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ABSTRACT

Motivation: The massively parallel sequencing technology can be
used by small research labs to generate genome sequences of their
research interest. However, annotation of genomes still relies on
the manual process, which becomes a serious bottleneck to the
high-throughput genome projects. Recently, automatic annotation
methods are increasingly more accurate, but there are several issues.
One important challenge in using automatic annotation methods is
to distinguish annotation quality of ORFs or genes. The availability of
such annotation quality of genes can reduce the human labor cost
dramatically since manual inspection can focus only on genes with
low-annotation quality scores.
Results: In this article, we propose a novel annotation quality or
confidence scoring scheme, called Annotation Confidence Score
(ACS), using a genome comparison approach. The scoring scheme is
computed by combining sequence and textual annotation similarity
using a modified version of a logistic curve. The most important
feature of the proposed scoring scheme is to generate a score
that reflects the excellence in annotation quality of genes by
automatically adjusting the number of genomes used to compute
the score and their phylogenetic distance. Extensive experiments
with bacterial genomes showed that the proposed scoring scheme
generated scores for annotation quality according to the quality of
annotation regardless of the number of reference genomes and their
phylogenetic distance.
Availability: http://microbial.informatics.indiana.edu/acs.
Contact: sumkim2@indiana.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Researchers can sequence genomes of research interest with a
fraction of cost using new massively parallel sequencing technology,
such as the 454 (Wicker et al., 2006) and Solexa (Illunima Inc.,
2007) machines, compared with that by using traditional Sanger
sequencing method (Sanger and Coulson, 1975; Sanger et al., 1977).
To utilize the high-throughput sequencing technology, there are
major informatics research issues to be solved. Among them, cost for
genome annotation is a significant hurdle for inexpensive genome
projects.

∗To whom correspondence should be addressed.

This article proposes a novel genome annotation scoring scheme
that can help to reduce the cost for genome annotation significantly,
especially for microbial genomes. Although there has been a great
progress in genome annotation technology, it is still a common
practice that several biologists go through annotation of an open
reading frame (ORF) one by one for a period of several months
to even a year. This is mainly because there is no automatic
genome annotation system that guarantees correctness of genome
annotation. There are widely used annotation services such as CMR
(http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi) at J. Craig
Venter Institute (JCVI) or IMG at Joint Genome Institute (JGI;
Markowitz et al., 2008). Annotation of many ORFs from automatic
annotation are correct but the main problem is that we do not
know which are correct without further assessment. One common
problem of automated annotation via homology [e.g. Basic Local
Alignment Search Tool (BLAST; Altschul et al., 1990)] is that gene
descriptions in databases can be quite variable and different for
the same group of homologous genes (Iliopoulos et al., 2003). A
more accurate gene description may be found using a consensus
of homolog descriptions, including consideration of phylogenetic
distance (Mikkelsen et al., 2005), variable quality of the reference
genome annotations and consensus analysis of the annotation text.
By addressing these aspects of quality in automated annotation,
we have developed a novel confidence scoring system for genome
annotation, called Annotation Confidence Score (ACS). It works
by comparing annotation of a target genome to a set of selected
reference genomes. Input to our system is annotation of genes, for
example, from widely used annotation services such as CMR at
JCVI or IMG at JGI. We believe that the confidence scoring system
will be useful in at least two ways:

(1) ACS can be used to ‘rank’ ORFs in the target genome in
terms of their annotation quality. With a cutoff score for
ACS that can be determined empirically, annotators can focus
only on those with low quality. This will reduce human
effort without sacrificing quality of genome annotation. ACS
measures quality of annotation successfully, as we show in
this article.

(2) ACS can be used for ‘re-evaluating’ genome annotation
periodically as new genomes that are close to the target
genome become available. Typically, annotation of genome is
done in comparison with currently available sequences. New
sequences provide valuable information for re-evaluation
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of annotations. ACS methods, when used periodically,
can highlight which annotations need to be revised, thus
improving the quality of genome annotation over time.

