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ABSTRACT

Motivation: Matching both the retention index (RI) and the mass
spectrum of an unknown compound against a mass spectral
reference library provides strong evidence for a correct identification
of that compound. Data on retention indices are, however, available
for only a small fraction of the compounds in such libraries. We
propose a quantitative structure-RI model that enables the ranking
and filtering of putative identifications of compounds for which the
predicted RI falls outside a predefined window.
Results: We constructed multiple linear regression and support
vector regression (SVR) models using a set of descriptors obtained
with a genetic algorithm as variable selection method. The SVR
model is a significant improvement over previous models built for
structurally diverse compounds as it covers a large range (360–4100)
of RI values and gives better prediction of isomer compounds. The
hit list reduction varied from 41% to 60% and depended on the size
of the original hit list. Large hit lists were reduced to a greater extend
compared with small hit lists.
Availability: http://appliedbioinformatics.wur.nl/GC-MS
Contact: roeland.vanham@wur.nl
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Metabolomics is a rapidly evolving field that aims to provide
an unbiased, qualitative and quantitative characterization of the
metabolites present in a biological sample. A typical biological
sample contains hundreds of metabolites present in a wide range of
concentrations. Gas chromatography coupled to mass spectrometry
(GC-MS) is currently the method of choice for analysis of volatile
organic compounds (VOCs) due to its high sensitivity and speed
of detection. The method provides both mass spectra and retention
time as characteristics of the measured compounds. Identification
is usually done by comparing the measured spectrum with the
spectra in a reference library. The number of possible identifications

∗To whom correspondence should be addressed.

obtained in such a comparison depends on the search criteria used
and is determined either by specifying the number of hits that
should be returned or by requesting all hits with a matching factor
(MF) above a specified value. The MF between the experimental
and the reference mass spectrum depends on the quality of
the machine output and the way the raw data are processed.
In metabolomics approaches such as VOC-profiling, it is mostly
impossible to completely separate the compounds contained in a
complex biological sample. Overlaps in chromatographic separation
may hamper the deconvolution of experimental sample spectra. As a
result, the extracted individual spectra may be incomplete (missing
m/z values) or contain fragments of other components (additional
m/z values). Therefore, relaxed search criteria must often be used to
ensure that compounds are not missed, even though this may come
at the expense of long lists of hits that need to be evaluated.

The list of candidate compound identifications using GC-MS can
be reduced by taking the retention time into consideration (Adams,
2001; Eckel and Kind, 2003). The chromatographic retention time
of a compound is dependent on experimental conditions such as
column type, temperature program and gradient. The retention index
(RI) proposed by Kovats (1958) is therefore used as a standardized
parameter in reporting GC data. Although the system of RI allows
for direct comparison of GC data from different runs, instruments
and laboratories, the currently available libraries on RI have a
limited coverage and are much smaller compared with mass spectral
(MS) libraries. For example, within the widely used NIST05 library
(Ausloos et al., 1999), experimental data on RI is available for only
9% of the compounds. Because standards are not always available
or difficult to chemically synthesize, it would be extremely useful to
have a reliable and broadly applicable method for prediction of the
RI for those compounds without an experimentally determined RI.

Quantitative structure–retention relationship (QSRR) models
provide an estimation of RI based on descriptors derived from
the chemical structure of the compounds. The QSRR models
developed in the last decade have been summarized in the recent
review by Heberger (2007). For model generation, multivariate
methods such as multiple linear regression (MLR) (Farkas
et al., 2004; Hemmateenejad et al., 2007; Hu et al., 2005;
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Jalali-Heravi and Kyani, 2004; Rayne and Ikonomou, 2003; Safa and
Hadjmohammadi, 2005), artificial neural networks (Hemmateenejad
et al., 2007; Jalali-Heravi and Kyani, 2004) and support vector
machines (SVM) (Luan et al., 2005) have most frequently been
used. The main drawback of most of these models is that they
have been built for particular chemical classes (Farkas et al., 2004;
Hemmateenejad et al., 2007; Hu et al., 2005; Jalali-Heravi and
Kyani, 2004; Luan et al., 2005; Rayne and Ikonomou, 2003; Safa
and Hadjmohammadi, 2005) and cover relatively small numbers
of compounds. This greatly limits their use in untargeted analysis
of crude biological samples, which may contain hundreds of
metabolites from a broad range of compound classes (Tikunov et al.,
2005). To our knowledge, only two methods have been published so
far that can in principle deal with structurally diverse compounds.
Garkani-Nejad et al. (2004) modeled RI on a relatively small set of
compounds (846) relevant to toxicology. A limitation of their model
is that it does not cover molecules with RI smaller than 1100 units.
More recently, Stein et al. (2007) developed a method based on
estimating the contribution of a large set of functional groups to the
RI. A drawback of this approach is that the use of functional groups
alone does not allow for discrimination between isomers, which
is important because isomers commonly have different biological
activities (Constantinou et al., 2008; Fitzgerald et al., 2005; Kashfi
et al., 2005; Preuss et al., 2006; Umemura et al., 1996).

