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ABSTRACT

Motivation: The availability of modern sequencing techniques has
led to a rapid increase in the amount of reconstructed metabolic
networks. Using these models as a platform for the analysis
of high throughput transcriptomic, proteomic and metabolomic
data can provide valuable insight into conditional changes in
the metabolic activity of an organism. While transcriptomics and
proteomics provide important insights into the hierarchical regulation
of metabolic flux, metabolomics shed light on the actual enzyme
activity through metabolic regulation and mass action effects.
Here we introduce a new method, termed integrative omics-
metabolic analysis (IOMA) that quantitatively integrates proteomic
and metabolomic data with genome-scale metabolic models, to
more accurately predict metabolic flux distributions. The method is
formulated as a quadratic programming (QP) problem that seeks a
steady-state flux distribution in which flux through reactions with
measured proteomic and metabolomic data, is as consistent as
possible with kinetically derived flux estimations.
Results: IOMA is shown to successfully predict the metabolic state
of human erythrocytes (compared to kinetic model simulations),
showing a significant advantage over the commonly used methods
flux balance analysis and minimization of metabolic adjustment.
Thereafter, IOMA is shown to correctly predict metabolic fluxes
in Escherichia coli under different gene knockouts for which both
metabolomic and proteomic data is available, achieving higher
prediction accuracy over the extant methods. Considering the
lack of high-throughput flux measurements, while high-throughput
metabolomic and proteomic data are becoming readily available, we
expect IOMA to significantly contribute to future research of cellular
metabolism.
Contacts: kerenyiz@post.tau.ac.il; tomersh@cs.technion.ac.il

1 INTRODUCTION
Modern genome-sequencing capabilities have led to the generation
of genome-scale metabolic network reconstructions for many
microorganisms, giving rise to more than 50 highly curated
metabolic reconstructions that have been published to date (Duarte
et al., 2004; Feist and Palsson, 2008). A metabolic network
reconstruction is composed of a set of biochemical reactions,
and the associations between these reactions and their enzyme-
coding genes. The constraint-based modeling (CBM) computational
framework serves to analyze the functionality of these genome scale
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models, enabling the prediction of various metabolic phenotypes
in microorganism such as growth rates, nutrient uptake rates, by-
product secretions and gene essentiality (Price et al., 2004). CBM
has been used for a variety of applications including the comparative
metabolic analyses over multiple organisms (Blank et al., 2005; Lee
et al., 2009), drug discovery (Gordana et al., 2005), metabolic flux
analysis (Rantanen et al., 2008), studies of network evolution (Fong
et al., 2005) and metabolic engineering tasks (Pharkya et al., 2004).

Using metabolic models as scaffolds for the analysis of
high throughput data such as transcriptomics, proteomics and
metabolomics suggests the possibility of inferring condition-
dependent changes in the metabolic activity of an organism.
Developing computational methods capable of predicting metabolic
flux by integrating these data sources with a metabolic network
is hence a major challenge of metabolic network modeling.
Previous investigations have already utilized CBM to integrate
high-throughput molecular datasets with a metabolic network in a
qualitative manner: The methods developed by Åkesson et al. (2004)
and Becker and Palsson (2008) use gene expression data to identify
genes that are absent or likely to be absent in certain contexts.
They then search for metabolic states that prevent (or minimize) the
flux through the associated metabolic reactions. A recent method
by Shlomi et al. (2008) considers data on both lowly and highly
expressed genes in a given context, as cues for the likelihood that
their associated reactions carry metabolic flux and employs CBM
to accumulate these cues into a global, consistent prediction of the
metabolic state. The lack of dependency on a cellular objective is a
marked advantage of this approach as the latter is difficult to define
for multi-cellular organisms.

While transcriptomics and proteomics data provides important
insight into hierarchical regulation of metabolic flux (representing
the control over the maximum activity of enzymes—i.e. vmax),
metabolomics may provide information on an additional level of
regulation called, metabolic regulation (Rossell et al., 2006). The
latter denotes the effect of metabolite concentrations on actual
enzyme activity through mass action, kinetic and allosteric effects.
A previous CBM method for integrating metabolomic data with
a metabolic network model, thermodynamic-based metabolic flux
analysis (TMFA) (Henry et al., 2007), derives constraints on
reaction directionality from metabolite concentration data based
on thermodynamic principles. Another method by Cakir et al.
(2006) integrates quantitative metabolome data with genome-scale
models to identify reporter reactions, defined as the set of reactions
that respond to genetic or environmental perturbations through
coordinated variations in the levels of surrounding metabolites.
Currently, however, there is no CBM method that enables the
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integration of quantitative metabolomic data with a metabolic
network model to directly infer the metabolic fluxes themselves.