2 APPROACH

2.1 Overview of confidence scoring scheme
The score of ACS is a number ranging from 0 to 1.0 to denote
how good annotation of an ORF is in comparison with genes in
a reference genome set. The input needed to compute ACS of
an ORF in a target genome is an annotation of the ORF, the
amino acid sequence of the ORF and a set of gene sequences
and their annotations in a set of reference genomes. ACS of an
ORF is computed by combining sequence similarity and textual
(annotation) similarity in comparison with genes in a set of reference
genomes. We use three standard sequence similarity methods in the
genome context: BLAST (Altschul et al., 1990), bidirectional best
hit (BBH) and TRIANGLE (see Section 2.4.1 for a review of these
methods). Matches in the reference genome set that are obtained by
using sequence similarity matching techniques are weighted using
a modified version of a generalized logistic curve (Section 2.3).
Textual annotation similarity is measured by cosine similarity of
two annotation texts (Section 2.4.2). There are also a number of
issues handling annotation texts: removing stop words, stemming
(Section 2.6), finding synonyms (Section 2.5) and abbreviation
handling (Section 2.5).

Confidence score should convey the important characteristic of a
score, a measure to denote excellence as in quality. For example,
a score for an exam with a score range from 0 to 100 should
convey quality of achievement by the student. A score of 90
should represent a good achievement, while a score of 10 should
indicate a poor performance in the exam. We want to design an
annotation confidence scoring scheme to represent how good the
given annotation of an ORF in a target genome is in comparison with
genes in the reference genome set. This is challenging because the
number of matches to the gene will vary widely depending on the two
characteristics of a reference genome set: the number of genomes in
the reference genome set and phylogenetic distance of the reference
genomes. The primary design consideration of the confidence score
is to make sure that a score reflects excellence of a given annotation
by automatically accommodating the characteristics of the reference
genome set. The detailed procedure is given in Figure 1.

2.2 Design consideration for confidence score
A confidence score of an ORF x, ACS(x) is computed in two steps:
(i) collect M matches in a set of reference genomes to x and (ii)
compare annotations of x and genes in M to compute ACS(x). There
are three major design considerations for ACS:

(1) Adjustment for the number of reference genomes: a scoring
scheme that simply counts the number of matches to the ORF
can produce a score that takes a value that simply reflects
the number of matches to the ORF that depends largely on
the number of reference genomes. Thus, the score that counts
the number of matches would fail to reflect how good the
current annotation of the ORF is. To be a score that reflects
excellence as in quality, ACS needs to automatically adjust
the number of expected matches in a given reference genome

Fig. 1. Overview of an algorithm to compute ACS. Two parameters to
the ACS computation, θTRIANGLE and θBBH, were set to median values,
respectively.

set. We achieved this goal by using a modified version of a
generalized logistic function (Section 2.3) and by adjusting
two parameters of the logistic function ‘automatically’ to
reflect the characteristics of the reference genomes set (see
Section 2.3 for the two parameters).

(2) Adjustment for phylogenetic distance of reference genomes
to the target genome: in general, phylogenetically close
genomes share more genes than distant genomes. Thus, it
is necessary to adjust the number of matches according to
phylogenetic distance. This is also achieved by adjusting two
parameters of the logistic function ‘automatically’ to reflect
the expected number of matches considering phylogenetic
distance. See Section 2.3 for the two parameters.

(3) Handling in consistency in textual annotation: once matches
to the target gene are selected by sequence similarity, the
next step is to compare textual annotation information by
using cosine similarity (Section 2.4.2). Comparing free texts
[as opposed to controlled vocabulary terms such as Gene
Ontology (GO)] needs to handle a number of issues such as
removing stop words, stemming (Section 2.6), and handling
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synonyms and abbreviations (Section 2.5). To handle
synonyms and abbreviations, we used BioThesaurus (Liu
et al., 2006a, b) and Medical Subject Headings (MeSH; NIH,
2007) databases (Section 3.4).