In this study, we present MLR and support vector regression
(SVR) models for the prediction of the RI based on a large set
of compounds (22 690) from a wide range of chemical classes.
The RI predicted by the SVR model was used to rank and filter
out potentially false positive annotations obtained from searching
mass spectra against the NIST05 MS library. The ranking of the
hits was determined by the relative error obtained by comparing the
experimental RI with the predicted RI. The proposed model was then
tested using a sample consisting of a mixture of standard compounds
and a biological sample of tomato fruit volatiles for which a set of
putative identifications had previously been established (Tikunov
et al., 2005). We show that our method is able to detect likely false
identifications with performance better than the method proposed
by Stein et al. (2007), especially with regard to the RI prediction of
isomers. The hit list reduction ranges from 41% to 60% when 3 and
10 hits per experimental mass spectrum were retrieved, respectively.
The last hit list contained all identified compounds and only one was
filtered out. The procedure allows for the retrieval of more hits per
experimental spectrum for low abundant metabolites as, in general,
extraction of a pure experimental spectrum of these metabolites is
difficult. The ranking and filtering algorithm has been implemented
as a Python 2.5 procedure.

2 METHODS

2.1 Compound selection
Compounds with experimentally determined Kovats retention indices were
obtained from the NIST05 library in a structure distribution format
(SDF). The file contained 120 757 records and provided the name, active
phase, temperature program used and 2D structure. Multiple records were
present for many compounds, reporting the RIs for different stationary
phases and/or temperature programs. Data were available for non-polar
or slightly polar (up to 5% phenyl groups) stationary phases. It has been
shown by Stein et al. (2007) that, on average, RI determined at different
temperature programs and/or column types (capillary or packed) varied

within 12 RI units. Therefore, the median RI was used for compounds with
multiple records. Unique compounds were defined by means of the InChI
(Stein et al., 2003) string generated from the SDF file using Openbabel
(http://openbabel.sourceforge.net). This resulted in an initial, non-redundant
set of 24 509 compounds.

2.2 MLR model and modeling sets
The relation between RI and the compound structure was described as a
linear function of a set of predefined descriptors:

RImlr =c0 +
n∑

i=1

ciDi (1)

where c0 is the intercept, ci is the regression coefficient of descriptor Di and
n is the number of descriptors.

Many different types of descriptors have been proposed in the literature to
encode physico-chemical and electronic properties and topology, geometry,
size and shape. As the structures used here were available as 2D coordinates
only, geometry optimization would be required to obtain reliable 3D
structures. Because this step is computationally costly and difficult to
automate, we only used the 2D structures to generate several groups of
descriptors. These were calculated using Dragon (Todeschini et al., 2003)
and include constitutional, topological, walk and count paths, connectivity
indices, topological charge indices, functional groups count, atom-centered
fragments and molecular properties. Previous study has shown that there is
a strong correlation between RI and the boiling point (BP) of a compound
(Eckel and Kind, 2003). Experimental data on BP were available for only
2909 compounds. The BP of the remaining compounds was estimated using
the MPBPVP program (Stein and Brown, 1994), part of the EPI suite
(http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm). In total, a set of
586 descriptors was obtained. After removing descriptors with zero values or
nearly constant values and descriptors with a correlation coefficient with the
other descriptors greater than 0.90, 159 descriptors remained. The values for
different descriptors varied several orders of magnitude and were therefore
scaled to unit variance before modeling to ensure an equal weight of the
descriptors in the regression model.

