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ABSTRACT

Motivation: Modelling antigenic shift in influenza A H3N2 can help
to predict the efficiency of vaccines. The virus is known to exhibit
sudden jumps in antigenic distance, and prediction of such novel
strains from amino acid sequence differences remains a challenge.
Results: From analysis of 6624 amino acid sequences of wild-
type H3, we propose updates to the frequently referenced list of
131 amino acids located at or near the five identified antibody binding
regions in haemagglutinin (HA). We introduce a class of predictive
models based on the analysis of amino acid changes in these binding
regions, and extend the principle to changes in HA1 as a whole by
dividing the molecule into regional bands.

Our results show that a range of simple models based on banded
changes give better predictive performance than models based on
the established five canonical regions and can identify a higher
proportion of vaccine escape candidates among novel strains than
a current state-of-the-art model.
Contact: wlees01@mail.cryst.bbk.ac.uk
Supplementary information: Supplementary Data is available at
Bioinformatics online.
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1 INTRODUCTION
Seasonal influenza poses a serious world-wide threat to public
health, with up to 500 000 deaths being attributable on average to
annual influenza epidemics (WHO, 2009). Of particular concern
are strains of influenza A. The trimeric viral surface protein
haemagglutinin (HA) of influenza A, which contains the host cell
receptor binding site, is the primary focus of successful attack
by natural antibodies; antibodies binding to the sister surface
protein neuriminidase are not generally considered to prevent
infection. HA is synthesized as a single polypeptide chain that
subsequently cleaves into two chains, HA1 (328 amino acids) and
HA2 (221 amino acids). The two chains are covalently attached by
a disulfide bond (Wiley and Skehel, 1987).

HA’s rapid evolution through nucleotide polymorphism allows
it to escape antibody activity periodically through antigenic
drift, leading to epidemics and requiring regular updates to the
recommended vaccine composition [a separate mechanism, genetic
reassortment between viral strains and between species, is usually
responsible for the much larger antigenic shifts causing pandemics
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(Lamb and Krug, 2001)]. Influenza H3N2 has been the most
frequently occurring subtype of influenzaAin human infections over
the last 40 years (Cox and Subbarao, 2000). Its HAcomponent, H3, is
antigenically distinguishable from that of other numbered subtypes
(Skehel, 2009).

In the laboratory, the haemagglutinin inhibition (HI) test is used to
characterize an influenza strain antigenically (WHO, 1953). Given
an antiserum raised against influenza strain i, cij is the minimum
serum concentration that is required to inhibit agglutination of
viruses of strain j. In the HI test cij and cii are measured by
diluting serum until agglutination no longer takes place (HI results
are conventionally expressed as dilutions, but in keeping with
more general chemical practice we will use concentrations in this
summary). Burnet and Lush (1940) proposed the ratio

Rij =cij/cii (1)

as an indicator of the potential effectiveness of a vaccine based on
strain i in controlling a viral infection by strain j. If Rij is four or
less then the vaccine is considered effective. This is known as the
antigenic escape threshold. It should be noted that in general

Rij �=Rji (2)

The geometric mean of the above ratios (RijRji)1/2 was introduced
by Archetti and Horsfall (1950) as a measure of antigenic variation
and has been shown to be a superior predictor of vaccine
effectiveness against a particular strain than simple concentration
ratios (Ndifon et al., 2009).

Lapedes and Farber (2001) demonstrated that a ‘shape space’ of
low dimensionality can be constructed in which antisera and antigens
are treated as points, with the distance between them (the ‘antigenic
distance’) being linearly related to the logarithm of the concentration
ratio. The equation

Dij = 1

2
log(RijRji) (3)

will be used in the current work as a measurement of antigenic
distance between strains i and j.

