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ABSTRACT

Motivation: Mass spectrometry (MS) is one of the most important
techniques for high-throughput analysis in proteomics research. Due
to the large number of different proteins and their post-translationally
modified variants, the amount of data generated by a single wet-lab
MS experiment can easily exceed several gigabytes. Hence, the
time necessary to analyze and interpret the measured data is often
significantly larger than the time spent on sample preparation and
the wet-lab experiment itself. Since the automated analysis of this
data is hampered by noise and baseline artifacts, more sophisticated
computational techniques are required to handle the recorded mass
spectra. Obviously, there is a clear tradeoff between performance
and quality of the analysis, which is currently one of the most
challenging problems in computational proteomics.
Results: Using modern graphics processing units (GPUs), we
implemented a feature finding algorithm based on a hand-tailored
adaptive wavelet transform that drastically reduces the computation
time. A further speedup can be achieved exploiting the multi-core
architecture of current computing devices, which leads to up to an
approximately 200-fold speedup in our computational experiments.
In addition, we will demonstrate that several approximations
necessary on the CPU to keep run times bearable, become obsolete
on the GPU, yielding not only faster, but also improved results.
Availability: An open source implementation of the CUDA-
based algorithm is available via the software framework OpenMS
(http://www.openms.de).
Contact: rene@bioinf.uni-sb.de; anhi@bioinf.uni-sb.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Recent years have seen a surge of interest in proteomic data
with applications ranging from basic pharmaceutical research over
medical diagnostics and therapy to biotechnology and engineering
(see, e.g. Diamandis, 2004; Jeffery and Bogyo, 2003; Ryan et al.,
2002). In contrast to the (rather static) genome, the proteome is
highly dynamic. Experts estimate the number of human genes to
about 30 000–40 000, while the number of possible proteins may
lie between a few hundred thousands up to several millions, due to

∗To whom correspondence should be addressed.

alternative splicing, post-translational modifications and different
subunit assembly (Wikberg et al., 2004). In order to determine
the quantitative protein composition of some sample under study,
mass spectrometry (MS) is often the method of choice. In a
typical MS experimental setting, proteins are cut into smaller pieces
by some digestive enzyme like trypsin and are guided into a
chromatographic column that separates the peptides according to
their physico-chemical properties. At discrete time points, the so-
called retention time rt, peptides will leave the column in small
groups, which enter a mass spectrometer in the following. Rather
than measuring the mass m directly, one records the mass over
charge ratio m/z. Finally, the experiment results in a 2D map
M(rt,m/z)1, which maps the retention time and the mass over
charge ratio to the number of detected molecules, for short the
intensity i.

To identify and quantify the proteins in the sample, regions of
interest, the so called features, must be separated from parasitics
like noise or baseline artifacts. Every subsequent step in the
proteomic analysis pipeline depends necessarily on this basic feature
identification stage, which is therefore crucial for the success of
nearly every proteomic application.

Since real-world experiments can easily lead to several gigabytes
of data, automated analysis is indispensable. Although recent years
have seen a constant progress on the efficient and accurate analysis of
high-throughput MS data (cf. Andreev et al., 2003; Cox and Mann,
2008; Du et al., 2006; Horn et al., 1999; Leptos et al., 2006, to
mention just a few of them), the problem is still challenging. Due to
the huge computational load, one is often driven to simpler, heuristic
algorithms. Of course, this strategy can also spoil the quality of the
analysis since low abundant peptides may be missed or many false
positive regions of interest may be identified. Besides improvements
on the software side, there have been attempts to accelerate the
processing of MS scans by field programmable gate arrays (FPGAs)
as presented in (Bogdan et al., 2007).