Compounds with extreme descriptor values might influence the MLR
model. The leverage of each compound was estimated and used to detect
outliers in the chemical space defined by the descriptors. Leverages were
calculated as the diagonal elements of the hat matrix, X(X’X)−1X’, where
X is the descriptor matrix. A cutoff value of 2p/nwas used, where p is the
number of descriptors and n is the number of compounds. In total, 1819
compounds had leverage greater than this cutoff. The majority of these
compounds were metal complexes, compounds containing boron atoms,
highly halogenated compounds (especially fluorinated), cyclic siloxanes,
polyglycols and small molecules of up to five atoms including a herero-
atom. Since most of these compounds are of non-biological origin, they
were excluded from the analysis.

The final set used for modeling comprised 22 690 compounds and covered
a RI range from 360 to 4120 units. The RI data were sorted and binned into
groups of 30 compounds each. Compounds were then randomly selected
from these bins and equally partitioned over training, monitoring and test
sets.

2.3 Descriptor selection
Descriptor selection in QSRR modeling is essential to ensure that the models
are robust and attain optimal predictive power. Moreover, a smaller number
of predictive descriptors allows for an easier interpretation of the model.
Genetic algorithms (GA) are global optimization methods that have been
successfully applied in QSAR studies for descriptor selection (Gao et al.,
2002; Hasegawa et al., 1997; Rogers and Hopfinger, 1994). At each step
of the GA optimization procedure, many models are evaluated and the
information of the fittest models is propagated to the next step. Descriptors
in a GA procedure are combined in a linear string to form chromosomes
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and are encoded by ‘1’ if the descriptor is included in a next generation of
the model and by ‘0’ if it is excluded from the model in that generation.
Here, the length of the chromosomes was set to 159—the total number
of descriptors. At the start, a population of 100 individuals was created
by randomly selecting the descriptors. The coefficients ci of Equation (1)
were determined using the training set and the root mean square error
(RMSE) of prediction of the monitoring set was obtained for each model.
A linear ranking was used to assess the fitness of each individual based on
RMSE and fitness-proportional selection of the chromosomes was applied
to generate subsequent generations. The uniform crossover probability was
set to 0.7 and the probability for mutation was set to 0.05. These values
were within the range of the commonly used values in GA procedures
(Broadhurst et al., 1997; Lucasius and Kateman, 1993). To obtain a small
set of descriptors, chances for the direction of a mutation were set to 90%
for flipping 1 to 0 and 10% for flipping 0 to 1. Three GA optimization
runs were performed, starting from different initial populations and using
1000 generations per run. Ten percent of the best chromosomes were
selected for further analysis. The data analysis and modeling were performed
using the GA toolbox (http://www.shef.ac.uk/acse/research/ecrg/gat.html)
and in-house written Matlab 7.0 scripts.

2.4 SVR model
In SVR, the descriptor matrix is first mapped into a higher dimensional
feature space by the use of a kernel function, and then a linear model is
constructed in this feature space. In-depth theoretical background on SVR
can be found in the introductions by Cristianini and Shauwe-Taylor (2000)
and Vapnik (1995). A radial basis function (RBF) was used as a kernel
function. The optimal values of the SVR parameters, the regularization
parameter C, ε of the ε-insensitive loss function and the width (γ ) of RBF,
were found by a grid search (C = 2−5,2−3, ...,215, ε = 2−8, 2−7, ...,23 and
γ = 23, 21, …, 2−11). LIBSVM (http://www.csie.ntu.edu.tw/∼cjlin/libsvm)
was used as SVR implementation.