Five regions of the HA1 monomer have been found to undergo
mutations when the virus is cultured in the presence of monoclonal
antibodies, eventually leading to antibody escape. These regions are
presumed to encompass the sites at which antibodies bind to HA1
(Wiley and Skehel, 1987; Wiley et al., 1981; Wilson and Cox, 1990);
they are conventionally labelled sitesAto E.Another factor known to
affect immunogenicity is the presence or absence of N-glycosylation
sites (Skehel et al., 1984).
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Modelling the antigenic distance between two influenza strains
of the same subtype via amino acid sequence analysis can provide
a rapid indication of the likelihood that an existing vaccine will
protect against a newly identified strain, and also facilitates study
of the virus’s evolution in response to antibody pressure. An early
proposal was that, to achieve antibody escape, a strain would have
to develop at least one mutation in each of the five antigenic sites
(Wiley et al., 1981). More recent models have focussed on the
analysis of ‘immunodominant’ amino acid locations (Huang et al.,
2009; Lee and Chen, 2004; Liao et al., 2008). The evolutionary
selective pressure on specific locations has been shown to vary over
time (Blackburne et al., 2008), suggesting that the significance of a
specific location in determining the strength of the immune response
may change over time.

Bush and co-workers drew up a list of 131 varying amino acid
residues at or near the five antigenic sites (Bush et al., 1999), and
this list of residues is used in a number of subsequent studies (see,
for example, Blackburne et al., 2008; Lee and Chen, 2004; Plotkin
and Dushoff, 2002; Smith et al., 2004). The list was developed by
identifying locations at which amino acids had undergone variation
across a sample of 357 HA1 sequences obtained from wild-type
viruses between 1968 and 1999. These locations were mapped onto
the protein using an X-ray crystal structure of the A/Aichi/2/68 strain
(PDB 1HGD; Sauter et al., 1992). Variant residues at or near the
five antigenic sites were included in the list provided that molecular
modelling software demonstrated that the amino acid surface was
exposed. Variant residues that were buried, or did not lie near to an
antigenic site, were excluded from the list. (The exact criterion of
‘nearness’ for a residue to be included in the list is not specified in
the referred paper.)

The approach taken in constructing this list of residues has
two implications for bioinformatics researchers. Firstly, the list is
de facto retrospective; residues that did not vary across the sample
of 357 strains were not considered for inclusion. This limits the
predictive power of antigenic models based on the set; if a strain
is found that contains variations at as yet unconsidered locations,
the new locations must be considered and if necessary added to
the model before predictions are made. The second and related
implication is that the list should be reviewed periodically in the
light of newly identified varying locations.

In this article, we present the results of such a review, and develop
antigenic models based on antibody binding site variations using
both the original and extended lists of residues. In addition, we
develop models using the extended list that are independent of the
standard assumptions about the relevance of sites A to E.

2 METHODS

2.1 Assigning residues to antigenic sites
All available wild-type human H3N2 HA1 amino acid sequences of length
328 or greater were obtained from the NIAID BioHealthBase BRC (6624
in total) and aligned using MUSCLE (Edgar, 2004). The structure of the
A/Aichi/2/68 HA trimer was obtained from the Protein Data Bank (PDB
1HGD; Sauter et al., 1992). Interface analysis of this structure was extracted
from the European Bioinformatics Institute’s Protein Interfaces, Surfaces and
Assemblies server (PISA) (Krissinel and Henrick, 2007).

The co-ordinates of Cα atoms were obtained from the structure, and the Cα

co-ordinates of those locations identified in the original list of 131 residues
(Fig. 1a) were used to derive the range of each of the five antigenic sites

(a)

(b)

Fig. 1. Original and expanded set of antigenic residues. Antigenic residues
shown on a single monomer of A/Aichi/2/68 HA1. (a) Original 131 residues
in black, proposed additions in grey, others white. (b) Original and expanded
residues in black, others in white.

in terms of their x-, y- and z-co-ordinates. All residues that had a non-
zero exposed surface area in the trimeric structure as determined by PISA,
varied between sequences and were outside the original set of 131 were then
considered. Those whose Cα atom lay within 2 Å of the range of an antigenic
site as calculated above was assigned to that site (the 2 Å tolerance makes
some allowance for error and thermodynamic movement in the determined
structure while maintaining the integrity of the sites as originally defined).
Where, using these calculations, a residue lay in range of more than one
antigenic site, it was assigned to the site containing the closest Cα atom to
that under consideration.