Using the compute capabilities of modern graphics cards and
an integral transform—the so-called isotope wavelet transform
(Hussong et al., 2007)—the work presented here aims at high-quality
results that can be computed within minutes on today’s standard

1For the sake of simplicity, we will use the notations M(rt,m/z) = M(rt,t)=
M(s,t)=M(s,m/z) interchangeably, where t denotes the t-th data point in
the s-th scan of M with retention time rt and mass-over-charge value m/z.
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scientific workstations. Our approach is generic, in the sense that the
wavelet kernel function can easily be exchanged. Thus, alternative
wavelet methods (like those using the popular Mexican Hat wavelet,
e.g. (Lange et al., 2006) and (Du et al., 2006)) can also benefit from
this software framework.

The article is organized as follows: first, we will formally
introduce the isotope wavelet as a theoretically justified method
for feature detection in proteomic data sets and shortly recapitulate
the most important advantages of the algorithm. Next, we will
summarize the memory model of the compute unified device
architecture (CUDA) as introduced by NVIDIA (NVIDIA, 2008)
for modern graphics processing units (GPUs). We will present two
different strategies to port the wavelet transform onto the GPU,
speeding up the algorithm by at least an order of magnitude. The
theoretical part of the article is followed by a detailed analysis
of running times on real-world data sets, as well as a qualitative
comparison of the CPU and the GPU results, which can differ
especially in regions of low signal-to-noise (S/N) ratios. We will
argue that porting the algorithm to the GPU can even increase
the quality of the data, since the wavelet can be sampled exactly
without spoiling the performance. This is in contrast to the original
CPU implementation, which is based on several approximations to
manage the high computational load. The article concludes with a
discussion of the results and an outlook.

2 APPROACH
Signal processing in MS can be seen as a pipeline consisting of
several subsequent steps, each of them removing a specific type
of artifact from the recorded spectrum. A common combination
of filters starts with a resampling of the data, since MS signals
often feature an irregular spacing between neighboring m/z data
points. This step seems so trivial that it is hardly ever mentioned,
although it seems clear that a ‘simple’ resampling of the data might
significantly shift the position of monoisotopic peaks, which have
to be determined within an error range of several ppm or ppb,
depending on the task and instrument in use. The same problem
appears in the following steps that often consist of a baseline filter,
like a white top hat (cf., e.g. Sauve and Speed, 2004), and finally
some kind of smoothing operation to eliminate high-frequency
noise. Usually, altering effects increase rapidly with the number of
different filters applied on the data. Hence, it would be desirable to
design a method that removes most noise components2 as well as
baseline artifacts, but needs no explicit resampling of the original
data. The isotope wavelet as introduced in Hussong et al. (2007)
fulfills most of these properties.

2.1 The isotope wavelet
As suggested by their name, wavelets can be considered as
small wave-like functions. These functions are by construction
robust against the most common parasitics present in any kind of
experimental signal. With respect to the Fourier domain, wavelets
are located between high-frequency noise and low-frequency

2Today, there is no generally accepted universal model for noise in all kinds
of MS experiments; progress has been made in particular situations (Du
et al., 2008; Krutchinsky and Chait, 2002), but as of yet not all causes and
distributions of noise in MS are fully understood.

baseline artifacts3 and therefore automatically ignore ‘unwanted’
characteristics of the signal and concentrate on the frequency
band in which the ‘real’ signal should appear. The design of
a wavelet which in addition respects the specific characteristics
of peptidic mass signals renders the application of additional
filters to mass spectrometric signals unnecessary, as the wavelet is
robust with respect to chemical noise artifacts due to its bandpass
characteristics.