2.3 Growth functions for expected number of matches
As we discussed in Section 2.1, the number of matches to an ORF
x will vary significantly depending on the number of reference
genomes and phylogenetic distance of reference genomes, so does
ACS(x). To make ACS a real score that reflects annotation quality
consistently regardless of the number of reference genomes and their
phylogenetic distance, we explored many functions that could be
used to adjust the expected number of matches in a set of reference
genomes and found that a revised version of the generalized logistic
curve worked well.

Generalized logistic curve, also known as Richards’curve (Centre
for Horticulture and Lanscape; Richards, 1959), is a flexible growth
function that has been widely used in biology, especially in botany.
We found that this function empirically fits data well for the expected
number of matches. Since our purpose of using growth function is
to weight the number of matches of an ORF x in NT reference
genomes properly rather than estimating the growth rate of a plant,
we simplified the generalized logistic curve by using only two
parameters to handle the shape of curve: l (lower asymptote) and
m (the time of maximum growth) by fixing the other parameters
to one. These two parameters are automatically adjusted for a given
reference genome set. We first compute a distribution of the number
of matches defined by each of the three sequence similarity methods:
BLAST, BBH and TRIANGLE and collect 1st quartile and 3rd
quartile of the distribution. Then l is set to 1−(3rd quartile/NT )
and m is set to the 1st quartile. This fits very well to a number of
reference genome sets (Section 3.1).

f (x)= l+ 1−l

1+e−(x−m)
(1)

where l = lower asymptote and m = the time of maximum growth.

2.4 Scoring scheme
ACS is computed by using two similarity measures: sequence
similarity and annotation similarity. In this section, we review the
two similarity measures briefly.

2.4.1 Sequence similarity Given an ORF x in a target genome,
matches to x are collected using three standard sequence similarity
measures: BLAST, BBH and TRIANGLE. The BLAST, the most
widely used sequence alignment method, finds regions of local
similarity between two sequences (Altschul et al., 1990). Any
matches with e-value less than a given cutoff score are matches
to x. BBH is also a very widely used method that selects the
bidirectional best hits in the whole genome context. Two genes
xa in GA and xb in GB are BBHs if and only if xa as a query
sequence is best matched to xb and xb as the query sequence is best
matched to xa. BBH is widely used to whole genome analysis, e.g.
for metabolic pathway analysis (Overbeek et al., 1999) and for gene
function characterization (Tatusov et al., 1997). The TRIANGLE
method extends BBH to three genes in three genomes, to improve
the confidence in accurate identification of orthologs. Three genes,

xa in GA, xb in GB and xc in GC , form a TRIANGLE if and only if
xa and xb are BBHs, xb and xc are BBHs and xc and xa are BBHs.

2.4.2 Annotation similarity To compare textual annotation simi-
larity, we used cosine similarity because it is a simple and effective
measure of text similarity. To compute cosine similarity between two
annotations, both annotations are transformed as vectors of words.
Then, cosine of two vectors is used as a similarity of two annotations.
Cosine of two vectors is defined as below.

cos( �t1, �t2)= �t1 · �t2
‖ �t1‖‖ �t2‖ (2)

Supplementary Material 1 shows an example of computing
a cosine similarity of two annotations, ‘Glutathione homo-
cystine transhydrogenase’ and ‘Glutathione CoA glutathione trans-
hydrogenase’.

Now we resolved how to handle matches by sequence similarity
and how to compute textual annotation similarity and we will
proceed to show how to combine both sequence and annotation
similarity information into a single metric. For each ORF x,
ACS(x) is defined as a level-wise best score scheme using each
of three sequence similarity methods: ACSBLAST(x) for BLAST,
ACSBBH(x) for BBH and ACSTRIANGLE(x) for TRIANGLE.