2.5 Calibration setup
Fifty analytical grade chemicals (Sigma) with known RI were measured
for the calibration of the experimental setup. The compounds were pooled
in 10 groups of 5 compounds with well-separated RI’s within each group.
Per vial, 100 µg of each compound was added. The headspace volatiles
present in the vials were automatically extracted by exposing a 65 mm polydi-
methylsiloxane-divinylbenzene SPME fiber (Supelco) to the vial head space
for 20 min under continuous agitation and heating at 50◦C, and injected into
the GC-MS via a Combi PAL autosampler (CTCAnalyticsAG). The fiber was
inserted into a GC 8000 (Fisons Instruments) injection port and volatiles were
desorbed for 1 min at 250◦C. Chromatography was performed on an HP-5
column (50 m length, 0.32 mm diameter and 1.05 µm film thickness) using
helium as carrier gas (37 kPa). The GC interface and MS source temperatures
were 260◦C and 250◦C, respectively. The GC temperature program began at
45◦C (2 min), was then raised to 250◦C at a rate of 5◦C/min, and finally held
at 250◦C for 5 min. The total run time, including oven cooling, was 65 min.
Mass spectra in the 35–400 m/z range were recorded by an MD800 electron
impact MS (Fisons Instruments) at a scanning speed of 2.8 scans/s and an
ionization energy of 70 eV. The collected data are presented in Supplementary
Material (Table S1).

2.6 Filtering of library hits
All raw GC-MS data were processed using AMDIS (Stein, 1999) and the
extracted mass spectra were searched against the NIST05 library. The set of
50 compounds with known RI was measured and the system was calibrated
to obtain the experimental RI, denoted as RIexp. The final, GA-selected
set of descriptors was calculated for all records in the NIST05 library and
their RI was predicted using the SVR model. The predicted RI, denoted as
RISVR, was saved as a text file together with the Chemical Abstracts Service
(CAS) number and the name belonging to a particular record. For each hit,

the predicted RISVR was retrieved by searching the CAS number or the
name when the CAS number was not available. The relative RI error was
determined as:

% rel.error=100×(
RISVR −RIexp

)
/RIexp. (2)

The distribution of the relative error was used to obtain thresholds to define
the rank of the NIST05 library hits. A normal distribution fit of the relative
error resulted in a mean value (µ) of 0.94 and a standard deviation (SD, σ )
of 5.28. Hence, threshold values of 1σ , 2σ and larger than 2σ were used
to define ranks one, two and three, respectively, which in turn correspond
to ‘good’, ‘moderate’ and ‘poor’ agreement between the experimental and
predicted RI. In the final list, only hits ranked one and two were retained.
The filtering procedure was fully automated as a Python 2.5 script.

2.7 Test samples
2.7.1 Mixture of standard compounds A mixture of 22 analytical grade
chemicals was analyzed by GC-MS. The sample was prepared by adding
10 µl of each liquid standard and 5 mg of each solid standard in a 4 ml
screw cap vial. Then, 10 µl of this mix was transferred into a 10 ml screw
cap vial and diluted with 5 ml ethyl acetate and 1 µl of this diluted standard
mixture was injected into the GC-MS. The same instrument and experimental
conditions were used as described for the calibration.

2.7.2 Biological samples The raw GC-MS data of a single tomato fruit
volatiles sample was selected from a data set of 188 samples (Tikunov
et al., 2005). In this particular sample, the majority of the previously
identified metabolites were present and it was therefore most suitable for
testing the model. In addition to the tomato fruit sample, melon and rice
samples were used to estimate the fraction of library hits that were filtered
out by our procedure. One gram of ground rice (Oryza sativa L., cultivar
Perurutong) was weighed and introduced into a 10 ml glass vial and capped.
The sample was rotated for 24 h to achieve saturation of the headspace
with all volatiles. The headspace was sampled with an SPME device, using
the blue polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber during
30 min at room temperature. Samples of melon fruits of different ripening
stages of the varieties Galia and Charantais were mixed together. Sample
preparation and incubation was done following the same protocol as for the
tomato fruit sample (Tikunov et al., 2005). Injection, desorption and GC-MS
analysis of all biological samples were performed with the same parameters
and settings as described for the calibration.

3 RESULTS AND DISCUSSION

3.1 Regression models performance
3.1.1 MLR model The relationship between the structure of a
compound and its RI was modeled as a linear function of a
set of descriptors. The GA descriptor selection procedure on an
initial set of 159 descriptors was repeated three times by randomly
selecting different initial populations. The frequency of selection
of the descriptors in the best 10 000 chromosomes (10% of the
total number of chromosomes) in the three repetitions is shown in
Supplementary Material (Fig. S1). These frequencies were used to
determine the order in which the descriptors were selected to enter
the model. A model of 19 descriptors was selected as the model
with the smallest number of descriptors and small RMSE, µ and
σ values. The descriptors and their coefficients in the regression
function are listed in Table 1. The GA-selected set of descriptors
can be divided into two main groups, namely descriptors related
to properties of the molecule as a whole (12 descriptors) and
descriptors accounting for specific atom types or functional groups
(7 descriptors). As the descriptors were scaled to unit variance, the
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Table 1. Regression coefficients of the MLR-GA selected descriptors