In general, the continuous wavelet transform Wψa,b
(for short Wψ )

of a signal s∈L2(R) with respect to the wavelet ψ is given by

Wψ [s](a,b)= 1√
cψ |a|

∞∫
−∞

s(x)ψ

(
x−b

a

)
dx (1)

cψ :=2π

∞∫
−∞

∣∣∣ψ̂(ω)
∣∣∣2

|ω| dω (2)

where a∈R\{0} and b∈R (Louis et al., 1997). a and b are called the
scale and the translation parameter, respectively, and ψ̂(ω) denotes
the Fourier transform of ψ(x). Hence, a wavelet transform is just
a series of convolutions ψa,b∗b s depending on a. In the case of
the isotope wavelet, we assign to every charge state z a separate
wavelet scale a, i.e. every charge state z requires its own convolution
with a dilated or compressed isotope wavelet, respectively. The
translational parameter b can then be considered the m/z position
within the mass spectrometric scan under study. Since the isotopic
envelope follows approximately a Poisson distribution depending
on the mass m, the convolution kernel must be adapted over
the mass range. Hence, the isotope wavelet transform is not a
wavelet transform in a strict mathematical sense, but rather a so-
called adaptive wavelet transform, where the convolution kernel
is slowly changing over the mass range. In the following, we
will often write ‘ψm’ instead of ‘ψ’ to stress this specific mass
dependency.

For every charge state z, we define the isotope wavelet ψm as

ψm(x) :=H(x)

(
φm(x)− 1

ξ

∫ ξ

0
φm(x) dx

)

φm(x) :=sin

(
2πzx

mn

)
e−λ(m)λ(m)xz

�
(
1+xz

)︸ ︷︷ ︸
(∗)

(3)

Since �(1+xz)= (xz)! for xz∈N, the part of Equation (3) marked as
(∗) can be interpreted as a continuous version of the discrete Poisson
distribution. H(x) :=θ0(x)(1−θξ (x)), where θ is the Heaviside step
function and ξ denotes a cutoff parameter that ensures compact
support and therefore guarantees that ψm is a wavelet for fixed m.
λ is a linear function based on the coefficients of the averagine
model introduced in Gay et al. (1999) and mn depicts the isotopic
peak distance, adopting values around the mass of a single neutron
(mn≈1.008664).4 Note that the first maximum position p1 (the first

3This property necessarily depends on a reasonably chosen scaling parameter
[see Equation (1)].
4Slightly different values for mn have been proposed in the literature see, e.g.
Horn et al. (1999). For high-resolution data, as produced by modern orbitrap
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Fig. 1. The isotope wavelet at m=1000 Da and z=1 (on the left), as well
as m=2000 Da and z=2 (on the right). The intensities of the ‘hills’ and
‘valleys’ follow the averagine peptide model.

‘peak’) of φm(x) according to Equation 3) is close to x≈0.25·
mn/z. For the sake of simplicity, we will assume that the wavelet
is always shifted such that p1 coincides with x=0. Figure 1
depicts the isotope wavelet for two different charge states and
masses. For more information about the isotope wavelet, refer to
Hussong et al. (2007).

2.2 Feature detection in MS scans
Having computed the wavelet transforms Wψm

[s] of scan s for all
wanted charge states z∈1,...,zmax, every signal originating from a
peptide will show a chirp-like structure as depicted in Figure 2. Since
we know the locations where minima and maxima must occur if the
underlying signal has indeed been triggered by a peptide, we can
use the intensities at these positions of the transform for scoring a
region of interest. If the score exceeds a user-defined threshold τ that
is coupled to the average and the SD of the transform’s intensity
distribution, the position of the local maximum is returned as
monoisotopic position with charge state z. Therefore, the algorithm
directly identifies isotopic patterns. This is in contrast to common
practice, where single peaks are identified first and afterwards an
additional clustering step, the so-called deconvolution, has to be
performed. Note that the algorithm for this 1D case has only a single
parameter (the threshold τ ) to be adjusted by the user.

2.3 CUDA
CUDA is a programming environment for leveraging the massive
parallelization of graphics processing units (GPUs). CUDA extends
the C language by additional commands that allow the programmer
to implement computations directly on the GPU in a familiar C
programming style. In contrast to the multi-purpose CPU, the GPU
strongly focuses on data processing, i.e. it is a highly parallel, multi-
threaded architecture tailored to compute-intensive integer and
floating point operations that show a data parallel nature (NVIDIA,
2008). CUDA has its own memory model and therefore, data to
be processed by the GPU must be loaded onto/from the device. In
general, one can distinguish four different types of memory spaces:
the global memory, as well as the shared memory, which are both
read- and writable, and the constant as well as the texture memory
that are both read-only. In principle, one can load the required
data from the host onto the device’s global memory and perform
every necessary operation without using any other memory model.

machines e.g., the exact value of mn might be an additional critical parameter
that should be adopted to the individual machine and experimental setting.

