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ABSTRACT

Summary: When feature selection in mass spectrometry is based
on single m/z values, problems arise from the fact that variability is
not only in vertical but also in horizontal direction, i.e. also slightly
differing m/z values may correspond to the same feature. Hence,
we propose to use the full spectra as input to a classifier, but to
select small groups – or blocks – of adjacent m/z values, instead of
single m/z values only. For that purpose we modify the LogitBoost to
obtain a version of the so-called blockwise boosting procedure for
classification. It is shown that blockwise boosting has high potential
in predictive proteomics.
Availability: R-code is freely available at http://www.statistik.lmu.
de/~gertheiss/research.html.
Contact: jan.gertheiss@stat.uni-muenchen.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Methods for feature selection in mass spectrometry (MS)-based
predictive proteomics with categorial outcome can be roughly
categorized into one of two groups. The first set of approaches uses
the full spectrum as input to a classifier that is able to select variables.
Thus features are selected in terms of single m/z values. Due to
horizontal variability, however, results are difficult to interpret,
because also slightly differing m/z values may correspond to the
same feature. That is why, for example, Hoefsloot et al. (2008)
manually clustered the selected m/z values at the end of the analysis.
Alternatively, feature (pre)selection in terms of peak detection and
peak alignment (Tibshirani et al., 2004) is often performed before
employing a classifier. The workflow is nicely summarized in Barla
et al. (2008). But for the latter approach initial feature selection is
done in an unsupervised way.

An early application of boosting to MS data is Yasui et al.
(2003). The procedure is based on (unsupervised) dichotomization
of intensities into peak/non-peak binary data (to address unreliability
in peak heights). In contrast, in the following a modification of
the LogitBoost (Friedman et al., 2000) using the raw spectra is
presented which yields a version of so-called blockwise boosting
for dichotomous outcomes. To attack the problem of horizontal
variability, we propose to select small subsets of adjacent m/z values
instead of single ones. For regularization a difference penalty is
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employed. The high potential of this approach is demonstrated on
a publicly available dataset from proteomics. All computations are
carried out using R (R Development Core Team, 2007).

2 METHODS
One building block of the presented approach is boosting, which has been
introduced by Freund and Schapire (1996). Boosting has been shown to
be a powerful classification tool, especially for high-dimensional problems.
A classifier C(x) as a function of predictors x is based on an ensemble
of so-called weak (or base) learners f (m)(x). We will use a modification
of the LogitBoost (Friedman et al., 2000). The LogitBoost was used, e.g.
by Dettling and Bühlmann (2003) to discriminate microarrays of gene
expression data. Given dichotomous responses yi ∈{0,1}, each single f (m)

is fitted by weighted least squares using weights

w(m)
i =p(m−1)(xi)·(1−p(m−1)(xi))

and working responses

z(m)
i = (yi −p(m−1)(xi))

w(m)(xi)
,

with p(m)(xi) denoting the estimated probability of observation i belonging
to class 1. For details of the algorithm, see Friedman et al. (2000) or Dettling
and Bühlmann (2003).

In common componentwise boosting the base learner f is a function
of only one component of the (p-dimensional) vector xi = (xi1,...,xip)T .
In addition to the fitting of f a selection step is included which selects
the component that produces minimum (weighted)-squared loss. Predictors
that are never selected are not used for classification. In contrast, we do
not select single variables but groups x(s) of k adjacent predictors, i.e.
m/z values. Let x(s)

i denote the vector (xis,...,xi,s+k−1)T , so that one has
s=1,...,p−k+1 groups of adjacent m/z values. For the regression function
f we fit linear combinations of these (k adjacent) predictors, i.e. f (x)=βT x(s).
That means f (m) from above is represented by β(m) and a distinct block
x(s)

i . The selection step now refers to blocks instead of single components.
Since adjacent measurements are highly correlated, simple (weighted) least
squares estimation of β is not recommended. So we penalize the sum of
squared differences between adjacent coefficients βj . This makes good sense,
since features are assumed to cover more than a single m/z value, and
measurements at adjacent m/z values should be linked to the class label
in a similar way. Hence, β(m) is a generalized weighted ridge estimator. In
matrix notation one has

