning θi, e.g. for mass action kinetics by removing the
corresponding reaction. In this case, the threshold �α corresponds to
a likelihood ratio test of the reduced model M∗ against the original
model M to a significance level 1−α. Falling below this threshold,
the profile likelihood indicates that it is not possible to dismiss M∗
in favor of M, based on the available experimental data.

5 APPLICATION
To illustrate usage and benefit of the approach, it was applied to a
model of the JAK-STAT signaling pathway inspired by Swameye
et al. (2003), which is calibrated to the experimental data available at
http://webber.physik.uni-freiburg.de/∼jeti/PNAS_Swameye_Data/
(dataset 1). The model represents the STAT signaling cascade
including nuclear shuttling upon stimulation with Erythropoietin:
phosphorylation of cytoplasmatic STAT (x1) triggered by active
Erythropoietin receptor pEpoR (u); homo-dimerization of pSTAT
(x2); import of the pSTAT_pSTAT complex (x3) into the nucleus;
dissociation and dephosphorylation of npSTAT_npSTAT (x4)
and export to cytoplasm (Fig. 2). A spline interpolation of
pEpoR measurements serves as external stimulation u for STAT
phosphorylation. In terms of ODE the model reads as

ẋ1 =−p1 ·x1 ·u+2·p4 ·xτ
4 y1 =s1 ·(x2 +2·x3)

ẋ2 =+p1 ·x1 ·u−p2 ·x2
2 y2 =s2 ·(x1 +x2 +2·x3)

ẋ3 =+ 1
2 ·p2 ·x2

2 −p3 ·x3
ẋ4 =+p3 ·x3 −p4 ·xτ

4
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Fig. 3. Black lines display profile likelihood versus parameter. The results for the original dataset are shown in the upper panel. The lower panel shows the
alteration of the profile likelihood, after taking into account the additional data. Calibrated parameter values θ̂ are displayed by gray stars, thresholds for
simultaneous and pointwise 1-σ confidence intervals by upper, respectively, lower dashed lines. Gray parabolas indicate the quadratic approximation used for
asymptotic confidence intervals. They are very flat for the structurally non-identifiable parameters. Discontinuities in the profile likelihood of p3 and p4 in the
upper panel stem from local minima that govern the profile likelihood in remote regions. Parameter values are given in orders of magnitude.

where the superscript τ denotes a delay reaction implemented by a
linear chain approximation, yielding an effective delay τ =10/p4
with 10 intermediate steps (MacDonald, 1976). Experimentally
observable quantities are phosphorylated STAT in cytoplasm (y1)
and total STAT in cytoplasm (y2), both measured in arbitrary units
by quantitative western blotting. Two compartments are considered
in the model: the cytoplasm and the nucleus with 1400µm3 and
450µm3. Species concentrations are modeled in nanometer. Besides
the dynamic parameters p1 to p4 and scaling parameters s1 and s2,
the initial concentration x1(0) belongs to the parameters θ that need
to be calibrated by the experimental data. The initial values of species
x2 to x4 are assumed to be equal to zero. The model is implemented
and calibrated using the PottersWheel fitting toolbox (Maiwald and
Timmer, 2008), resulting trajectories of observables are shown in
Figure 2.

Calculating the profile likelihood takes 54±18 s per parameter,
using an implementation of the approach embedded in the Potters-
Wheel fitting toolbox (1 GHz CPU, 2 GB RAM), which is described
in the Supplementary Material. The resulting plots of profile
likelihood versus parameter reveal four structurally non-identifiable
parameters p2, x1(0), s1, s2 by their flat profile likelihood, see
Figure 3, upper panel.

Structural non-identifiability The functional relations �h
connecting these structurally non-identifiable parameters can
be recovered from the changes of the remaining parameters, while
calculating the profile likelihood of the structurally non-identifiable
parameters, as shown in Figure 4. Using, for example, χ2

PL(x1(0)),
the manifold can be characterized as

h1(θsub) = p2 ·x1(0)−const=0

h2(θsub) = s1 ·x1(0)−const=0 (11)

h3(θsub) = s2 ·x1(0)−const=0

which is compliant with analytical considerations given in Timmer
et al. (2004). Recovering the functional relations unambiguously
from the change of parameters along the profile likelihood is only

Fig. 4. While exploiting the profile likelihood for each of the structurally
non-identifiable parameters, the parameters connected by this structural
non-identifiability change accordingly (black lines). Thereby the functional
relations between p2, x1(0), s1, s2 can be characterized. Parameters that
are not involved in the structural non-identifiability are unaffected (gray
horizontal lines).

possible if the corresponding manifold is one-dimensional. This
is because one parameter is fixed at a time while computing the
profile likelihood. To recover functional relations that correspond to
manifolds with dimension larger than one, a further analysis of the
functionally related subsets is necessary, e.g. the approach by Hengl
et al. (2007).

The variability of the internal model states �x imposed by
this structural non-identifiability can be analyzed by plotting the
trajectories for parameter values along the profile likelihoods of
the structural non-identifiable parameters (Fig. 5). All internal
model states can only be identified up to a common factor. This
implies that the structural non-identifiability is derived from the fact
that no information about absolut concentration is included in the
experimental data.

Practical non-identifiability Thresholds �α=0.68 for both
pointwise and simultaneous 1−σ confidence intervals are displayed
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Fig. 5. Trajectories of internal model states �x for parameter values along the
structural non-identifiability. All internal model states can only be identified
up to a common factor.

Fig. 6. Trajectories of observables �y and internal model states �x along the
profile likelihood of the practically non-identifiable parameter p3. Please
note, that species x2 and x3 change antipodal.

in Figure 3. In the following, we will consider the more reliable
higher threshold yielding simultaneous confidence intervals.