Fig. 2. Isotopic pattern of charge state 3 (solid line). Wavelet transforms
Wψm for z �=3 do not result in the typical chirp-like structure (for the sake of
clarity only the charge-1- and the charge-3-transforms have been plotted).

However, texture memory is cached and shared memory is located
directly on the chip, such that these memory models are much faster.
In absence of so-called bank conflicts, accessing shared memory is
even as fast as accessing a register. Consequently, if data points have
to be accessed several times during a single device computation (as
it is obviously the case if we convolve parts of a MS signal with the
isotope wavelet as kernel), it usually pays off to load the data from
global memory into the shared memory of the device (see Section
3.1).

For starting a computation on the graphics device, the user has
to invoke a specific type of function, called the kernel, which is
then executed n times in parallel on the GPU. The execution on the
GPU is organized in the form of a grid that features a number of
so-called blocks (B), which themselves contain a specific number
of threads (T). All threads of the same block have read and write
access to the same shared memory, whereas the global and the
texture memory can—as the name already implies—be accessed
from each thread across all thread-blocks. The Supplementary
Material includes a figure providing a short overview of CUDA’s
hardware implementation. Since the complete description of the
CUDAarchitecture is out of scope for this work, the interested reader
is referred to (NVIDIA, 2008) for additional information.

3 METHODS
As the isotope wavelet transform is based on a simple convolution with a
kernel function showing compact support on a comparably small interval
of a MS scan, the algorithm is perfectly suited for parallelization. As the
scoring function that has to be applied on the transformed data is a simple
sum of intensity values at known positions, parallelizing the scoring function
is also possible. We implemented two different parallel versions of the
algorithm described in Section 2.1 that differ in their realization of the
integral transform, while the implementation of the scoring function stays
the same. The first version simply loads the spectrum into the cached texture
memory which already leads to a drastic speedup. The second version,
instead, loads the required data into shared memory, further accelerating the
method, but notably complicating the algorithm. Since the implementation of
the scoring function and the texture memory version of the wavelet transform
are straightforward, we will omit a discussion and concentrate on the shared
memory implementation.
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Fig. 3. Shared memory situation for computing the convolution. Each of
the irregular-spaced boxes represents a data point of a MS scan. At the
boundaries, additional point sets p′ and p′′ with p :=p′ ∪p′′ must be loaded
into the shared memory.

3.1 Parallelization with a shared memory model
The overall strategy is as follows: given a data map M, we compute
the isotope wavelet transform Wψm [s] of every scan s∈M for every
z∈ 1,...,zmax, by splitting s into equally sized parts sb of length |sb|≤512,
which is the maximum number of allowed threads per block.5 Since |s|/|sb|
is usually not integral, we have to pad the signal s by some additional
points p. Every part sb is now assigned to a single block b and every
thread t∈b computes the convolution at the data point Wψm [sb](t). As every
convolution is based on the product of several intensities from a point’s
neighborhood, we usually need to load more than |sb| data points into
shared memory (cf. Fig. 3). As apparent from Figure 1 the isotope wavelet
is compactly supported, but ψm(x) �=0 also for x<0. Hence, in order to
compute the convolution Wψm [s] we need to ‘extend’ the region sb by
loading additional data points not only on the right, but also on the left end
(cf. Fig. 3). Since MS data are mostly irregularly spaced, we cannot determine
the necessary number of additional loads a priori. Thus, we implemented
a ‘worst case’ strategy in that the signal s is traversed once before the
wavelet transform and the minimal spacing 
min between two neighboring
points is determined. Knowing the extensions of the wavelet to the left(≈−0.25 mn/z

)
and to the right (depending on the maximum mass mmax),

we can reserve the maximum amount of memory necessary to compute all
transforms on s. Unfortunately, shared memory per block is limited to 16
KB. Since we have to load a m/z value and an intensity value i for each
data point, it might happen that due to the additional data points p, even a
single wavelet would not fit into the available memory. Fortunately, we can
detect these cases before the computation is started and hence automatically
switch to the slower GPU implementation using texture instead of
shared memory.