Number Label Description (type) Coefficient ± SD

68 X1v Valence connectivity
index chi-1 (4)

252.41 ± 6.33

75 X3sol Solvation connectivity
index chi-3 (4)

221.88 ± 6.49

159 BP BP (8) 155.26 ± 3.88
156 TPSA Fragment-based polar

surface area calculated
using N,O polar
coefficients (8)

153.47 ± 3.80

12 nHM Number of heavy atoms
(nHA) (1)

−142.09± 2.86

101 nCb- Number of substituted
benzene carbon atom
(Csp2) (6)

111.67 ± 3.78

22 w Detour index (2) 100.69 ± 3.61
30 DELS Molecular

electrotopological
variation (2)

−81.59± 4.17

10 nO Number of oxygen atoms
(1)

−60.53± 3.12

81 GGI6 Topological charge index
of order 6 (5)

−50.68± 3.04

42 ICR Radial centric
information index (2)

48.72 ± 2.13

158 ALOGP2 Squared Ghose–Crippen
octanol–water partition
coefficient (8)

−44.23 ± 2.65

122 C-001 CH3R/CH4 (7) −36.72± 1.64
35 PW3 Path/walk 3—Randic

shape index(2)
−33.70± 2.86

63 PCD Difference between
multiple path count and
path count (3)

33.24 ± 3.17

102 nCconj Number of non-aromatic
conjugated carbon atom
(Csp2) (6)

30.84 ± 1.30

13 nX Number of halogen atoms
(1)

17.53 ± 3.75

37 PW5 Path/walk 5—Randic
shape index (2)

−15.45± 2.37

109 nRCONR2 Number of tertiary
aliphatic amides (6)

9.02 ± 1.27

The descriptor number in the final set of 159 descriptors. The type is constitutional
(1), topological (2), walk and path counts (3), connectivity indices (4), topological
charge indices (5), functional groups count (6), atom-centred fragments (7), molecular
properties (8).

magnitude of the coefficients is related to the importance of the
descriptors for determining RI.Ahigh-positive coefficient was found
for the first group including TPSA (NO), the valence (X1v) and
solvation (X3sol) connectivity indices and the BP. These descriptors
are related to size, shape and the degree of branching of the molecule.
The X1v descriptor takes into account the presence and position of
the hetero atoms in the molecule. The X3sol descriptor includes the
dispersion interaction with the stationary phase. The Detour index,
w, is a descriptor that can discriminate between acyclic and cyclic
compounds (Trinajstic et al., 1997). The Randic shape indices PW3
and PW5 are topological descriptors obtained as the quotient of

Table 2. Regression model evaluation

R2 RMSE Number of
compounds

MLR SVR MLR SVR

Training 0.9756 0.9818 104 90 7573
Monitoring 0.9799 0.9818 98 93 7756
Test 0.9685 0.9720 121 114 7361

Correlation coefficient (R2) and RMSE for the MLR and the SVR models. The values
for the training set are based on 10-fold cross-validation. The monitoring set was used
for the GA variable selection and the SVR parameters selection.

paths and walks of length 3 and 5, respectively (Randic, 2001).
These descriptors account for the isomeric variation of molecules
of the same size. Disperse interactions between the compounds
and the stationary phase govern the retention behavior on non-
polar columns and this is reflected by the set of descriptors with
a positive effect on RI. Descriptors that showed a strong negative
correlation with RI included the nHM and high polarity (DELS and
GGI6). All compounds, for which nHM had a non-zero value, were
trimethylsilane derivatized compounds. The addition of the bulky
Si(CH3)3 group not only increases the size of the molecule but
also the degree of branching and the compactness of the molecule.
Hence, this represents the negative influence of the derivatization
on RI. The charge transfer in the molecule is represented by DELS.
With increased polarity of the molecule, the interaction with the
non-polar stationary phase is weakened. As a result, a large value of
the DELS descriptors (high polarity) will result in lower RI values.