2.4.3 Confidence score for BBH and TRIANGLE Each of BBH
and TRIANGLE methods defines matches to an ORF x in a set
of reference genomes. How many genomes have matches to x is
termed as support, borrowing a concept from the frequent pattern
mining problem in the data mining community. As we discussed
in Section 2.2, ACS(x) should dynamically adjust the number of
expected matches to x for a given reference genome set. This is done
by adjusting two parameters of ACS, l and m, by using a distribution
of support values. In addition, biologists may want to weight
each genome differently. For example, setting wGi

appropriately,
a homolog found in a close genome can be weighted more than
that in a remote genome, or a homolog found in well-studied
genome can be weighted more than that in a genome in poor quality
(Section 3.6). This can be done by specifying a genome weight, wGi

in the questions for ACS. The formula to compute ACS for BBH and
TRIANGLE is in Equation (3). In the first term of equation, cosine
similarities between an ORF and homologs are weighted by the
number of supports and then normalized by the sum of all weights.
A genome weight wGi

is applied to cosine similarity between x
and gGi

to differentiate the effect of the matching gene in the
confidence score. For example, setting wGi

appropriately, a homolog
found in a close genome pair can be weighted more than that in
remote genome, or a homolog found in well-studied genome can be
weighted more than that in a genome in poor quality (Section 3.6).
The second term of the equation is a generalized logistic regression
curve where two important parameters of the logistic function are
determined automatically by support rank: lower asymptote l by
1− (3rd quartile/NT ) of support and the time of maximum growth
m by 1st quartile of support.

c(x)=
{∑N

i=1cos(−→x ,−→gGi
)×wGi∑N

i=1wGi

}
×

{
l+ 1−l

1+e−(N−m)

}
(3)

where

x = target ORF
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c(x) = confidence score of x−→x = vector representation of annotation of x
gGi

= homolog found in reference genome Gi :0≤ i≤N
N = the number of genomes that have matches−→gGi

= vector representation of annotation of gGi

wGi
= a weight of genome Gi :wGi

>0
l = lower asymptote
= 1−(3rd quartile/NT )

NT = total number of reference genomes
m = the time of maximum growth

= 1st quartile

2.4.4 Confidence score for BLAST While computing ACSBBH
and ACSTRIANGLE, all matches in the genome are treated equally
unless the genome weight wGi

is applied. This is because both
BHH and TRIANGLE use additional constraints, genome-wide best
hits, to define matches to an ORF so that matches are usually
of high specificity (correctness), sacrificing sensitivity. However,
ACS for BLAST matches, ACSBLAST, should consider how good
the matches are and should treat matches differently according to
their match strength to the query. There are several choices for
incorporating the match significance. We use ranks of matches to
a given query sequence, which is the default option for computing
ACSBLAST. In the rank-based system, a weight for a matching gene
is assigned as N −r+1, where N is total number of hits and r is the
rank of the gene. Alternatively, −log(e-value) and bit score can be
used for weight scheme. To use −log(e-value), we needed to set a
lower bound of e-value to avoid allowing e-value of 0. We set it as
1.0e−180. In our experiment, it did not show significant differences
among rank, −log(e-value), and bit score system (Section 3.5).

The equation for computing ACSBLAST is:

c(x)=
{∑N

i=1cos(−→x ,−→gGi
)×r′(gGi

)∑N
i=1r′(gGi)

}
×

{
l+ 1−l

1+e−(N−m)

}
(4)

where

r′(gGi
) = reversed rank of BLAST match gGi= N −rank(gGi

)+1

2.5 Synonyms and abbreviation handling
Synonyms and abbreviations used in gene annotation make
annotation of the same function syntactically different. In particular,
function descriptions of a gene can be different at different sources
(e.g. biological databases). Some annotations use abbreviations
whereas others use full terms or different abbreviations. In this
case, annotations of homolog matches in a reference genome are
significantly different in terms of syntax (words used) even if the
annotations have a same meaning semantically. A cosine textual
similarity of two semantically identical annotations could be low
due to their syntactic difference. To consider the semantic similarity
of annotations, it is desirable to collect all the variants of gene names
and annotations, and cross-references from many sources. Then one
needs to compare all variant forms of annotation between target ORF
and their homologs. This is a fundamental problem in dealing with
annotation, and there are several databases that compile words that
describe the same biological function.