In order to balance the load between all threads of the same block, every
thread loads the data point at which it computes the convolution. But, as
there are usually much more data points to load than available threads, we
require every thread t to load all points q such that q= t+|sb|·j, where
j≥0 and integral. Pseudo-code for the described kernel function is given in
Algorithm 1.

3.2 Multi-GPU architectures
By now, we used a single GPU to parallelize the isotope wavelet transform.
If there are several CUDA compatible graphics cards available, we can

5The number of threads per block realizable in practice is limited by the
shared memory and the number of registers in use.

Algorithm 1 GPU kernel function—isotope wavelet transform

Input: vector sb and integers
∣∣p′max

∣∣, ∣∣p′′max
∣∣, |s|, z

Output: Wψm
[sb], the transform of sb w.r.t. z, for short wb

1: __shared__ pB[],iB[]
/*block-shared memory for the positions and intensities*/

2: gp← ∣∣p′max
∣∣+|sb|·blockID+threadID

/*the global position (in s) for the current thread*/
3: lp← ∣∣p′max

∣∣+threadID
/*the local position (in sb) for the current thread*/

4: if threadID<
∣∣p′max

∣∣ then /*
∣∣p′max

∣∣ threads load p′*/
5: pB[threadID]←−sb[gp−∣∣p′max

∣∣].getMZ()
6: iB[threadID]←−sb[gp−∣∣p′max

∣∣].getIntensity()
7: end if
8: a=0
9: while lp+a ·|sb|<

∣∣p′max
∣∣+|sb|+

∣∣p′′max
∣∣ do /*load the rest*/

10: pB[lp+a ·|sb|]←−sb[gp+a ·|sb|].getMZ()
11: iB[lp+a ·|sb|]←−sb[gp+a ·|sb|].getIntensity()
12: a←−a+1
13: end while

14: __syncthreads /*wait until all data is loaded*/
15: if gp−∣∣p′max

∣∣≥|s| then /*global position already in p′′*/
16: return
17: end if

18: v←−sb convolved with ψm at gp
19: wb[gp].set Intensity(v)

expand the parallelization such that every device computes the transform(s)
and scores of its own MS scan. Following this idea, we used Intel
Threading Building Blocks (TBB) (Intel, 2005–2008) to combine the
multi-core architecture of modern computers with high-performance CUDA
devices. Although it would be possible to use any other kind of multi-
threading software framework like Pthreads (http://www.opengroup.org/
austin/papers/posix_faq.html) or OpenMP (http://www.openmp.org), e.g.
the authors preferred TBB due to its simplicity and task-based structure,
which is in clear contrast to the raw-thread programming paradigms of
similar architectures. A parallel processing of several scans si of some
data map M is straightforward: we split the data set into d equally sized
parts, where d is the minimum out of the number of available CPU
cores and the number of available GPU cards. A simple parallel-for
statement can now be used to parallelize the processing of the map.
Of course, the splitting of M requires a subsequent merging procedure
to recombine the results of the different threads. Usually, the set of
features affected by cutting the map into smaller pieces is comparably
small such that the overhead caused by the parallelization is nearly
negligible and the final gain in speed is approximately linear in d
(see Section 4.2).