2.2 Training and validation sets
For our study of model performance, we created a database of HI test results
from a total of 46 published sources, including published papers and annual
reports of WHO testing centres in the UK, the USA and Australia (references
are given in the Supplementary Material). From this database, we derived
a training dataset of Archetti and Horsfall distance measurements between
strains isolated up to and including the year 2000, and a validation dataset of
measurements between later strains, in both cases including just those strains
for which HA1 gene sequences were available from Genbank. Samples
isolated after 2000 giving abnormally low homologous titres (<1280) were
eliminated in order to avoid known issues with mammalian cultured samples
in the predominantly egg-based current testing environment (Hay et al.,
2007). Pairwise samples between a pre- and post-2000 isolate were not
included in either dataset. This strict segmentation focuses the evaluation
on the prediction of novel strains in contrast to the approach taken by some
other authors (Lee and Chen, 2004; Liao et al., 2008).

Having undertaken these steps, our training set comprised 203 samples
(163 at or above the antigenic escape threshold and 40 below the threshold),
and our validation set 90 samples (34 at or above the threshold and 56 below
the threshold).

2.3 Linear models
To explore the predictive power of models based on the data described above
for the five canonical antigenic sites, together with any associated changes
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in glycosylation, we constructed linear models of the form:

Dc
ij = x1NA

ij +x2NB
ij +x3NC

ij +x4ND
ij +x5NE

ij +x6NDIFF
ij (4)

+x7NNON
i +x8NGLYADD

ij + x9NGLYCHANGE
ij +k

Here Dc
ij is the calculated distance between the strains i and j, NA

ij …NE
ij are

the number of residues that change in site A …E between strains i and j,
NDIFF

ij is a count of the total number of antigenic sites that contain amino

acid variations between the two strains, NNON
ij is a count of the number of

amino acid residues outside the antigenic sites that vary between the strains.
N-linked glycosylation occurs where an oligosaccharide chain is attached

to asparagine in an amino acid sequence of the form Asn-X-Ser/Thr,
where X is any amino acid apart from proline: this sequence is known
as an N-glycosylation sequon (Marshall, 1974). NGLYADD

ij is the difference
between the number of N-glycosylation sequons in strains i and j, and
NGLYCHANGE

ij is a count of the number of sequons shared by strain i and strain
j but differing in sequon composition. Variables x1 to x9 and a constant k are
parameters determined by minimizing the least squares residual S given by

S =�(Do
ij −Dc

ij)
2 (5)

where Do
ij is the observed distance between the strains i and j, derived from

the training dataset using Equation 3.
To gain some insight into the significance of dividing the antigenically

active region of HA1 into five sites, we also tested a simpler model of the
form:

Dc
ij = x1

(
NA

ij +NB
ij +NC

ij +ND
ij +NE

ij

)
(6)

+x7NNON
ij +x8NGLYADD

ij +x9NGLYCHANGE
ij +k

This gives an identical weighting to changes at any of the five sites.
Finally, we modelled variation across all amino acid residues in the HA1

polymer:

Dc
ij = x1NALL

ij + x8NGLYADD
ij + x9NGLYCHANGE

ij +k (7)

Where NALL is the number of amino acids that change across all locations
in the HA1 polymer, irrespective of whether or not they are associated with
one of the canonical sites.

The models in Equations 4, 6 and 7 are referred to as the ‘5 site’, ‘1 site’
and ‘whole monomer’ models respectively.

Although the preceding models give a sense of whether five sites have
more predictive power than one or zero, they do not investigate whether these
canonical sites are significant in themselves. Consequently we tested several
additional control models of the general form given in equation 4 above,
but with the ‘antigenic sites’ positioned without reference to the canonical
locations and with the number of terms varying according to the chosen
number of artificial sites. Amino acids determined by PISA to have non-zero
solvent surface area were allocated to these artificial sites depending on the
distance of their Cα atom in the A/Aichi/2/68 structure from the Cα atom
of residue 158 (GLY), which is at the extreme membrane-distal end of the
monomer. In models M1–M7, the artificial sites were constrained to amino
acids within 70 Å of residue 158, covering the complete region occupied
by the five sites in the 131-residue and 241-residue sets. In models M8 and
M9, the artificial sites extend over nearly the entire length of the monomer
(100 Å from site 158). The boundary ranges of these artificial sites are shown
in Table 1.