To compute ACS, we used BioThesaurus, a web-based system
designed to map a comprehensive collection of protein and gene

names to UniProt Knowledgebase (UniProtKB) protein entries (Liu
et al., 2006a, b). It covers all UniProtKB protein entries, and consists
of several millions of names extracted from multiple resources based
on database cross-references in iProClass (Huang et al., 2003).
Utilizing BioThesaurus, we collected variants of annotation and
names of homolog matches.

In addition, protein function is often described using abbreviations
and other nomenclature references such as EC number. To handle
these issues, we use MeSH (NIH, 2007). MeSH is National Library
of Medicine’s controlled vocabulary thesaurus and has been used
for indexing articles for the MEDLINE/PubMED database. We used
three record types, descriptors, qualifiers and supplementary concept
records, to handle abbreviations and other nomenclature referencing.
MeSH is often complementary to BioThesaurus in a sense that
synonyms that are not found in BioThesaurus are found in the MeSH
database. Use of GO rather than annotation in free text would be
attractive. However, newly sequenced genomes rarely have curated
GO controlled vocabulary. That is why we developed ACS using
free text annotations that can be used in more general settings.

2.6 Stemming
Words used in annotation may have morphological variants, such as
‘transportation’ and ‘transporting’. Those words will be considered
as separate words although their meanings are the same in terms
of semantics. ACS should consider these variations of a word.
Stemming is a device to help match a query term with morphological
variant in the corpus (Chakrabati, 2002). Stemming finds a root
of a word and replaces the word with the root. There are two
popular approaches of stemming: Porter’s algorithm (Porter, 1980)
and WordNet (Christiane, 1998). Porter’s algorithm replaces a word
with the root of the word by considering variants of suffixes of a
word. On the contrary, the WordNet approach utilizes a database
to look for a root of a word and replaces the word with its root.
Since WordNet uses a curated database of word roots, the WordNet
approach is more accurate than Porter’s approach in general. Thus,
we used the WordNet approach for ACS computation.

3 RESULT
We performed a series of experiments to evaluate ACS using
UniProtKB/Swiss-Prot as a main source of sequences and
annotations for target and reference genomes. In Section 3.1,
we tested how well distributions of the number of matches in
a reference genome set fit logistic curves on various settings of
reference genome set. In Section 3.2, we demonstrated that ACS is
a score representing the quality of annotation with four different
target genomes in terms of the issues discussed in Section 2.2.
In Section 3.3, we examined the ACS distribution of genes with
randomly replaced annotations to present some guideline for ACS
cutoff setting. Section 3.4 showed variation of ACSs after handling
textual variations. In Section 3.5, we compared the rank-based ACS
for BLAST to the alternative ACS scoring schemes. Section 3.6
showed the experimental results using various weighting criteria.