4 RESULTS
Since the isotope wavelet transform as a method for feature
finding in MS datasets has already been evaluated by peptide mass
fingerprints (Hussong et al., 2007) and a myoglobin quantification
study (Schulz-Trieglaff et al., 2007, 2008), this publication is aimed
at the algorithmic approach and the speedups achievable through
vectorization. At this point, we will not discuss the quality of the
results and the merits of the isotope wavelet when compared with
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alternative methods. Such a discussion and comparison can be found
in the Supplementary Material, where we demonstrate that the GPU-
based implementation of the isotope wavelet is as least as accurate
as, but substantially faster than two popular, state-of-the-art feature
detection schemes (Katajamaa et al., 2005, 2006).

Furthermore, we will demonstrate that even the quality of the
transform can be increased on the GPU, as many approximations
necessary on a CPU implementation can be replaced by exact
computation of sine, exponential and reciprocal gamma functions
[cf. Equation (3)].

4.1 Data sets, experimental and computational setup
In the following, we will base our evaluation on several datasets. The
first one is an artificial mix consisting of eight peptides (see also,
Lange et al. (2006)) with charge states one and two, encompassing
about 45 MB of raw data (in mzData format). With the help of data
set 1, we will demonstrate that the exact evaluation of Equation (3)
is more robust with respect to artifacts such that the threshold
parameter can be increased and potential false positive responses
suppressed. For analyzing the performance of the algorithm, we will
use several simulated electrospray MS data sets, a dilution series
of a tryptic digest measured by MALDI-TOF MS and subsequent
annotation by Mascot queries, as well as a real-world electrospray
Q-TOF MS data set, containing peptides with sequences relevant
for immuno-proteomics (MHC peptides) Schulz-Trieglaff et al.
(2008). Here, we show the analysis of the immuno-proteomics
data set, while all other results are attached as Supplementary
Material.

The mass range of the MHC data set extends from 400 Th to
1000 Th, the average resolution per scan is about 0.03 Th, while the
set contains peptides up to charge state four. To estimate speedup
factors for the GPU-based implementation, we resampled each scan
several times to contain 20 000 up to 100 000 measurement points.
For each of the resulting sets a runtime analysis has been performed
on a machine featuring 16 GB RAM and eight 2.3 GHz CPU
cores. The machine contains two NVIDA Tesla C870 devices, each
of them consisting of 128 computing kernels and 1.5 GB total
memory. Table 1 lists the resampled data sets, their corresponding
number of data points per scan and their raw data sizes in megabyte.
The listing also summarizes the results of the computational
experiments.

4.2 Discussion
Time measurements have been performed for four different types
of implementation: an exact single CPU version, which evaluates
Equation (3) with double precision (CPU-E), a single CPU-based
implementation using several approximations and a fine-grained
presampling on elementary functions where possible (CPU-A) and
two different versions making use of a single (GPU-1) or two Tesla
devices (GPU-2), respectively. Note that time measurements for
CPU-E have just been listed for completeness, since the resultant
computational load on the central processing unit is usually too
costly for real-word scenarios.

At first glance, one notices a drastic speedup from a pure
CPU-based implementation to the multi-GPU version using the
benefits offered by shared memory. For the data set with highest
resolution, the speedup factor from CPU-A to the high performance
implementation even exceeds the 200-fold (cf. Fig. 4). Hence, even

Table 1. Runtime analysis

No. of points ca. size CPU-E CPU-A GPU-1 GPU-2
(per scan) (MB) (exact) (approximating) (exact) (exact)

20 000 90 13 m 54 s 4 m 24 s 8 s 4 s
40 000 179 55 m 23 s 16 m 23 s 16 s 8 s
60 000 267 2 h 3 m 56 s 37 m 43 s 26 s 13 s
80 000 356 3 h 43 m 49 s 1 h 10 m 02 s 44 s 22 s

