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ABSTRACT

Motivation: Chromatin states are the key to gene regulation and
cell identity. Chromatin immunoprecipitation (ChIP) coupled with
high-throughput sequencing (ChIP-Seq) is increasingly being used
to map epigenetic states across genomes of diverse species.
Chromatin modification profiles are frequently noisy and diffuse,
spanning regions ranging from several nucleosomes to large domains
of multiple genes. Much of the early work on the identification
of ChIP-enriched regions for ChIP-Seq data has focused on
identifying localized regions, such as transcription factor binding
sites. Bioinformatic tools to identify diffuse domains of ChIP-enriched
regions have been lacking.
Results: Based on the biological observation that histone
modifications tend to cluster to form domains, we present a method
that identifies spatial clusters of signals unlikely to appear by
chance. This method pools together enrichment information from
neighboring nucleosomes to increase sensitivity and specificity.
By using genomic-scale analysis, as well as the examination of
loci with validated epigenetic states, we demonstrate that this
method outperforms existing methods in the identification of ChIP-
enriched signals for histone modification profiles. We demonstrate
the application of this unbiased method in important issues in
ChIP-Seq data analysis, such as data normalization for quantitative
comparison of levels of epigenetic modifications across cell types
and growth conditions.
Availability: http://home.gwu.edu/∼wpeng/Software.htm
Contact: wpeng@gwu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Covalent modifications of chromatin, including DNA methylation
and histone modifications, play critical roles in gene regulation
and cell lineage determination and maintenance (Bernstein et al.,
2007; Felsenfeld and Groudine, 2003). Defects in these epigenetic
controls have been implicated in many pathological conditions
in humans. Genome-scale profiling of these epigenetic marks has
been dramatically facilitated by the recent progress in the ultra
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high-throughput massively parallel sequencing technologies (Barski
et al., 2007; Mikkelsen et al., 2007). ChIP-Seq combines chromatin
immunoprecipitation (ChIP) with high-throughput sequencing to
map genome-wide chromatin modification profiles and transcription
factor (TF) binding sites. It is characterized by high resolution, a
quantitative nature, cost effectiveness and no complication due to
probe hybridization as encountered in ChIP-chip assays (Schones
and Zhao, 2008). A large amount of data has recently been generated
using the ChIP-Seq technique, and these datasets call for new
analysis algorithms.

Binding of TFs is mainly governed by their sequence specificity
and therefore is typically associated with very localized ChIP-Seq
signals in the genome. A number of algorithms have been developed
to find the exact locations of TF binding sites from ChIP-Seq
data (Chen et al., 2008; Fejes et al., 2008; Ji et al., 2008; Johnson
et al., 2007; Jothi et al., 2008; Kharchenko et al., 2008; Nix et al.,
2008; Rozowsky et al., 2009; Valouev et al., 2008; Zhang et al.,
2008a). In contrast, the signals for histone modifications, histone
variants and histone-modifying enzymes are usually diffuse and
lack of well-defined peaks, spanning from several nucleosomes to
large domains encompassing multiple genes (Barski et al., 2007;
Pauler et al., 2009; Wang et al., 2008; Wen et al., 2009) (see,
e.g. Figure S1). The detection of diffuse signals often suffers from
high noise level and lack of saturation in sequencing coverage.
These generally weak signals render approaches seeking strong local
enrichment, such as those peak-finding algorithms used in finding
TF binding sites, inadequate.