The profile likelihood reveals that parameter p3 is practically
non-identifiable for increasing parameter values. This indicates that
the amount and quality of the experimental data provided does not
contain enough information to yield an upper limit for the rate of
nuclear import p3. The variability of the predicted model observables
�y along the profile likelihood of p3 remains consistent with the
measurement errors, as shown in Figure 6. Nevertheless, a lower
confidence bound can be derived.

Confidence intervals Table 1 compares finite sample confidence
intervals derived from the profile likelihood and asymptotic
confidence intervals derived from the Hessian matrix. For
identifiable parameters the discrepancies are small. Working in
logarithmic parameter space linearizes the functional relations
given in Equation (11). In this case, asymptotic approximation
leads to large but nevertheless finite confidence intervals for the
structurally non-identifiable parameters. The largest discrepancy
occurs for practically non-identifiable parameters, where asymptotic
confidence intervals are significantly smaller than likelihood-based
confidence intervals. Asymptotic confidence intervals are also
indicated in Figure 3 by gray parabolas.

Experimental planning To resolve the structural non-
identifiability between parameters p2, x1(0), s1, s2, a measurement
of absolut concentration is necessary as mentioned earlier. Figure 5
shows trajectories for parameters along this non-identifiability.

Table 1. Likelihood-based confidence intervals σ±,PL derived from the
profile likelihood are compared with asymptotic confidence intervals σ±,Hess

derived from the Hessian matrix [see Equation (7)]

Name θ̂i Non-
identifiability

σ−,PL σ+,PL σ−,Hess σ+,Hess

p1 +0.31 +0.12 +0.50 +0.14 +0.48
p2 −1.00 Structural −∞ +∞ −33 +31
p3 −0.49 Practical −1.14 +∞ −1.14 +0.15
p4 +0.42 +0.15 +0.78 +0.28 +0.56
x1(0) +0.31 Structural −∞ +∞ −31 +32
s1 −0.21 Structural −∞ +∞ −32 +31
s2 −0.34 Structural −∞ +∞ −32 +31

Values are given in orders of magnitude and correspond to 1−σ simultaneous confidence
intervals.

Spots of largest variability suggest where and when a measurement
of a species most efficiently determines theses parameters: x1 at
times t =0 or t >50; x2 to x4 at times 5< t <30.

The trajectories of the internal model states �x along the profile
likelihood of the practically non-identifiable parameter p3 shown
in Figure 6 comprises large antipodal variability of species x2
and x3, revealing that the experimental setup is inappropriate to
estimate this parameter with confidence. Therefore, an additional
measurement to discriminate phosphorylated STAT species x2 and
x3 is suggested, e.g. the fraction of dimerized pSTAT relative to total
phosphorylated STAT in cytoplasm x3/(x2 +x3) between 5 and 30
min. If no further quantities than y1 and y2 can be measured directly,
a refined measurement of phosphorylated STAT in cytoplasm (y1) at
times t >50 or of total STAT in cytoplasm (y2) at times t >30 where
largest variability of the observables occurs are the best options.

To evaluate the impact of additional measurements on
identifiability and confidence intervals, we assume hypothetic
measurements yielding an initial concentration of unphosphorylated
STAT in cytoplasm x1(0)=200±20 nM and a fraction of x3/(x2 +
x3)=0.90±0.05 at time t =20 min. The recalculated profile
likelihood reveals, that parameters p2, x1(0), s1, s2 become
structurally identifiable (Fig. 3, lower panel), by measuring only
one of them. This accentuates the benefit of knowing the functional
relations between structurally non-identifiable parameters, as given
in Equation (11). Parameter p3 becomes practically identifiable,
only previously structurally non-identifiable parameter p2 remains
practically non-identifiable.

6 DISCUSSION
Exploiting the profile likelihood is a powerful approach to infer
parameter uncertainties in a high-dimensional parameter space.
Since it is a systematic and directed exploration, it has less
computational cost than sampling parameter space randomly, which
gets intractable for high dimensions. The profile likelihood can be
calculated for each parameter separately. Thereby it is possible to
restrict the analysis to the parameters relevant for the biological
question. Moreover, this allows to perfectly parallelize the approach,
which is a major benefit for its scalability. An analysis of the runtime
of the approach for a test case model is shown in the Supplementary
Material. The approach can be applied to any parameter estimation
problem, where a likelihood or a similar objective criterion is
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available, e.g. partial differential equations (PDE) or stochastic
differential equations (SDE).

The approach results in easily interpretable plots of profile
likelihood versus parameter. It can be automated, but an explicit
advantage is that the output might be evaluated visually. This
gives insight into a complex and high-dimensional parameter
space. Structural non-identifiabilities originating from incomplete
observation of the internal model states can be detected. Arising
from limited amount and quality of experimental data, also practical
non-identifiabilities can be inferred. Bridging the gap between
identifiability and confidence intervals, the profile likelihood allows
to derive likelihood-based confidence intervals for each parameter.
Functional relations between parameters occurring due to non-
identifiabilities can be recovered. The results of the approach can
be used on the one hand to design new experiments that efficiently
resolve non-identifiability and narrow confidence intervals and on
the other hand to facilitate model reduction. Thus, identifiability
analysis ensures that the model complexity is tailored to the
information content given by the experimental data. Whether a
model that is not well determined by the experimental data, should
be reduced or additional data should be measured depends on the
biological issue to be addressed.

The approach was applied to a model of the JAK-STAT signaling
pathway. Non-identifiable parameters were detected, revealing
limitations in the experimental setup. Additional measurements that
efficiently improve parameter identification were suggested and
validated.
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