β(m) = (X (sm)T W (m)X (sm) +λ�)−1X (sm)T W (m)z(m),

with X(sm)T = (x(sm)
1 ,...,x(sm)

n ), z(m) = (z(m)
1 ,...,z(m)

n )T , W (m) =
diag(w(m)

1 ,...,w(m)
n ). In iteration m, block sm producing minimum error

is selected. The penalty matrix is �=DT D, with D11 =Drr =Dk+1,k =1,
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Dr,r−1 =−1 and 0 otherwise, r =2,...,k. By upper left and lower right 1s in
D differences to zero coefficients of neighboring but not selected m/z values
are penalized. For details of the blockwise boosting procedure, see Tutz and
Gertheiss (2009) where a blockwise procedure for continuous response is
used to select variable blocks in signal regression.

The result of the described algorithm can be characterized as a logistic
regression model with coefficient vector β of length p, and many coefficients
being zero. Blocks of non-zero coefficients have at least length k and
represent selected m/z values. Since k is fixed and distances between adjacent
m/z values are larger for higher m/z values, features selected in regions
of higher m/z values tend to be wider, too. This, however, makes sense
since features are truly larger for higher m/z ranges (cf. Barla et al., 2008).
Alternatively, block sizes may also be held constant on another scale, e.g.
the logarithm of m/z values.

Another (difference) penalty approach applied to MS data is in Goeman
(2008), where a prior distribution of (logistic) regression coefficients is
derived from a stationary autoregressive process. The used Bayes point
estimate (the mode of the posterior density), however, leads (almost surely)
to non-zero coefficients. Hence, no feature selection is performed.

3 RESULTS
To evaluate our method we use data from Petricoin et al. (2002),
which is publicly available from the National Cancer Institute
via http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp. The
data are already baseline corrected. The goal is to discriminate
prostate cancer from benign prostate conditions by proteomic pattern
diagnosis. All in all 69 SELDI-TOF blood serum spectra from cancer
patients and 253 from patients with benign conditions are given. See
Petricoin et al. (2002) for further information.

From the data at hand we randomly selected test data consisting
of 150 observations. On the remaining data our BlockBoost was
trained and test set labels were predicted. This procedure was
independently repeated 20 times. For each training sample block
size k and penalty λ were determined via (3-fold) cross-validation.
For comparison we also considered the performance of usual
componentwise LogitBoost (i.e. the special case with k =1), for (3-
fold) cross-validated number of boosting iterations (Boost, CV) and
for the optimal number producing minimum test error (Boost,opt).
Additionally, we give the error resulting from regularized linear
discriminant analysis (R-packagerda; Guo et al., 2005) as proposed
by Guo et al. (2007), if oracle tuning parameters (minimizing test
errors) are chosen (RDA,opt). Note, oracle tuning parameters give
a (somewhat unrealistic) lower bound for test set errors. Since the
full spectrum is used as input, componentwise boosting and RDA
select features in terms of single m/z values.

Figure 1 gives a summary of test set errors in comparison
to blockwise boosting with (3-fold) cross-validated number of
iterations (BlockBoost,CV) and for the optimal number of iterations
(BlockBoost,opt). It is seen that even with iterations chosen by CV
BlockBoost is competitive to RDA with oracle tuning parameters.
The original LogitBoost was outperformed distinctly. Apparently
selecting blocks of m/z values (instead of single ones) improves
prediction accuracy.

4 SUMMARY AND DISCUSSION
We presented a modification of the LogitBoost algorithm that is
especially suited to the challenges of MS-based proteomic profiling
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Fig. 1. Errors of componentwise and blockwise boosting, each with cross
validated as well as optimal number of boosting iterations, and regularized
discriminant analysis with optimal tuning parameters.

(a corresponding R package is in preparation). Superiority over usual
componentwise boosting was illustrated. In every iteration blocks
instead of single m/z values are selected and differences between
effects of adjacent m/z values are penalized. Block size k and penalty
parameter λ, however, need to be chosen by the user. Block size k
should depend on the quality of the spectra, like tuning parameters
in unsupervised feature preselection. Penalty λ (and also k) may be
determined via (k-fold) cross-validation, as done here. The same
applies to the number of boosting iterations M. In general, however,
the method seems to be quite resistant to overfitting caused by too
many iterations (cf. Dettling and Bühlmann, 2003).
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