3.1 Logistic curve adjustment
To test how well distributions of the number of matches in a
reference genome set fit logistic curves on various settings of
reference genome set, we performed extensive experiments to see
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Fig. 2. Distribution of the number of matches in reference genomes of various phylogenetic distances. The label x is the number of matches to the query
sequence and the label y is the ACS value computed for the query. The data point l is the lower bound of the logistic curve and the data point m is the value
where the logistic curve reaches at the maximum growth. As shown, the plots fit well the logistic curves. Yersinia enterocolitica subsp. enterocolitica str.
8081 (YERE8) was used as a target genome. Ten genomes were randomly selected as reference genomes from Enterobacteriaceae (A), Gammaproteobacteria
(B) and Proteobacteria (C), respectively, in the order of phylogenetic distance to the reference genomes. In each of the plots, three curves show the match
distribution using BLAST, BBH and TRIANGLE. As the reference genome set was more distant (A–C), the shape of the curve increased fast and the lower
bound of the curve also increased. Note that two parameters in the logistic curve equation can effectively model the change in the curve shapes.
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Fig. 3. Distribution of the number of matches in reference genome sets with different number of genomes: 10 (A), 15 (B) and 20 (C). The label x is the
number of matches to the query sequence and the label y is the ACS value computed for the query. The data point l is the lower bound of the logistic curve and
the data point m is the value where the logistic curve reaches at the maximum growth. As shown, the plots fit well the logistic curves. Yersinia enterocolitica
subsp. enterocolitica str. 8081 (YERE8) was used as a target genome. In each of the plots, three curves shows the match distributions using BLAST, BBH
and TRIANGLE. As fewer genomes were used, the curve grew fast and the lower bound of the curve also increased. Note that two parameters in the logistic
curve equation can effectively model the change in the curve shapes.

the effect of the number of reference genome sets and the effect
of phylogenetic distance using three sequence matching techniques
BLAST, BBH and TRIANGLE. Figures 2 and 3 are example of how
a modified logistic curve fits with various genome selections. In all
the experiments, the logistic curve fit very well the distribution of
the number of matches.

3.2 Effect of the number of reference genomes and
their phylogenetic distance on ACS

In the previous section, we showed that the number of expected
matches fits well the logistic curve for different number of reference
genomes and for reference genomes with various phylogenetic
distances. Here, we demonstrated that ACS is a score reflecting

the quality of genome annotation in various situations with different
number of reference genomes and with reference genomes of various
phylogenetic distances. Supplementary Material 2 shows that ACS
of the same gene does not change much by the number of reference
genomes and their phylogenetic distance.

3.3 ACS cutoff setting
It is difficult to advise what value the ACS cutoff sets to. Setting
a cutoff value for ACS is analogous to setting an e-value cutoff
for BLAST searches, on which no consensus has been made yet.
However, it will be useful to have some guideline for ACS cutoff
setting. Thus, we performed a series of experiments with well-
annotated genomes. In the experiment shown in Figure 4, we used
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Fig. 4. ACS distribution comparison between original annotations and
annotations of 100 randomly sampled genes from E.coli. The original
annotation of each gene was replaced by the annotation of a randomly
selected BLAST match and ACS of the gene was recalculated. For each
gene, this process repeated 30 times. The filled density plot with a label
‘real’ on the right side is the density of ACSs of 100 original annotations.
Each of unfilled 30 density plots with label ‘random’ on the left side is a
density plot of ACSs of the 100 genes with randomly replaced annotations.
At ACS value of 0.5, overlaps between the density plots were minimal, which
suggested that 0.5 would be a good ACS cutoff value.