Many modification marks are known to form broad
domains (Barski et al., 2007; Wang et al., 2008). This is believed
to be helpful in stabilizing the chromatin state and propagating
such states through cell division robustly (Bernstein et al., 2007).
A well-studied case is the trimethylation of histone H3 lysine 9
(H3K9me3). H3K9me3 recruits HP1 via its chromodomain. HP1
in turn recruits H3K9 methyltransferase Suv39h, which modifies
H3K9 on other histones in the vicinity, thereby self-propagating
the heterochromatin state (Aagaard et al., 1999; Bannister et al.,
2001; Lachner et al., 2001). Another example is the trimethylation
of histone H3 lysine 27 (H3K27me3). H3K27me3 is generated
by the activity of the Polycomb complex, PRC2, and is believed
to recruit the PRC1 complex (Schwartz and Pirrotta, 2007). In
Drosophila, it has been suggested that the spreading of H3K27me3
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results from looping action of PRC1 and PRC2 that both anchor
at the polycomb response elements (Schwartz and Pirrotta,
2007) with nucleosomes at a distance. Recent experiments in
human cells indicate direct recruitment of PRC2 by H3K27me3
(Hansen et al., 2008), suggesting a mechanism for the spreading
of H3K27me3. In addition to histone methylation, the more
dynamic histone acetylation marks also cluster, and several histone
acetyltransferases contain bromodomains that specifically bind
acetylated histones (Dodd et al., 2007; Jacobson et al., 2000; Owen
et al., 2000).

Motivated by the mounting evidence of recruitment by modified
histones of their respective enzymes, we develop a spatial clustering
approach for the identification of ChIP-enriched regions (SICER) in
histone modification data. A central feature of our method is pooling
together signals from all the nucleosomes located together in the
same modification state. This feature improves the signal-to-noise
ratio and is especially helpful in dealing with the difficult case of
diffuse enrichment covering extended genomic regions produced by
histone modifications, for which enrichment at any short distance of
one or several nucleosomes does not appear to be significant enough.

Our method involves scoring each potential ChIP-enriched
domain according to the collective profile of enrichment on
the domain. We developed a mathematical theory for the score
distribution in a genomic background model of random reads,
and employed this theory to identify spatial clusters, large and
small, unlikely to appear by chance. Utilizing a control library,
we identified a set of candidate domains that exhibit ChIP signal
clustering using the random background model, and compare the
strength of the ChIP signal with that of the control signal at each
candidate domain to determine the significance of enrichment. Using
a scaling approach for evaluation of false positives that is based
on the digitized nature of ChIP-Seq data, and two datasets with
experimental validation, we demonstrated that SICER outperforms
other ChIP-Seq methods in dealing with histone modification data.
Furthermore, we demonstrated its use as an unbiased general noise
filter in such important issues in the statistical analysis of ChIP-
Seq data as data normalization, and scaling analysis of sequencing
coverage (see Supplementary Material).

2 METHODS

2.1 The island approach
2.1.1 Scoring scheme We partition the genome of effective length L into
non-overlapping windows of size w. We define the score s for a window with
l reads to be s(l)=−logP(l,λ). P(l,λ) is a Poisson distribution parameterized
by the average number of reads in a window λ=wN/L, where N is the total
number of reads in the ChIP-Seq library. Given this definition, the scores
of a window represents the negative logarithm of the probability of finding
l reads in the window if the reads can land anywhere on the genome with
equal probability, i.e. a background model of random reads. The scores from
clusters of windows are additive, representing the negative logarithm of joint
probability of finding the observed configuration in a random background
model. The higher the score, the less likely the observed profile occurs by
chance.

2.1.2 Island definition We assign each window as ‘eligible (‘ineligible’),
if the read count in this window is equal to or above (below) a read-
count threshold l0. We determine l0 by a P-value requirement based on a

(a)

(b)

Fig. 1. (a) Schematic illustration of definition of islands. Shown is a segment
of a genomic landscape of ChIP-Seq reads. The x-axis denotes the genome
coordinates, where each interval represents a window. The y-axis denotes the
read count. Each black vertical bar represents the read count in the respective
window. The regions underlined by the green horizontal bars are the two
identified islands under g=1 and l0 =2. The two windows underlined by
brown boxes are gaps in the first island. (b) Schematic illustration of the
recursion relation in Equation (6).

Poisson distribution. ∞∑
l=l0

P(l,λ)≤p0. (1)

Therefore, l0 depends on the size of the ChIP-Seq library. The ‘eligible’
windows are separated by gaps, which are the collection of ‘ineligible’
windows in between two neighboring ‘eligible’ windows. A gap of size m
contains m ‘ineligible’ windows. We identify islands as clusters of ‘eligible’
windows separated by gaps of size less than or equal to a predetermined
parameter g. When g=0, an island is formed by an uninterrupted stretch
of ‘eligible’ windows. The score of an island is the aggregate score of all
‘eligible’ windows on this island. An illustration of the definition of islands
is shown in Figure 1a.