100 000 445 5 h 43 m 57 s 1 h 50 m 02 s 1 m 0 s 29 s

The table lists the resampled data sets originating from data set 2 (see text) with their
corresponding m/z resolution per scan and their size in megabytes with respect to the
mzData format. Runtimes for four different isotope wavelet implementations are given.
These measurements exclude the time necessary to load the data file into memory and
the time needed to write the results back to disk. Hence, real runtimes exceed the given
time values by roughly 5–25 s, depending on the size of the data set. All experiments
have been performed three times; time values have been averaged and rounded to
seconds.
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Fig. 4. Speedup factors (with respect to CPU-A) for GPU-1 and GPU-2. In
addition factors for GPU-X, a ‘native’ graphics card (see text), are reported.

high-quality electrospray or MALDI MS data sets, e.g. can be
processed within minutes using the isotope wavelet transform. In
order to demonstrate that also users without access to the high-
performance Tesla devices can benefit from ‘standard scientific’
NVIDIA graphics cards, often shipped with scientific workstations,
we performed a second test series6 using a single NVIDIA Quadro
NVS 290. This card is of course significantly slower than the Tesla
C870 device, but still in our experiments up to 10 times faster than
the CPU. Corresponding speedup factors are also shown in Figure 4,
where the test is listed as GPU-X.

By investigating the data depicted in Table 1 in more detail, we
see that neither runtimes from CPU-A nor runtimes from the GPU-
based implementations scale linearly with the number of involved
data points. Admittedly, at first glance a quite linear effect is present
for GPU-1 and GPU-2 up to 60 000 data points. Using Callgrind
(Weidendorfer et al., 2004), a callgraph-based profiling tool, we
identified significant differences for the CPU and GPU codings.
Both CPU implementations spent most of their time in sampling
the isotope wavelet at the irregular-spaced grid points. Hence, the
speed of the—in principle—fast, O(n) computation of a single
scale of the wavelet transform is limited by the computationally

6This analysis has been performed on a different machine: Sun Microsystems
Ultra 24, 4 CPU cores, each 3.00 GHz, 4 GB RAM.
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expensive adaptive kernel function. In the GPU case, however, the
most time-determining part is the post-processing of potential seed
regions. Besides the scoring, the post-processing also includes the
so-called sweep-line algorithm as introduced in Schulz-Trieglaff
et al. (2007), which can be considered a clustering of features over
neighboring scans, such that potential peptide signals occurring in
less than five scans, e.g. are rejected. It is obvious that for the
most part of this algorithm a serial processing cannot be avoided.
In addition to the relatively expensive post-processing procedure,
also the pre-processing stage plays a significant role for the overall
runtime. As spectra increase in size, more time is lost by determining
the maximal extensions for p′ and p′′, as well as by memory
allocation and related operations. Since the proportion of these pre-
and post-processing procedures on the overall computation time
increase stronger than the linear runtime behavior of the wavelet
transform, the overall scaling is slightly worse than the theoretically
possible one.

Porting the isotope wavelet transform onto the GPU results
not only in a significant acceleration, it simultaneously increases
the quality of the transform and therefore the receiver operating
characteristics (ROC) of the results. We analyzed data set 1 with
three different implementations: CPU-E, CPU-A and GPU-1.
While both exact implementations (CPU-E and GPU-1) found
all relevant peptide signals, the approximative implementation
had difficulties in the identification of some low-intense peptides.
An example is given in Figure 5. When setting the thresholding
parameter τ to 5, CPU-A completely misses the feature, while
the exact implementations correctly detect the signal. Hence,
an approximative evaluation of Equation (3) can decrease the
sensitivity of the method. Consequently, the user not only
profits by the significant speed gain of the parallel GPU-based
version, but additionally avoids artifacts from computational
approximations.

Fig. 5. Relatively low-intense peptide part of data set 1. Completely missed
by CPU-A, but correctly detected by all exactly evaluated transforms. Image
produced with the help of TOPPView (Kohlbacher et al., 2007).