2.4 Performance metrics
All models were tested on their ability to successfully predict ‘escapees’,
i.e. those pairs where the antigenic distance between two strains was above
the antigenic escape threshold (log−1Dab = 4). Performance was evaluated
according to the criteria described below, each expressed as a percentage,
where tp is the number of true positives, tn is the number of true negatives,
fp is the number of false positives and fn is the number of false negatives.

Table 1. The range of artificial sites

Model name and extent of artificial sites

M1 M2 M3 M4 M5 M6 M7 M8 M9

0–30 0–20 0–15 0–10 0–8 0–7 0–6 0–20 0–10
30–70 20–40 15–30 10–20 8–16 7–14 6–12 20–40 10–20

40–70 30–50 20–30 16–25 14–23 12–20 40–60 20–30
50–70 30–50 25–40 23–33 20–28 60–80 30–40

50–70 40–55 33–45 28–38 80–100 40–50
55–70 45–57 38–48 50–60

57–70 48–58 60–70
58–70 70–80

80–90
90–100

The range of each site measured in Angstroms from residue 158 for each of the control
models implemented for this article.

Sensitivity is the ability of the model to forecast escapees in the validation
set, given by:

tp(
tp+fn

) . (8)

Specificity is the ability of the model to forecast non-escapees in the
validation set, given by:

tn(
tn+fp

) (9)

The Matthews correlation coefficient (MCC) provides a balanced measure
of a model’s ability to make accurate predictions for the validation set, one
that penalizes both false positives and false negatives (Matthews, 1975). It
is given by the following formula:

((
tp∗tn

)−(
fp∗fn

))
√((

tp+fp
)∗(

tp+fn
)∗(

tn+fp
)∗(

tn+ fn
)) (10)

For comparison, we include in our results the performance of a multiple
regression model published by Liao et al. (2008), using 20 immunodominant
amino acid locations identified in that work and grouping changes by method
GM6 as described by the authors.

2.5 Elimination of false positives
The linear models considered here, in common with many reported by others
(Lee and Chen, 2004; Liao et al., 2008; Huang et al., 2009), correctly identify
the vast majority of escapees (high sensitivity), but tend to overpredict the
number of escapees (relatively lower specificity).

On examination of the results, we observed a high number of false
positives among those samples with relatively few mutations in the regions
under consideration. To create a model with more balanced predictive
properties, we therefore introduced a screening step, in which all positive
results were examined, and those which had fewer than a specified ‘cutoff’
number of amino acid changes in the regions under consideration were
rejected. Given that there is a high correlation between the number of changes
and the antigenic distance (Lee and Chen, 2004), this appears a reasonable
step to take.

3 RESULTS

3.1 Assignment of residues
Across our sample of 6624 sequences, only 19 residues in the HA1
polymer exhibited no variation. A further 20 showed variation only
in samples isolated in years 2000–2009, and 23 showed variation
only in samples isolated in years 1968–1999. Of the 19 sites
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Table 2. Our classification of HA1 amino acid residues

Number of
residues

Classification

131 Previously identified antigenic residues (including five
classified by PISA as buried).

16 Additional residues classified by PISA as buried.
16 Surface exposed residues invariant across all samples.
109 Additional residues assigned to antigenic sites.
56 Variant residues distant from antigenic sites (and therefore

not assigned).
=328 Total amino acid residues in the HA1 polymer.

Table 3. The assignment of amino acid residues to five antigenic sites

Site Previously identified residues Proposed additional assignments

A 122, 124, 126, 130–133, 135,
137, 138, 140, 142–146, 150,
152, 168 (n = 19)

71–72, 98, 127, 141, 148–149,
151, 255 (n = 28)

B 128, 129, 155–160, 163–165,
186–190, 192–194, 196–198
(n = 22)

161–162, 199 (n = 25)

C 44–48, 50, 51, 53, 54, 273, 275,
276, 278–280, 294, 297, 299,
300, 304, 305, 307–312
(n = 27)

41–43, 49, 52, 55, 271–272,
274, 282, 284–285, 287–293,
295–296, 298, 301–303,
313–314 (n = 54)

D 96, 102, 103, 117, 121, 167,
170–177, 179, 182, 201, 203,
207–209, 212–219, 226–230,
238, 240, 242, 244, 246–248
(n = 41)