2.1.3 Recursion relation for the probability of an island with a given score
in a random background To derive the island score statistics in a random
background model, we seek the probability M(s) of finding an island of score
s starting at a given position along the genome. Because of the enormous
amount of reads in total and enormous length of the genome, the read count
distributions in different windows are independent. We first introduce the
probability distribution of scores for a single window

ρ (s )=
∑
l≥l0

δ (s−s (l ) )P (l,λ ), (2)

where δ() is a Dirac delta function. We then consider the gap contribution.
The fundamental unit of a gap is an ‘ineligible’ window, and the probability
t of a window being ‘ineligible’ is

t =P(0,λ)+P(1,λ)+···+P(l0 −1,λ). (3)

The number of ‘ineligible’ windows in a gap ranges from zero to g. The gap
factor G therefore is

G=1+t+t2 +···+tg. (4)

M(s) depends on λ, l0 and g via ρ (s ), t and G. Because an island has to be
bound by gaps of sizes of at least g+1, M(s) can be separated by boundary
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contributions and a kernel M̃ (s ),

M (s )= tg+1M̃ (s )tg+1. (5)

The island score can be partitioned between the last ‘eligible’ window and
the rest in a combinatorial manner, as illustrated in Figure 1b, therefore a
recursion relation can be constructed for the kernel M̃ (s ):

M̃ (s )=G (λ,l0,g )

s∫
s0

ds′M̃ (s−s′ )ρ(s′), (6)

with a boundary condition of M̃ (0 )=G (λ,l0,g )−1. Here s0 =−lnP(l0,λ).
We are interested in the islands with high scores generated by large

fluctuations in the random placement of the reads. Because the occurrences
of those islands are rare and hence essentially independent, the number of
islands of score s is simply LM(s).

2.1.4 Asymptotics for the island-score distribution in a random background
Equations (5) and (6) provide a recursive method to calculate the probability
of high-scoring islands. Since the high-score tail of the island score
distribution is of fundamental interest, it is useful to obtain an analytical
expression in closed form for its asymptotic behavior. Anticipating the
asymptotic behavior to be that of an exponential decay, we plug the ansatz
M̃ (s )=αexp (−βs ) into Equation 6. Straightforward algebra leads to an
equation that determines the exponent β,

G (λ,l0,g )
∑
l≥l0

P (l,λ )1−β =1. (7)

The coefficient α in the ansatz can be found by fitting.
To validate the analytical approaches [Equations (5–7)] for the random

background model, we employed Monte Carlo simulation to synthetically
generate the random reads, identified islands and counted islands with score
greater than s averaged over multiple simulation runs. We then compared
that with the expected number of islands with score greater than s in
the background,

〈∑
s′≥s N(s′)

〉
B
≈∑

s′≥s LM(s′), obtained using analytical
approaches. We found excellent agreement (Fig. S2). It is worth noting
that the background island-score distribution approaches its asymptotic form
quickly.

2.1.5 Significance determination without control library The island-score
distribution in a random background model allows the determination of a
threshold score value sT , which is used in an experimental library to find
islands significant enough to be designated ChIP-enriched domains. sT is
determined by requiring the expected number of islands with scores above
the threshold sT to be less than a E-value threshold e :∑

s≥sT

LM(s)≤e. (8)

The E-value controls the genome-wide error rate of identified islands under
the random background.