In this article we introduce a novel CBM method, integrative
omics-metabolic analysis (IOMA), for integrating quantitative
proteomic and metabolomic data with genome-scale metabolic
network models to predict metabolic flux. This is achieved primarily
by considering a mechanistic model of reaction rates. The method is
formulated as a quadratic programming (QP) problem (Nocedal and
Wright, 2006) geared to find a feasible, steady-state flux distribution,
such that: (i) a set of stoichiometric mass-balance and enzymatic
directionality constraints are satisfied; (ii) the flux through a core set
of reactions for which measured proteomic and metabolomic data
exists is as consistent as possible with flux estimations derived via
Michaelis Menten-like kinetic rate equations for these reactions. The
latter involves the estimation of missing enzyme kinetic constants,
by searching for optimal parameters as part of the optimization
problem, as described below. To examine the predictive performance
of IOMA, we applied it to predict metabolic flux for red blood
cells (RBC) for which a detailed kinetic model is available for
validation (utilizing it to simulate metabolic flux changes following
gene knockouts based on artificially generated proteomic data).
As a further validation, we applied IOMA to predict metabolic
flux for Escherichia coli under different gene knockouts, utilizing
available metabolomic and proteomic data as input, and available
experimental fluxes for validation (Ishii, 2007). A comparison of
IOMA’s performance to that of the commonly used methods of flux
balance analysis (FBA) (Fell and Small, 1986; Kauffman et al.,
2003; Varma and Palsson, 1994) and minimization of metabolic
adjustment (MOMA) (Segre et al., 2002) shows the significant
advantage of IOMA in both validation tests.

2 METHODS

2.1 CBM of metabolic network
A metabolic network consisting of n metabolites and m reactions can be
represented by a stoichiometric matrix, denoted by N , where the entry nij

represents the stoichiometric coefficient of metabolite i in reaction j (Price
et al., 2004). A CBM model imposes mass balance, directionality and flux
capacity constraints on the space of possible fluxes in the metabolic network’s
reactions through the set of linear equations:

Nv̄=0, (1)

v̄lb ≤ v̄≤ v̄ub, (2)

where v̄ stands for the flux vector for all of the reactions in the model (i.e.
the flux distribution). The exchange of metabolites with the environment is
represented as a set of exchange reactions, enabling for a pre-defined set of
metabolites to be either taken up or secreted from the growth media. The
steady-state assumption represented in Equation (1) constrains the production
rate of each metabolite to be equal to its consumption rate. Enzymatic
directionality and flux capacity constraints define lower and upper bounds on
the fluxes and are embedded in Equation (2). In the following, flux vectors
satisfying these conditions will be referred to as feasible stead-state flux
distributions.

2.2 The IOMA method
To associate quantitative measurements of protein and metabolite levels with
metabolic fluxes, we used the following Michaelis Menten-like rate equation
to estimate the flux v̄ in a reaction transforming a set of substrates S to a set

of products P:

v=k+
cat ·e

∏
si∈s

(
si

km,si +si

)
−k−

cat ·e
∏
pi∈p

(
pi

km,pi +pi

)
, (3)

where Si and Pi denote the concentrations for the i-th substrate and i-th
product, respectively, and e denotes the enzyme concentration. km,si and
km,pi denote the dissociation constants for the i-th substrate and i-th product,
respectively. Enzyme turnover rates in the forward and backward directions
are denoted by k+

cat and k−
cat, respectively. Given the substrate and product

metabolites’ concentration and their dissociation constants, the following
saturation values for the enzyme in the forward and backward directions
can be computed as following:

a+ =
∏
si∈s

(
si

km,si +si

)
, a− =

∏
pi∈p

(
pi

km,pi +pi

)
.