95, 97, 99–101, 104–105, 107,
118, 120, 166, 169, 178, 180,
183–184, 200, 204–206,
210–211, 220–225, 231–236,
239, 243, 245, 257–258
(n = 80)

E 57, 59, 62, 63, 67, 75, 78,
80–83, 86–88, 91, 92, 94,
109, 260–262, 265 (n = 22)

56, 58, 60, 64–65, 68–70,
73–74, 76–77, 79, 84–85,
89–90, 93, 110–115, 119, 259,
263–264, 267–270 (n = 54)

The assignment of amino acid residues (that vary between strains) in HA1 to the five
canonical antigenic sites. The total number of residues belonging to a given site is given
in brackets.

exhibiting no variation, 3 are classified by PISA as buried, leaving
16 residues with exposed surface area invariant across all samples
(Table 2).

Where a residue could potentially be assigned to more than one
site it was assigned to the site with the nearest Cα atom (see Table 3).

Figure 1 shows the locations of the antigenic sites with the original
set of 131 residues and our revised set of 241 residues. As can be
seen, the effect of increasing the number of residues is to extend the
defined sites so that they almost completely cover the membrane-
distal end of the protein chain, with the remaining gaps comprising
buried and invariant locations.

3.2 Performance of antigenic models
The results of training and evaluating our linear models (as specified
in section 2.3-2.5) using the datasets described in Section 2.2
have several striking features (Table 4). Firstly, the multi-site
models produced significantly better performance (in terms of

Table 4. Antigenic model performance

Model Sites Sensitivity Specificity MCC

Original 131 residues 5 88 54 42
Original 131 residues 1 82 36 19
Proposed 241 residues 5 100 38 43
Proposed 241 residues 1 100 9 19
Whole monomer – 100 0 NaN
M1 2 100 38 43
M2 3 100 48 51
M3 4 97 48 47
M4 5 97 57 55
M5 6 100 52 54
M6 7 100 48 51
M7 8 85 59 43
M8 5 100 48 51
M9 10 91 64 54
After Liao et al. (see text) – 83 73 54

The performance of the antigenic models described in Section 2.3 without screening as
specified in Section 2.5 measured using the metrics defined in Section 2.4 (all of which
are percentages).

both specificity and MCC) than their 1 site and whole monomer
counterparts. An analysis of the coefficients x1 … x9 reveals
contribution of all parameters to the predictive power of the model,
demonstrating that antigenic distance is related to concurrent change
in multiple regions of the HA1 monomer and indicating the need for
some division of the monomer into sites or regions in order to obtain
predictive power.

Secondly, the MCC of our unscreened 241-residue models is
within 1% of the 131-residue models, while their sensitivity is
significantly increased. The former are able to predict a greater
number of the escapees, indicating that the additional positions have
antigenic activity, but the rate of false positives is also increased.

Thirdly, and perhaps most significantly, the MCCs of all the
novel ‘artificial site’ models are higher than those based on the five
canonical sites, and in several instances significantly higher (around
12 percentage points). These results suggest that epitopes are not
confined to the canonical sites. Indeed, the performance of the M8
and M9 models, both of which take into account the largest number
of surface residues (ranging up to 100 Å from the distal end of the
molecule), suggests that epitopes may be located at points further
towards the proximal end of the monomer than previously identified.

The screening step described in Section 2.5 can improve the
overall performance of all models at the expense of some sensitivity.
By varying the cutoff between 0 and 10, we obtained MCC values of
between 53% and 62%, with sensitivities between 97% and 74%, and
specificities between 57% and 80% (Fig. 2). This demonstrates an
ability to create a predictive model with the desired balance between
sensitivity and specificity for a particular application.

One possible explanation for the high rate of false positives
obtained by the linear models is that antigenic escape requires
amino acid variations at locations across a substantial proportion
of the docking area of an antibody. As can be seen from the few
available antibody docking X-ray studies, this area can be extensive,
spanning two or even three of the five antigenic sites identified from
monoclonal antibody studies—see PDB 1EO8 (Fleury et al., 2000)
(Fig. 3) and PDB 2VIR (Fleury et al., 1998) (Fig. 4). Variation at
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Fig. 2. Receiver operating characteristic (ROC) curves for selected models.
ROC curve (Metz, 1978) for models M4, M5 and the 131 location 5 site
model (131–5), obtained by applying the screening step described in
Section 2.5, with cutoff values between 0 and 10.