2.1.6 Choices of parameters The random background island-score
distribution depends on window size w, effective genome length L, total
read count N , gap size g and a window P-value requirement p0, which
determines the window read count threshold l0. For histone modifications
and histone variants, a reasonable choice for window size w is 200 bp,
a number approximately the length of a single nucleosome and a linker.
The effective genome length L is different from the actual genome length.
When short reads are mapped into the reference genome, normally only
those that map to unique genomic loci are selected for analysis. Genomic
regions with degenerate sequences or sequences composed of character ‘N’
are non-mappable as no reads can be unambiguously mapped into these
regions. L, therefore, should be chosen as the total length of mappable
regions in the genome. The window P-value requirement p0 should be
such that the ‘eligible’ windows exhibit enrichment (i.e. l0 ≥λ). On the
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Fig. 2. Aggregate score of all significant islands versus gap size for H2A.Z
(black) and H4K20me1 (red). The gap size is measured in units of windows.
Here, l0 =2 and E-value is 0.1.

other hand, l0 should not be too high as the ‘eligible’ windows need not
exhibit very strong signals. p0 =0.2 is a reasonable choice. The gap size g
is an important parameter that can be adjusted to the characteristics of the
chromatin modification. To study the effect of gap size, we examine how the
aggregate score of all significant islands changes as g is tuned, as shown in
Figure 2. H2A.Z is representative of localized signals. The aggregate score
quickly reaches maximum at g=1, beyond which the potential increase in
the island coverage due to a bigger gap cannot overcome the loss of small
islands due to the increase in the island-score threshold sT . For this type of
chromatin modification, it is natural to choose the gap size that maximizes the
aggregate score. On the other hand, H4K20me1 shows the typical behavior of
chromatin modifications with a diffuse profile. The aggregate score increases
gradually towards saturation for reasonable gap sizes. For this type of signal,
we suggest to choose the gap size so that the corresponding aggregate score
is sufficiently close to saturation. As shown in Figure S3, lack of saturation
in the aggregate score as a function of the gap size is in general an indication
of poor sequencing coverage. Figure S3 shows the length distribution of
significant islands for H2A.Z and H4K20me1, with the gap sizes determined
as described above.

2.1.7 Significance determination with control library First, we use a
lenient E-value threshold to identify a set of candidate islands that exhibit
reads clustering under the random background model. Then, for each
candidate island, we count the number of ChIP reads ns and control reads
nc, and calculate a P-value as

∑∞
n=ns

P(ns,cnc), where c is the rescaling
factor that is equal to the ratio of the ChIP library size over the control
library size (c=Ns/Nc). Candidate islands with ns ≤cnc are discarded
because we are only interested in enrichment. The significant islands can be
identified with a P-value threshold using Bonferroni correction for multiple
testing. Alternatively, a false discovery rate (FDR) can be calculated by
following standard procedure (Benjamini and Hochberg, 1995; Benjamini
and Yekutieli, 2001) from the P-values, or by swapping the ChIP and control
libraries (Zhang et al., 2008a). For a flowchart of SICER, see Figure S5.
For a comparison of enrichment regions identified with and without control
library, please see Figure S6.

2.2 Datasets and method parameters
The ChIP-Seq data for histone modifications H4K3me3 and H3K27me3 in
human resting CD4+ T-cells were obtained from Barski et al. (2007) and
Wang et al. (2008). The ChIP-Seq data for histone modifications H4K3me3
and H3K27me3 in mouse embryonic stem (ES) cell, the whole-cell extract
(WCE) control library, and the real-time PCR (QPCR) results for H3K4me3
and H3K27me3 at 60 loci, were obtained from Mikkelsen et al. (2007). In the
QPCR data, loci with QPCR fold-change value above (below) 4 were treated
as positives (negatives). Based on this criterion, there are 32 positives and
28 negatives in the dataset. The histone modification libraries for the human
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CD133+ and CD36+ cells were obtained from Cui et al. (2009). The histone
modification data for mouse Th1, Th2 and Th17 CD4+ T-cells were obtained
from Wei et al. (2009). The IgG control library for the human resting CD4+
T-cells and ‘input’ control libraries for the human CD133+ and CD36+ cells
are available at the web site for SICER.

For all ChIP-Seq libraries presented here, only uniquely mapped reads
were used and all libraries were preprocessed to filter out redundant reads in
an effort to minimize potential PCR bias. The window size was chosen to be
200 bp (see above). Most of the reads in the libraries we used are 25 bp, so
we chose the effective human genome size as 74.3% of human genome size
in hg18 and 77% for the mouse genome (A. Smith, private communication).