Given the above definitions, the rate Equation (3) takes the following form:

v=e·(a+k−
cat −a−k−

cat

)
. (4)

To account for proteomics data that reflect relative protein levels compared
to some reference state (rather than absolute protein concentrations),
Equation (4) can be rewritten as following:

v= e

eref

(
a+v+

max −a−v−
max

)
, (5)

where eref denotes the enzyme concentration in the reference state,
and v+

max and v−
max are equal to the corresponding enzyme turnover rates

multiplied by eref. Hence, in order to predict the metabolic flux through a
certain enzyme given relative concentration level and saturation coefficients
(computed given absolute metabolite levels and metabolite dissociation
constants), the corresponding vmax value of the enzyme is also required.

We describe a new CBM method that addresses the problem of predicting
genome-scale metabolic flux distributions, v̄j , for a set of k growth conditions
(j=1, ... ,k), given (Fig. 1): (i) relative enzyme concentrations for a
core set of enzymes (denoted E), under the various conditions, ej

i/eref
i ,

where ( j=1, ... ,k) and i∈E; (ii) absolute substrate and product metabolite
concentrations for enzymes in E; (iii) metabolite dissociation constants.
Concentrations and dissociation constants together enable us to compute
enzyme saturation values, aj+

i and aj−
i where j = 1, ... ,k, and i∈E. The

method is formulated as a QP problem that searches for k flux distributions,
such that: (i) each flux distribution satisfies stoichiometric mass-balance and
reaction directionality constraints, (ii) the fluxes through the core reactions
(for which proteomic and metabolomic data is given) are as consistent as
possible with the estimated rates calculated via Equation (5). The latter is
facilitated by searching for the v+

max,i and v−
max,i parameters for all enzymes

i∈E as part of the QP optimization. IOMA’s QP problem is formulated as
following:

min
v̄j ,v̄+

max,v̄−
max,ε

j
i

∑
i∈E

var
(
ε̄i

)
,

s.t.

Nv̄ j =0, j=1,...k,

(6)

v̄ lb ≤ v̄≤ v̄ub, j=1,...k, (7)

v̄ j
i =

ej
i

eref
i

(
aj+

i v+
max,i −aj−

i v−
max,i +ε

j
i

)
, j=1,...k, (8)

where Equation (6) represents mass-balance constraint for the k-th flux
distributions, Equation (7) represents reaction directionality and flux capacity
constraints, and Equation (8) represents the estimated fluxes for the core
reactions based on the proteomic and metabolomic data. To account for
missing concentration levels of substrate and product metabolites for some
enzymes, the presence of noise in both the proteomic and metabolomic data,
and the simplifying assumptions employed in the rate equation formalism, the
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Fig. 1. The figure illustrates the associations between variables in IOMA’s
optimization problem imposed by the various constraints. Rows represent
enzymes and columns represent growth conditions—i.e. the j-th column
representing the flux distribution for the j-th condition (denoted by v̄j .
Mass-balance [Equation (6)] and reaction directionality [Equation (7)] create
dependencies between fluxes through different enzymes in one condition,
irrespectively of all others conditions (i.e. associating fluxes in one column).
The enzyme-kinetic constraint [Equation (8)] associates between fluxes
through one enzyme in different growth conditions (via the enzyme’s
parameters v+

max and v−
max, which are condition-invariant), irrespectively of

all other enzymes (i.e. associating fluxes in one row). The latter constraint is
defined only for a core set of enzymes for which metabolomic and proteomic
data is available (marked in blue). The union of both types of row and
column constraints in IOMA’s optimization indirectly associates between
many additional fluxes through various enzymes in different conditions.

error ε
j
i variables were added to Equation (8), guaranteeing a feasible solution

for the QP problem. The optimization is hence formulated to minimize the
total sum of variance in the error variables for each enzyme across the k
conditions. We chose to minimize the variance of the error variables (and
not their total sum) to account for potential metabolic regulation mechanisms
that are not explicitly incorporated in the model (e.g. allosteric regulation)
and may systematically affect the metabolic flux.

The application of IOMA in this article considers additional constraints
by utilizing additional datasets given as input for each knockout condition:
first, for a knockout condition j of an enzyme-coding gene that is not backed
up by isozymes in the model, the flux through the corresponding reactions
was constrained to zero via the following constraint:

vj
ko =0, j=1,...,k.