The results of predicting the three different sets are listed in
Table 2. The correlation coefficient R2 and RMSE were similar for all
sets. The values of RMSE were in the interval 98–121. A somewhat
smaller value, 79 RI units, was found by Garkani-Nejad et al. (2004)
for a set of 846 structurally diverse compounds and an MLR model.
In their model, the connectivity indices were also the descriptors
with the highest positive coefficients. BP in combination with 3D
descriptors was used by Farkas et al. (2004) to predict RI for a
set of oxygen, nitrogen and sulfur containing saturated heterocyclic
compounds. In our model, BP of the majority of the compounds is
estimated from the structure (Stein and Brown, 1994) and for some
compounds the error of the BP estimation might be significant. This
may have contributed to the final error of the RI estimation.

3.1.2 SVR model Non-linear transformation of the chemical
space defined by the GA-selected descriptors was done using a RBF
kernel. A grid search was used to find the best values for the SVR
parameters. For each combination of the parameters, the model was
constructed using the training set and evaluated by the RMSE of the
monitoring set. The best model was obtained with C = 2, γ = 2−5 and
ε = 2−8. Compared with the MLR model, the SVR model resulted
in higher R2 and smaller RMSE values for all sets. The distribution
of the relative error presented in Figure 1 shows an increase of the
fraction of compounds with low relative error in the SVR model.
As a result, a smaller SD of 5.26% was obtained form the normal
distribution fit of the relative error expressed in percentage compared
with 6.12% for the MLR model. The two distributions were centered
at +0.42% (MLR) and +0.94% (SVR). This corresponds to a slight
overestimation of RI by both models.
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Fig. 1. Distribution of the relative prediction error in percentage (bars) and
the fitted normal probability distribution (lines) of the proposed MLR and
SVM models, respectively.

3.2 SVR versus NIST05 prediction model
Next, the RI predictions based on our SVR model were compared
with those obtained with the NIST05 (Stein et al., 2007) model. The
models are based on different modeling techniques and different
sets of descriptors. The NIST05 model is based on 84 different
groups of atoms and reflects the specific elemental composition
and arrangement of the molecule. Our SVR model, on the other
hand, includes about four times less descriptors with the majority of
the descriptors related to properties derived from the 2D molecular
structure. As for the atom specific descriptors, these are mainly
accounting for the presence of a particular element. For example,
in the SVR model the number of oxygen atoms is included. In the
NIST05 model, eight different oxygen containing groups are needed.
The NIST05 model can therefore be considered as a specific model
and our SVR model as a generic model.

Three different sets were selected for the comparison. Set 1
contained all 11 229 compounds predicted by the SVR and the
NIST05 models. Set 2 comprised a subset of 4138 isomers. This set
was selected by using only the functional groups because isomers are
characterized by the same set of functional groups. Set 3 contained
isomers for which the experimental BP values were available,
which corresponded to ∼50% of the total number of compounds
with known experimental BP value. Compared with the NIST05
model, the SVR model gave the highest percentages of rank 1
predictions and the lowest percentages of rank 3 predictions for
each of the sets (see Table 3). These rankings correspond to ‘good’
and ‘poor’ agreement between the experimental and predicted RI,
respectively. The largest difference in performance of the two models
was observed for the compounds in Set 3, for which the NIST05
model predicted rank 1 for 73% of the compounds compared with
88% for the SVR model. Only 1% of the compounds in this set had
poor prediction (rank 3) in the SVR model. This analysis shows that
out SVR model outperforms the NIST05 model.

3.3 Filtering procedure evaluation
3.3.1 Mixture of standard compounds The RI prediction model
and the ranking and filtering of the NIST05 hits was tested on
a mixture of 22 standards measured using fluid injection. The
compounds were selected to cover a relatively large range of RIs,
from 800 to 1800. Included were unsaturated cyclic hydrocarbons,
alcohols, aldehydes, ketones, thiols and heterocyclic compounds.
The raw data were processed using AMDIS and extracted mass

Table 3. Ranking of different sets predicted by the SVR and the NIST05
models

Rank 1 Rank 2 Rank 3

NIST05 SVR NIST05 SVR NIST05 SVR
(%) (%) (%) (%) (%) (%)

Set 1 72 79 20 17 8 4
Set 2 76 85 18 13 6 2
Set 3 73 88 23 11 4 1

Set 1 contains 11 229 compounds, Set 2 is a subset of 4138 isomers and Set 3 is a subset
of 1055 isomers with known experimental BP.