For SICER, in all libraries except for those from Mikkelsen et al. (2007),
the location of a read on positive (negative) strand was shifted by +75 bp (−75
bp) from its 5′ start to represent the center of the DNA fragment associated
with the read, because the majority of the data are produced with ChIP DNA
fragment size of mono-nucleosome, i.e. ≈150 bp. The shift value for the
mouse ES ChIP-Seq libraries (Mikkelsen et al., 2007) was found to be 150
bp. Based on analysis and discussion described above, the window P-value
p0 =0.2. The gap size is chosen to be g=1 for H2AZ and H3K4me3 and
g=3 for other histone modification libraries, unless noticed otherwise.

We used four methods in comparison: QuEST (Valouev et al., 2008)
version 2.1, F-Seq (Boyle et al., 2008) version 1.8.3, MACS (Zhang et al.,
2008a) version 1.3.5 and FindPeaks (Fejes et al., 2008) version 3.2.2.3. The
details of the parameters used are summarized in the Supplementary Material.

For ChIP-Seq libraries in human resting CD4+ T-cells, an IgG library was
used as control. For H3K4me3 and H3K27me3 libraries in mouse ES cells,
an WCE library was used as control. For the H3K27me3 libraries in mouse
CD4+ T-cell lineages, no control library was available, the no control option
was used. FindPeaks (3.2.2.3) and F-Seq (1.8.3) do not use a control library.

3 RESULTS

3.1 Overview and evaluation of SICER
We have developed an unbiased method that incorporates the
tendency of histone modifications to cluster to form the domains.
This method identifies islands as clusters of enriched windows.
Islands, rather than individual windows of fixed length, are the
fundamental units of interest. Gaps are allowed in the island
to account for: (i) lack of reads or read-count fluctuations
in ChIP-enriched domains in undersaturated ChIP-Seq libraries;
(ii) repetitive genomic regions non-mappable by uniquely mapped
reads; and (iii) unmodified nucleosomes. The gap size can be
adjusted to the nature of the chromatin modification. The score of an
island is associated with the entire enrichment profile on the island,
rather than just the peak value. We develop mathematical formula for
the distribution of island scores in the random background model. In
the case that a control library is not available, we identify significant
domains of enrichment as islands unlikely to appear by chance in the
random background model. We use an E-value, the expected number
of significant islands in the background, to control significance.
We derive mathematical formula for fast and precise determination
of significance. As the sequencing of a control library is quickly
becoming the standard protocol, more and more ChIP-Seq data come
with a control library. We then use the control library to take into
account systematic biases in the background (Kharchenko et al.,
2008; Rozowsky et al., 2009; Zhang et al., 2008a). Motivated by
Zhang et al. (2008a) and Rozowsky et al. (2009), we first identify
a set of candidate islands exhibiting reads clustering using the
approach described above (i.e. using a random background model)
with a lenient E-value threshold. We then compare the ChIP read
count and control read count on each candidate island to determine

the significance of enrichment, with the control read count rescaled
to account for the size difference in the control library and the ChIP
library. For a flowchart of SICER, see Figure S5.

A number of methods that aim towards finding peaks in ChIP-
Seq data have been published. In SISSRs (Jothi et al., 2008),
QuEST (Valouev et al., 2008), MACS (Zhang et al., 2008a),
CisGenome (Ji et al., 2008), USeq (Nix et al., 2008) and others
(Albert et al., 2008; Johnson et al., 2007; Kharchenko et al., 2008;
Zhang et al., 2008b), the genome is scanned with a sliding window
of fixed width, all windows deemed to have significant enrichment
are identified, and neighboring significant windows can be merged.
In PeakSeq (Rozowsky et al., 2009), counts of overlapping DNA
fragments at each nucleotide position are used to build a score map
and positions with significant scores are identified. An essential
feature shared by these methods is the use of local statistics to
estimate significance. The significance of an enriched window or
a position is independent of those of other windows or positions.
It is determined from a random background model of window read
count distribution (Fejes et al., 2008; Jothi et al., 2008), from a non-
random background model (Ji et al., 2008; Zhang et al., 2008b),
or from comparison with a control library (Ji et al., 2008; Johnson
et al., 2007; Jothi et al., 2008; Kharchenko et al., 2008; Nix et al.,
2008; Rozowsky et al., 2009; Valouev et al., 2008; Zhang et al.,
2008a).