Second, the organism’s growth rate (denoted vGR) in a knockout condition j
is given and is used to constrain the biomass yield rate:

vj
biomass =vGR, j=1,...,k.

Third, experimentally measured exchange fluxes (uptake and secretion rates
for several metabolites) were further used to constrain the predicted flux
distributions via a two-step procedure: (i) we applied QP for each condition
j ( j = 1, ... ,k) in order to find a feasible steady-state flux distribution ṽj for
which the Euclidean distance to the given exchange fluxes is minimized;
(ii) we added the following constraints to IOMA’s optimization problem, so
that the exchange fluxes are fixed at the values predicted in (i):

vj
ex = ṽj

ex, j=1,......k.

The commercial CPLEX solver was used for solving QP problems, on 64-bit
machines running Linux.

Matlab implementation of IOMA can be found at
www.cs.technion.ac.il/∼tomersh/tools.

Fig. 2. Precision, recall and accuracy of predicted changes in fluxes between
the wild-type and knockout strains in the RBC model, obtained by IOMA
(blue) and MOMA (red). The average and standard deviation of the precision,
recall and accuracy are shown across the 50 simulation runs in two scenarios.
(a) No flux data is given as input for MOMA and IOMA, hence MOMA
relies on random sampling of possible wild-type flux distributions to predict
knockout effects. (b) Exchange fluxes are given as input to both methods,
and are used by MOMA to obtain a more reliable prediction of the wild-type
flux distribution. In both test scenarios, IOMA’s predictions are significantly
more accurate.

3 RESULTS

3.1 Predicting gene knockout effects in the red blood
cell model

As a first validation of IOMA, we applied it to predict metabolic
fluxes in human erythrocytes. For this metabolic system, a detailed
kinetic model (Jamshidi, 2001) is readily available for validation,
by simulating the steady-state metabolic flux after gene knockouts.
This model consists of four basic pathways: glycolysis, pentose-
phosphate pathway (PPP), adenosine nucleotide metabolism, and
the Rapoport-Leubering shunt, accounting for 48 metabolites, 39
internal reactions and nine exchange reactions. The set of differential
equations in the model, describing the dynamics of metabolite
concentration, were solved via the ‘ode15s’ solver in Matlab (The
Mathworks, Inc.). To generate synthetic proteomic and metaoblomic
data that can be used as input to IOMA, and the corresponding
flux data for validation, we utilized the RBC kinetic model in the
following way: a gene knockout was modeled by restricting the
flux through its corresponding reaction to zero. Random protein
levels were drawn from a uniform distribution, reflecting up to
5-fold increase or decrease in concentration compared to the wild-
type condition. These protein levels were then used to determine the
values in the kinetic model.

To apply IOMA to predict metabolic fluxes for all gene knockouts
given a CBM model of RBC metabolism, we provide it with the
randomly generated proteomic data and the corresponding steady-
state metabolomic data (identified by the RBC kinetic model) for a
core set of 10 reactions whose rate equations (in the kinetic model)
are based on Michaelis Menten-like kinetics. The performance
of IOMA is evaluated in terms of predicting significant changes
in flux between the wild-type strain and each of the knockouts,
considering a threshold of 0.001 to define a significant increase
or decrease in flux. Repeating the analysis 50 times with random
proteomic data provided an average precision of 0.95, recall of
0.93, and an overall accuracy of 0.91 (where accuracy is the
rate of true predictions) (Fig. 2a). Similar results were obtained
assuming a normal distribution for protein levels with an average
precision of 0.96, recall of 0.94, and an overall accuracy of 0.92.
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IOMA’s prediction accuracy is insensitive to the specific choice of
threshold, with thresholds in the range 0.0001–0.1 yielding <2.5%
change in the prediction accuracy. Notably, applying other flux
prediction methods such as FBA and MOMA in this setup, given
only metabolomic and proteomic data is problematic: FBA depends
on a definition of a cellular objective function (commonly assumed
to be the maximization of biomass yield rate in microbes), which is
not available in the RBC model. MOMA depends on data regarding
the wild-type flux distribution, which in this test scenario was not
given as input. Utilizing a sampling technique (Becker et al., 2007)
to predict a set of 100 feasible flux distributions for the wild-type
strain and applying MOMA to predict the knockout effects starting
from each of them resulted in a markedly lower average accuracy
of 0.45 (Fig. 2a).