Fig. 2. Experimental RI of the extracted components and the predicted
retention indices (RI) for MS hits for the mixture of standards. The MS
hits are represented by + and 22 standard compounds by black circles. The
dotted and the dashed lines represent the (±)1σ and (±)2σ relative difference
interval, respectively.

spectra were searched against the NIST05 MS library. For each mass
spectrum, 10 MS hits were retrieved from the library and ranked. In
Figure 2, the predicted RI values of the MS hits are plotted against
the experimental RI values for each component. Hits with very
different RI were retrieved for some of the components whereas
for other components all hits had similar RI values. For a single
component there were no hits with rankings 1 or 2. This component
was extracted at the end of the chromatogram and contained only a
few m/z values.

The match between a spectral library and an experimental
spectrum (MF), as reported by AMDIS, ranges between 0 (no
match) and 100 (perfect match). The distribution of the rank
over the MF is given in Figure 3a. Except for pantolactone, all
standards were retrieved with an MF higher than 90 (Supplementary
Material, Table S2). The chromatographic peaks of pantolactone
and D-limonene were partially overlapping with pantolactone
having a low abundance, which resulted in a lower quality of
the extracted mass spectrum. All 22 compounds passed the RI
filter with six compounds having a moderate (rank 2) agreement
between experimental and predicted RI values. As shown in
Figure 3a, the fraction of hits with rank 1 decreased with the
decrease of the value of MF. However, even an MF value as
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high as 90 might return a wrong hit. An example is given
by the hit list of methylparaben. The first hit was indeed
methylparaben and the second hit was 3-hydroxybenzylhydrazide.
In 3-hydroxybenzylhydrazide, the methoxy group (-OCH3) is
substituted by a hydrazide group (-NH-NH2). The mass spectra of
these two compounds are very similar but their RIs differ greatly.
The difference between the experimental RI of methylparaben and
the predicted RI of 3-hydroxybenzhydrazide was 254 RI units.
Hence, 3-hydroxybenzylhydrazide was filtered out.

Despite the relatively large error of prediction of RI, the
combination of RI and MF provides a powerful means to increase
the confidence of the identification. With the proposed procedure of
filtering out hits with absolute relative RI error larger than 10.52%
(±2σ ), none of the 22 compounds would have been missed with
only six compounds found to have a moderate agreement between
the predicted and experimental RI values. The ranking of the hits can
thus be used to guide the selection of compounds to be tested with
authentic standards for final confirmation of the putative identity of
unknown metabolites.

3.3.2 Tomato volatile compounds In a biological sample, such as
tomato fruit, hundreds of volatile compounds can be present and it
is not always possible to achieve good chromatographic separation
for all of these. In such cases, incomplete or contaminated mass
spectra will be extracted, resulting in low MF values being reported
by AMDIS. Based on spectral hits only, Tikunov et al. (2005)
putatively identified 68 compounds present in different tomato
genotypes. Of these 68, 43 compounds have been confirmed by
using authentic standards. The abundance of these compounds was
used as a criterion for selecting an appropriate test sample for our
model. In total, 237 components were retrieved for this sample by
AMDIS. The distribution of the rank over the MF values of the hits
is shown in Figure 3b. Compared with the standard mixture, only a
small fraction of the hits had MF values higher than 90. From these,
82% passed the RI filter. The fraction of rejected hits increased to
44% for hits with MFs between 80 and 90.