Published methods for the analysis of histone modification data
are limited. (Mikkelsen et al., 2007) employed local statistics in
combination with an empirical background model obtained by
randomizing read locations for the identification of ChIP-enriched
regions for histone modifications with punctate profiles. They also
employed a hidden Markov model approach, the details of which
have not been published as far as we know. Xu et al. (2008)
developed a hidden Markov model approach for the identification of
differential histone modification sites across cell-types or conditions.
However, it does not provide a method for the identification of
ChIP enrichment in a single library. For two ChIP libraries under
comparison, a window is deemed to be significantly enriched when
the combined normalized read counts from the two libraries exhibit
at least a 2-fold enrichment versus random expectation. Robertson
et al. (2008) used FindPeaks (Fejes et al., 2008) to identify domains
of histone modification. FindPeaks defines an island as a region
occupied by continuously overlapping ChIP DNA fragments. For
its basic functionality, it uses the height of an island, defined as
the maximum overlapped fragment count on the island, as the test
statistic (Fejes et al., 2008; Robertson et al., 2008). FindPeaks
uses non-local statistics, as the significance of any part of the
island depends on the peak height of the whole island. Additionally,
(Boyle et al., 2008) developed F-Seq, a kernel-density method for
identification regions of open chromatin from DNase-seq data.

For performance comparison with SICER, we chose MACS,
QuEST, FindPeaks and F-Seq for reasons detailed below. MACS
is a window-based method using local statistics. We chose MACS
because it has been reported to outperform several other methods
in identification of TF binding sites (Zhang et al., 2008a), and
because MACS uses regional averaging to mitigate the sampling
fluctuations in the control library, which is usually severe because
of limited sequencing depth in control libraries. We chose QuEST
for comparison because this method is based on kernel density
estimation. FindPeaks was chosen for comparison because it
employs non-local statistics and has been used in the analysis
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of histone modification data. F-Seq was chosen because it was
designed to analyze DNase-seq data and DNase-seq data should
have characteristics in common with histone modification ChIP-Seq
data.

We conducted each comparison in two steps. We first evaluated
the genome-wide FDR of each method using a scaling approach.
Second, we sought sets of genomic loci where independent
experimental validations exist. While available data in this regard
are quite limited, we were able to obtain two datasets: (i) a set
of signature cytokine genes in the mouse CD4+ T-cells whose
epigenetic states in the cell differentiation processes had been subject
to functional studies (Koyanagi et al., 2005; Schoenborn et al.,
2007; Wei et al., 2009). (ii) A set of 60 QPCR results for histone
modifications in mouse ES cells at a selected group of genomic
loci (Mikkelsen et al., 2007).

3.1.1 Evaluation of prediction robustness via scaling analysis
Unlike TF binding sites, the enriched domains of histone
modifications lack definitive sequence features. Direct bioinformatic
validation of method predictions at the genome-scale is not
feasible. Taking advantage of the digitized characteristics of ChIP-
Seq data, we argue that the true and false positives can be
distinguished by scaling. Namely, if an identified ChIP-enriched
domain deemed significant by a method is a true signal, then
this domain should remain significant when the sequencing depth
is increased. Conversely, if an identified ChIP-enriched domain
deemed significant becomes insignificant when sequencing depth
is increased, then this particular domain is a false positive. To
evaluate the various methods, we took a H3K27me3 library (≈16.3
million reads after preprocessing) in human CD4+ T-cells, and
constructed a subset of half the original size via random sampling.
Because QuEST did not identify any ChIP-enriched regions under
its default parameters for histone modification data, we drop it from
the method comparison from this point on. With each of remaining
three methods, we identify ChIP-enriched domains in both the full-
size library and the half-size subset, under the same statistical
criterion (P-value for MACS and SICER, E-value for FindPeaks
and ‘threshold’ for F-Seq). The significant domains identified using
the half-size library that do not overlap with any significant domains
in the full-size library are considered false positives. We defined
a scaling FDR as the number of false positives divided by the
number of significant islands in the half-size subset (Fig. 3a). Since
the statistical criterions used by different methods are not directly
comparable, we used the island read count coverage, the fraction
of reads that were within the identified significant domains, as a
common ground for fair comparison. As shown in Figure 3b, for
a range of island read count coverage that covers all reasonable
choices of statistical significance levels, the scaling FDR for SICER
is significantly lower than those for MACS, FindPeaks and F-Seq.
We ran multiple random samplings from the full-size library and
found that the result is independent of sampling (data not shown),
as expected from the large sample size.