5 OUTLOOK
As demonstrated in Hussong et al. (2007), the isotope wavelet
transform is theoretically well founded and works well in a number
of practical applications (Schulz-Trieglaff et al., 2007, 2008). The
vectorization described here greatly improves its applicability and
sometimes even the quality of the results. The method scales very
well, and no significant improvements in parallelization are to
be expected. Thus, we can hope that alternative feature detection
techniques using integral transforms (e.g. wavelets) will adapt the
proposed algorithm. In addition, the enormous speedups achieved
allow us to consider a large number of future improvements for
the wavelet technique used in this article. In the following, we will
describe some of the ideas that can be addressed now that efficiency
is no longer an issue (Sturm et al., 2008).

We designed the isotope wavelet as a very general framework
for analyzing MS records independent from the instruments’
idiosyncrasies like peak widths, peak tailing effects, etc. However, in
many cases one has additional knowledge about the expected shape
of the recorded signals that can help to ease the analysis a priori.
Unfortunately, in order to design a matched filter [as seen in Andreev
et al. (2003) for the chromatographic time domain], one has to know
the underlying noise distribution, which usually significantly differs
between types of machines (Du et al., 2008). Thus, the authors are
currently developing a wavelet function that adapts automatically to
the data at hand and can therefore fit much better to high-resolution
data often featuring very narrow peaks.

Another problem also related to the specific characteristics of
individual machines are shifts in the monoisotopic position caused
by peak tailing effects, as frequently observed especially in time-of-
flight (TOF) instruments. The mass deviation caused by this peak
tailing can become critical, in particular for low-intensity signals;
here additionally, mass signals are often smeared out due to poor
ion statistics. The extend of the mass deviation is described in more
detail in the analysis of the myoglobin dilution series, presented in
the Supplementary Material. The adaptive kernel currently under
development will significantly reduce or even completely eliminate
this problem that is not unique to the isotope wavelet transform,
but also present in many other methods like fitting procedures.
Another hurdle to be taken is a suitable handling of non-isotope
resolved patterns, where single peaks within the isotopic cluster
can hardly be distinguished from each other. In the case that these
peaks overlap completely, the convolution with the wavelet kernel
yields zero, since the wavelet necessarily has a vanishing moment
[cf. Equation (3)]. This problem is currently also addressed.

The most important shortcoming at the moment is the insufficient
handling of overlapping peptide signals, which depending on the
data often occur in real-world applications. In principle, wavelet
techniques are intrinsically well suited for separating overlapping
patterns [see, e.g. the algorithm presented in Wu et al. (2001) that
is currently adapted to work with different kinds of kernel functions
like the isotope wavelet]. In addition, the authors consider techniques
as presented in Du and Angeletti (2006) to be combined with the
transform, in that potential seed regions limit the set of required
basis functions significantly.

Finally, the software interface has to be easily operable by non-
computer scientists working in the wet-lab. The authors consider
especially a simple-to-use and intuitive graphical user interface
(GUI) as crucial for the progress in computational proteomics.
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Consequently, a web server implementation of the algorithm is
under development, which will complement the source code that
is available via OpenMS (Sturm et al., 2008).

6 CONCLUSION
We presented a highly accelerated implementation of an adaptive
wavelet transform that has been hand-tailored to identify potential
signals in mass spectrometric data sets in proteomics. The algorithm
used for parallelization is general enough that it can be easily adopted
by other signal processing methods in computational proteomics.
By porting the wavelet transform onto high-performance graphics
cards using the CUDA programming environment, we obtained up
to 200-fold acceleration on real world data sets. We demonstrated
that even the quality of the results can be improved, since the
massive parallelization power of modern GPUs enables an exact
evaluation of the associated kernel function. Despite currently
unsolved problems like a missing technique to separate overlapping
signals, the work demonstrates that one of the most critical
bottlenecks in high-throughput (computational) proteomics can be
eased by high-end graphics devices. In the near future, additional
steps in the proteomic pipeline that help to boost the quality of the
computational analysis will be ported to CUDA to finally create a
fast and easy-to-use software framework for MS.
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