The hit list was searched for the previously characterized
metabolites and 50 out of 68 could be retrieved (Supplementary
Material, Table S3). The remaining 18 compounds had too low
abundance in the selected sample to give reliable mass spectra. In
Table S3 (Supplementary Material), also the RI values found in the
literature (RIlit) are given. The MF values for these compounds were
in a broad range, from 63 to 95. Three of the compounds did not pass
the RI filter. An overestimation of RI by the model resulted in giving
rank 3 to β-damascenone. However, the relative error of 10.83% was
very close to the filtering threshold. The other two hits, 5-methyl-3-
methylene-5-hexen-2-one and 2-phenyl-3-buten-1-ol, were obtained
for low abundant components and the extracted spectra had low MF
values. In order to get a better estimation of the experimental MS
spectra, the original hit list as proposed by Tikunov et al. (2005)
for these two components was evaluated. This list was obtained by
manual extraction of the MS spectra using a characteristic m/z value
for the deconvolution. The resulting hit list for these two components
is presented in Table S4 (Supplementary Material). All hits for the
component at RIexp of 1016 were unsaturated ketones. The open
chain keton (first hit) had a lower predicted RI value than the cyclic
compounds (second and third hit). The difference in the predicted
RI was also confirmed by the experimental data. Most probably,
this component corresponds to an ethanone group connected to

Fig. 3. Distribution of SVR rank and MF of the NIST05 library hits for the
mixture of standards (a) and the tomato sample (b).

Fig. 4. Percentage hit list reduction of the tomato, melon and rice samples.
The 3, 5 and 10 hit per spectrum were retrieved for each sample.

a cyclohexene or cyclopentene ring. Structurally very different
compounds were retrieved for the component at RIexp of 1036.
The predicted RIs for 2-phenyl-3-buten-1-ol and 3,5-diphenyl-1-
pentane were much higher than the experimentally observed values.
Unfortunately, no literature data are available for these compounds.
The other three hits, (Z)-β-methylstyrene, cyclopropylbenzene and
benzocyclopentane, had too similar MF and RI values to be able to
discriminate between them.

The two examples, pure standards and a crude plant sample,
demonstrate that RI estimation can be applied as an automatic
post-processing method for candidate compound identifications
obtained by searching MS libraries. False identifications can be
easily recognized and filtered out based on their predicted RI. In
this way, much smaller sets of candidate compounds need to be
verified by authentic standards. The proposed SVR model for RI
prediction is generic and requires the calculation of a well defined
set of descriptors. The model can also be used for predicting the RI
of other MS libraries without RI information provided that the exact
structure of the compounds is known.

3.3.3 Hit list reduction In practice, the number of hits filtered out
by our procedure will depend on the chemical composition of the
sample. To investigate this, in addition to the tomato fruit sample,
melon and rice samples were analyzed. Sets of 3, 5 and 10 hits per
experimental spectrum were processed for each sample. In general,
the fraction of hits filtered out increased with increasing the number
of hits to be returned. A reduction of 41% was obtained for the melon
sample with three hits per spectrum and was increased to 60% with
10 hits per spectrum (Figure 4). The rice sample showed a somewhat
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different pattern. More hits (50%) were filtered out using the smallest
hit list whereas for the largest hit list the level of reduction (54%)
was similar to that of tomato fruit and melon.

In general, low abundant compounds are difficult to detect due
to poor quality of the extracted experimental spectrum. As a result,
the right compound may appear further down in the hit list. Only
one compound is missed when the hit list of the tomato sample is
filtered. When three hits per spectrum are retrieved, (Z-) 3-hexenal,
benzyl alcohol, 6-methyl-3,5-heptadien-2-one and geranyl acetone,
will be missed as they are not within the first three hits.

4 CONCLUSIONS
This study has shown that RI estimation can be successfully applied
to enhance compound annotation of unknown volatile compounds
in GC-MS by taking into account the chromatographic behavior of
the hits obtained by searching MS libraries. The RI prediction SVR
model was built using a large set of structurally diverse compounds.
Together with the BP, descriptors related to size, shape and the degree
of branching were most predictive in the model. The model is an
important improvement over previous models built for structurally
diverse compounds because it covers a much larger range (360–
4100) of RI values and uniquely enables the discrimination of
positional isomers. Using the predicted RI, an automated procedure
was developed for ranking and filtering the hits obtained after MS
library searching. When the procedure was used to process a sample
of tomato fruit volatiles, only one out of 50 previously identified
compounds was missed. This demonstrates that it is safe to reject
hits with a relative RI prediction error >10.52%. The degree of hit
list reduction varied from 41% to 60% and depended on the size of
the original hit list. Large hit list were reduced to a greater extend
compared with small hit lists. The estimated RI can also assist in the
selection of compounds to be purchased or chemically synthesized
to confirm the identity of unknown metabolites.
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