3.1.2 Receiver operating characteristic analysis using loci of
signature cytokines Cell differentiation involves commitment of
featured lineage and extinction of other fates, in which the
epigenetic state plays a key role (Bernstein et al., 2007). Upon
antigen and cytokine stimulation, multipotential naive CD4+ T-
cells differentiate into distinct lineages including Th1, Th2 and

(d)(c)

(a) (b)

Fig. 3. Comparison of SICER with other methods. (a) Schematic illustration
of the scaling FDR determination. The dark (light) gray circle represent ChIP-
enriched regions identified in the full (half-size) library. The non-overlapping
area of the light gray circle represents the false positives. (b) FDR versus the
island read count coverage. (c) ROC analysis of using the epigenetic states
at genes encoding signature cytokines in mouse CD4+ cell Th1, Th2 and
Th17 lineages. (d) ROC analysis of H3K4me3 and H3K27me3 in mouse ES
cells.

Th17, whose signature cytokines are Ifn-γ , Il4, Il17, respectively.
Previous studies have demonstrated that the signature cytokines
are only associated with active epigenetic marks (H3K4me3) in
featured lineages, and only associated with repressive epigenetic
marks (H3K27me3) in the opposing lineages (Koyanagi et al., 2005;
Schoenborn et al., 2007). For this dataset, we focused on the diffuse
H3K27me3 signal. The performance of the methods on identifying
localized signal was examined subsequently utilizing the QPCR
dataset. The expected H3K27me3 enrichment state at Ifn-γ locus
is (0,1,1), where we used 0 (1) to represent the absence (presence)
of H3K27me3 in Th1, Th2 and Th17 cells. Similarly, at Il4 locus
(1,0,1) is expected and at Il17 locus (1,1,0) is expected. For
reference, the unfiltered H3K27me3 profiles at the three loci, along
with the H3K4me3 profiles, are shown in Figure S7. Taken together,
these three loci in the three cell types present six positives and
three negatives for H3K27me3 signals. We then used each method
to identify the ChIP-enriched regions in the H3K27me3 ChIP-Seq
libraries and used receiver operating curve (ROC) to present the
findings, as shown in Figure 3c. This ROC analysis demonstrated
that SICER outperforms MACS and FindPeaks. Both SICER and
F-Seq are able to correctly identify every state in the pattern. The
area under the ROC curve is ASICER=1, AMACS =0.917, AFindPeaks
= 0.972 and AF-Seq =1, respectively.

3.1.3 ROC analysis using QPCR data Having evaluated the
performance of the methods on diffuse data, we examined their
performances on data with localized modification signals. In mouse
ES cells, not only H3K4me3 but also H3K27me3 signals have been
observed to be largely punctate (Mikkelsen et al., 2007). We used the
QPCR dataset in combination with the H3K4me3 and H3K27me3
ChIP-Seq data from Mikkelsen et al. (2007) to measure specificity
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Fig. 4. Composite histone modification profiles across genic regions in
human CD133+ (red) and CD36+ (green) cells. The figures in the left (right)
panel are made with all reads in the library (only reads on islands, which are
identified using ‘input’ library as control).

and sensitivity. The resulting ROC curve is shown in Figure 3d. All
four methods performed fairly well with this data set, with the area
under the ROC curve being ASICER = 0.9810, AMACS =0.9677,
AFindPeaks = 0.9810 and AF-Seq =0.9978, respectively.