100 genes randomly sampled from E.coli. These 100 genes were
manually inspected so that only meaningful annotations were used.
For example, genes with annotation something like ‘uncharacterized
protein’ were not included. Fifteen Gammaproteobacteria genomes
were used as reference genomes. Then, original annotation of each
gene was replaced by annotation of a randomly selected BLAST
match and ACS of the gene was recalculated. For each gene,
this process repeated 30 times. The results of ACSs of 100 genes
were summarized as density plots in Figure 4 and box plots in
Supplementary Material 5. The density plots were generated using
density function with gaussian kernel in R. The filled density
plot with a label ‘real’ on the right side in Figure 4 is the density
of ACSs of 100 original annotations. Each of unfilled 30 density
plots with a label ‘random’ on the left side is a density plot of
ACSs of 100 genes with randomly replaced annotations. As shown,
there were only small overlaps between ACS density plots with
original annotations and with randomly replaced annotations; note
that some of randomly replaced annotations can be the correct ones.
The difference between ACS distributions is also clear in the box
plots (Supplementary Material 5). Both the density plots and the
box plots suggested that ACS of gene with a randomly replaced
annotation be unlikely to go beyond 0.5. In addition, the choice of
the ACS cutoff value of 0.5 is reasonable since about 60–70% of
genes in many genomes in experiments with many different setting
are >0.5 (for an example, see Fig. 5), thus annotators will need
to look at about 30–40% of genes in a target genome manually.
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Fig. 5. Confidence score with nine combinations of genome and gene
weights in three panels: (A) uniform, (B) 16S phylogeny, and (C) status.
The legend “xxx,yyy” represents a genome weight ‘xxx” and a gene weight
“yyy.” Box plots for three genome level weights are grouped with three gene
level weights. See detail in text. As shown, both genome and gene weights
improved ACS in terms of the median ACS and the range of ACS as an
indication of a better discrimination.

Although 30–40% of genes are many, there are quite a number of
genes with not very meaningful annotations such as ‘hypothetical
proteins’ or ‘uncharacterized proteins’, which annotators would not
spend much time on.

3.4 Textual variations
We performed experiments with Escherichia coli K12 as a target
genome and 10 reference genomes in Enterobacteriaceae to study
the effect of text comparison issues on ACS. Supplementary
Material 3 shows examples of the improvement of reliability in ACS
after removing stop words and by using MeSH lookup.

3.5 Performance of the rank-based ACS for BLAST
By default, we use a rank-based approach for computing ACS for
weighting BLAST matches. Supplementary Material 4 shows that
there is no significant difference among the three scoring schemes:
the rank-based, −log(e-value) and bit score.

3.6 Effect of different weight schemes for ACS
It would be desirable to use weighting schemes for matches
based on phylogenetic distances of genomes and annotation
quality of genes. We used six different weighting criteria, three
at the genome level and three at the gene level, and evaluated
weighting criteria on all nine combinations of different weighting
settings.

The first genome weight, called equal-genome-weight, assigned
an equal unit weight to each reference genome. The second
genome weight, called phylo-genome-weight, used phylogenetic
distance of genomes using 16S rRNAs of reference genomes as
a genome weight. By computing multiple sequence alignments of
16S rRNAs from target and reference genomes using CLUSTALW

27

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/1/22/182256 by guest on 10 April 2024



[09:00 16/12/2009 Bioinformatics-btp613.tex] Page: 28 22–29

Y.Yang et al.

(Thompson et al., 1994), distance di between a target genome and
each reference genome Gi was obtained. We used −log(di) as
a genome weight for a genome Gi. The third genome weight,
called quality-genome-weight, considered the annotation quality of
a reference genome, where the quality information was determined
by counting at how many genes in the genome were in ‘reviewed’
status in UniProtKB/Swiss-Prot. The weight was set as a ratio of
the number of genes with annotations where their status is reviewed
divided by the total number of proteins in the genome.

The first weight at the ‘gene level’, called equal-gene-weight, was
an uniform gene weight of 1. The second weight at the gene level,
called citation-gene-weight, considered the number citations of a
matching gene used for its annotation. We used reference record
count—‘RN’ line in UniProtKB/Swiss-Prot. We assigned RN+1 as
a gene weight. A pseudo count of 1 was added to avoid division by
zero and the weights were normalized. The third weight at the gene
level, called evidence-gene-weight, was to utilize protein evidence
(PE) code of each gene in UniProt. There are five types of evidence
for the existence of a protein and PE was 1 for evidence at protein
level, 2 for evidence at transcript level, 3 for inferred from homology,
4 for predicted and 5 for uncertain. (Protein existence, 2008). We
used 1/2PE as a gene weight.