Fig. 3. The HA1/antibody interface for structure PDB 1EO8. The antibody
is shown in grey. The 241 residues from our extended list are in black, other
HA residues in white.

sufficiently widespread locations would be a necessary but not a
sufficient condition for escape, since variation at locations outside
the docking area would have no effect. All model types we have
discussed will be sensitive to the area over which variations are
spread, either through the count of ‘antigenic sites’ experiencing
variation, or through the count of ‘antigenically critical residues’
that vary, which are typically spread widely across the surface region
(see for example Fig. 3 in Huang et al., 2009).

This mechanism would explain why better predictive performance
is obtained in this study by multi-site models compared to single or
zero site models. It would also explain the larger number of false
positives seen in the 241-residue model compared to the 131-residue
model, as, with the larger number of residues in the former, there is
greater opportunity for the model to be misled by mutations outside
the antibody docking area.

Neutral mutations outside any current antibody binding site could
also lead to false positives. If, as we suggest, there are no fixed

Fig. 4. The HA1/antibody interface for structure PDB 2VIR. The antibody
is shown in grey. The 241 residues from our extended list are in black, other
HA residues in white.

sites, the type of model we have studied would have no ability to
distinguish such mutations.

The ability of the best ‘artificial sites’ models to identify vaccine
escape exceeds that of the ‘immunodominant sites’ model that we
have referenced when run on our dataset (MCC 62% against 54%).
The relatively lower performance of the referenced model presented
here as compared to that previously published [sensitivity 83%,
specificity 73% against previously published results of sensitivity
95%, specificity 80% (Liao et al., 2008)] underlines the comparative
difficulty of predicting novel strains: not only have we strictly
segregated reference strains between training and validation sets, but
also we have selected a cutoff year between training and validation
sets that is close to an antigenic cluster transition. By changing the
cutoff year and relaxing the strict segregation, we can reproduce
results that match those previously published with the reference
model and performance of our ‘artificial sites’ models improves
correspondingly.

4 DISCUSSION
In this article, we have presented an updated set of varying amino
acid residues close to the five antigenic sites identified in the 1980s
by monoclonal antibody studies, using the same mechanism that was
used to produce the original set, but taking advantage of the much
larger number of HA1 sequences now available (6624 compared
to the original 357). The amount of the surface covered by this
much larger set, plus the analysis of the predictive models we
have presented, lends support to the idea that neutralizing antibody
epitopes can occur at many points within 70 Å, or even 100 Å, of
the distal end of the HA1 monomer.

The models we have described are simple in their approach,
and we believe that their performance can be further extended by
incorporating more sophisticated measures of the region and density
of amino acid variation. Likewise, while we have focussed on the
H3 subtype of Influenza A, we anticipate that the approach would
extend to other subtypes of interest such as H1 and H5. Our ‘artificial
sites’ approach is particularly promising as it is not inherently data
dependent; all surface residues within a given range of the distal end
of the HA1 molecule can be incorporated irrespective of whether
they have been shown to vary within existing strains. Use of the
models could be combined with the use of an ‘immunodominant
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sites’ model to provide sensitivity both towards previously observed
and as yet unmodelled variation.

Given the comparatively large surface area of interface between
HA1 and an antibody observed in the referenced X-ray studies, it is
likely that antigenic escape requires antibody mutations across an
equally large area. The requirement for mutations to be distributed
across such an area can be seen as a side effect of current predictive
models of both the ‘antigenic site’ and ‘antigenically critical residue’
types. Whether such models are based on any deeper biological
mechanisms is still to be determined—there may or may not turn
out to be particular regions of HA1 to which antibodies bind—
however, we have presented evidence from our models that they are
not clearly delineated by the canonical five sites, and indeed this is
supported by the two X-ray studies cited.

Current models tend to produce significant numbers of false
positives. We have demonstrated the ability of a screening step to
create a model with more balanced predictive powers and better
overall performance, at the expense of reduced sensitivity. It may
be possible to improve performance further by developing methods
capable of relating the spatial relationship between mutated residues
to the shape of potential epitopes at a given location.
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