3.2 ChIP-Seq data normalization
Because of the important role of epigenetics in developmental
and pathological conditions, application of ChIP-Seq to the
study of changes in chromatin states in different cell types,
developmental stages and pathological conditions are increasingly
wide spread (Cui et al., 2009; Mikkelsen et al., 2007). In
those settings, quantitative comparisons of signal levels provides
important information about the underlying biological principle.
For the signal levels to be compared appropriately, the data need
to be normalized to account for the differences in experimental
preparations and instrumental conditions. This is similar to the
situation encountered in gene expression measurement using
microarrays (Quackenbush, 2002). SICER can be used to filter
out background noise by removing reads not on the islands.
We applied this idea to quantitative comparison of modification
levels in differentiation from human hematopoietic stem/progenitor
CD133+ cells to the erythrocyte precursor CD36+ cells. Because
the majority of genes exhibit similar expression patterns between
the two cell types (Cui et al., 2009), the overall modification
profiles are expected to be similar between CD133+ and CD36+.
However, the modification profiles obtained using all the mapped
reads, including both tags in the islands and out of islands, show
dramatic differences between these two cell types (Fig. 4, left
column). Interestingly, the profiles using tags only in the islands
show similar patterns (Fig. 4, right column). We further classified
the genes into four groups according to their expression pattern
during differentiation (Cui et al., 2009): (i) always expressed (9196
genes); (ii) always silent (7420 genes); (iii) repressed (934 genes);
and (iv) induced (306 genes). The unfiltered and filtered composite
profiles were compared side by side for each group. The majority of
genes belong to the groups of always expressed genes and always
silent genes. For these two groups, the modification profiles are not
expected to show significant changes. Indeed, the filtered profiles

of each modification for the two cell types are similar, whereas
many unfiltered counterparts showed dramatic differences (Figs
S8 and S9). In the groups of repressed and induced genes, the
dynamical change in filtered profiles of modifications are more
consistent with their known biological functions (Figs S10 and S11).
In Figure 4, the islands were identified with P-value of 10−10. To
check how normalization depends on the choice of parameters in
island identification, we also experimented with different choices
of P-value (10−3, 10−5 and 10−15), and gap size (2 instead of 3),
the salient features did not change (data not shown). These results
indicate that filtering with islands is a reliable method for data
normalization in quantitative comparison of histone modification
profiles.

4 DISCUSSION AND CONCLUSION
ChIP signals from many histone modifications, histone variants and
histone-modifying enzymes form diffuse, broad domains. Based on
the notion that the establishment of many histone modifications
involves positive feedback resulting in the spreading of modified
nucleosomes, we develop the SICER method that takes into account
of the enrichment context of a local window in determining its
significance. In contrast, in local statistics-based algorithms, the
significance of a local window is independent of other regions (see
Fig. S13 for illustration). When a control library is available, we use
the random background model to identify candidate islands. These
candidate domains of variable lengths, rather than windows of fixed
lengths, serve as the units for enrichment detection. We then use
the control library to determine the significance of enrichment for
these domains. The fact that the size of the candidate islands are in
general much larger than the size of a nucleosome (Fig. S4) helps to
reduce the sampling fluctuations in the control library and enables
more accurate determination of the position-dependent background
level. An alternative approach would be to determine the island-
score distribution in an inhomogeneous background model specified
by the control library. One can obtain via Monte Carlo simulation the
island-score distribution in this inhomogeneous background, which
provides a global statistics for the significance of the islands. Despite
the advantages, this approach requires an accurate determination of
the inhomogeneous background at the level of individual windows.
It would be interesting to explore how the sequencing depth of the
control library affects the performance of the different approaches.

Using both genome-scale analysis and datasets of genomic loci
validated experimentally, we demonstrated that SICER compares
favorably with existing methods at identifying ChIP-enriched
domains in histone modification signals, especially those with
diffuse profiles. We also demonstrated the success of this method
in normalization and sequence saturation analysis, which are
useful tools for statistical analysis of ChIP-Seq data. As genomic
landscapes of chromatin modifications are becoming increasingly
available, methods such as SICER will be absolutely essential in
deciphering the functions of chromatin modifications.
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