To evaluate the effect of the weighting schemes, we performed
experiments using Salmonella paratyphi A as a target genome and
15 Gammaproteobacteria genomes as reference genomes. Out of
the 15 reference genomes, 14 were chosen randomly. Escherichia
coli K12 was used as a reference genome to see an effect of using
a well-annotated model organism as a reference genome. Figure 5
shows the results from the experiments.

The leftmost three boxes show a result when the equal-genome-
weight scheme was used. The three boxes in the middle show
a result when the phylo-genome-weight scheme was used. The
rightmost three boxes show a result when the quality-genome-
weight scheme was used. Left boxes (1st, 4th and 7th boxes) in
each genome weighting scheme show a result of equal-gene-weight,
middle boxes (2th, 5th and 8th boxes) in each genome weighting
scheme show a result of citation-gene-weight and right boxes (3rd,
6th and 9th boxes) in each genome weighting scheme show a result
of evidence-gene-weight.

We first discuss the effect of using genome weight. Increase in
ACS using the phylo-genome-weight scheme (‘16S’ in the figure)
compared with equal-genome-weight (‘unit’ in the figure) was
because target genes had more homologs in close genomes and
they were weighted higher than remote genomes. Using the quality-
genome-weight scheme (‘status’ in the figure), ACS was further
increased because genes in the well-annotated model organism had
higher weights. In the experiment, the genome weight of E.coli was 1
since all genes in E.coli were reviewed and the next highest genome
weight except E.coli was 0.2679. This resulted in increasing ACS of
a gene annotation significantly when there were only a few matches
including a match in E.coli because genes in E.coli had much higher
genome weights.

Use of gene weight also increased ACS significantly. Use of
the citation-gene-weight scheme (‘bib’ in the figure) increased
ACS significantly than no-gene-weight (‘unit’ in the figure) in all
three different genome weight settings. This was because the well-
annotated model organism, E.coli in this experiment, had many
citations for each gene. Use of the evidence-gene-weight scheme
(‘code’ in the figure) further increased ACS in all three different

genome weight settings. This showed that PE code was an effective,
informative gene-level weight scheme for ACS.

4 CONCLUSIONS
New sequencing technologies have enabled small research labs
to sequence genomes easily. However, annotation of genomes
remains a significant challenge. The annotation scoring scheme,
ACS, which we proposed in this article is a tool that can
reduce genome annotation cost significantly. For example, users
can use annotation services such as CMR (http://cmr.jcvi.org/tigr-
scripts/CMR/CmrHomePage.cgi) at JCVI or IMG (Markowitz et al.,
2008) at JGI. Then the use of ACS can reduce the number of
gene annotations that should be reviewed manually. In addition,
reannotation of existing genomes can be speed-up reliably with use
of ACS.

ACS effectively combines both sequence and textual similarity to
denote the quality of annotation. Extensive experiments with many
different reference genome sets demonstrated thatACS was effective
to denote the annotation quality for reference genomes of various
phylogeny and for varying number of genomes. ACS also can handle
many issues in textual annotations such as use of abbreviations and
synonyms. We found that quality weightings based on sequence
homology, taxonomic distance and textual similarities all improved
the overall score when used appropriately for the dataset as shown
in Section 3.6.

Aconfidence measure likeACS depends on accurate and complete
databases for quality information, such as MeSH and BioThesaurus,
which are not as complete as desired. We have shown that combining
several measures of quality information will improve the result.
Missing information in one quality source can be made-up for by
addition of other quality sources.

In general, this approach to summarize annotations from reference
genomes as a quality score, derived from the three domains of
sequence homology, taxonomic distance and textual similarities, can
be extended to all kingdoms of life although our examples focused
on microbial genomes.

As a future study, we are looking into improving ACS by using
more resources that can be useful to generate confidence score,
such as protein domain, protein structure, GO and other annotation
quality measures on genes, e.g. abnormal protein analysis (Nagy
et al., 2008).
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