To enable further comparison with MOMA, we considered a
second test scenario in which the fluxes through exchange reactions
(representing the uptake and secretion of metabolites from the
growth environment; which are easier to measure experimentally) as
identified by the kinetic model, are also given as input to IOMA and
MOMA. The flux distribution of the wild-type strain is computed via
QP, by searching for a feasible flux vector, satisfying mass-balance
and reaction directionality constraints, minimizing the Euclidian
distance between the predicted exchange fluxes and those given
as input. MOMA was applied starting from this predicted wild-
type flux distribution, utilizing also the given flux rates through
the exchange reactions for all knockout conditions (via additional
constraints in MOMA’s QP formulation). The additional flux data
through exchange reactions is also utilized in a similar manner
by IOMA as described in the ‘Methods’ section. The results show
that while MOMA’s performance significantly improves in this test
scenario, reaching an average accuracy of 0.82, IOMA still achieves
a statistically significant higher accuracy of 0.91 (Fig. 2b) (Wilcoxon
P-value = 1.61 × 10−5).

To test the robustness of IOMA to noise in the proteomic and
metabolomic data, we repeated the first test scenario (the more
challenging one, without using metabolite uptake and secretion rates
as input), while adding random noise to both data sources given as
input to IOMA. The noise was drawn from a normal distribution with
mean zero and SD = 10–50% of the true proteomic and metabolomic
levels (as obtained from the kinetic simulations). The results show
that IOMA still achieves a high accuracy of 0.95 and 0.84, for SD
levels of 10–50%, respectively, testifying for IOMA’s robustness to
noisy measurements.

3.2 Predicting metabolic fluxes in E.coli via the
integration of experimental metabolomic and
proteomic data

As a second validation of IOMA, we applied it to the genome-scale
E.coli metabolic network model of Feist et al. (2007) accounting
for 1260 metabolic genes, 2382 reactions and 1668 metabolites, to
predict metabolic flux distributions for wild-type E.coli K-12 and
23 single-gene knockouts, which cover most viable glycolysis and
PPPs knockouts, grown in glucose minimal medium. As input we
utilized experimentally measured absolute protein (mg-protein/g-
dry cell weight) and metabolite (mM) concentrations for a core set
of 11 reactions, uptake and secretion rates for nine metabolites,
and measured growth rates, all taken from the E.coli multi-omics
database (Ishii, 2007). Metabolites’ dissociation constants (km) were

Fig. 3. Precision, recall and accuracy of predicted changes in flux between
wild-type and following gene knockouts in the E.coli model, obtained by
IOMA (blue), FBA (green) and MOMA (red).

obtained from the BRENDA database (Bennett et al., 2009). To
validate the predicted flux distributions, we utilized experimentally
measured fluxes in these knockout strains for 26 reactions in E.coli’s
central metabolism, also taken from the multi-omics database.

To assess the accuracy of IOMA versus that of MOMA and
FBA, we compared their predictions of significant increase or
decrease in flux for the 26 measured reactions between the wild-
type and knockout strains (considering the same threshold of 0.001
to define significant changes in flux as done above). As shown in
Figure 3, IOMA achieves a prediction accuracy of 0.54 which is
markedly higher than that achieved by FBA and MOMA (0.44 and
0.38, respectively). The prediction accuracy is significantly high
compared to random predictions, with a hypergeometric P-value
of 1.26×10−4 and 5.12×10−8 for the prediction of increased
and decreased fluxes compared to the wild-type strain, respectively.
Notably, IOMA’s prediction accuracy is insensitive to the specific
choice of threshold (with thresholds in the range of 0.0001–0.1
yielding <5% change in the prediction accuracy of the various
methods).

An example flux distribution predicted by IOMA following the
knockout of an enzyme in the non-oxidative branch of the PPP,
talB (Transaldolase B), is shown in Figure 4. The figure shows that
IOMA correctly predicts an increase in flux through most of the
enzymes in glycolysis and a decreased flux through enzymes in
PPP following the knockout of talB. FBA is only partially correct,
predicting an increased flux through both glycolysis and PPP, while
MOMA falsely predicts both the increased glycolysis and decreased
PPP fluxes.

To demonstrate the added value of utilizing both proteomics
and metabolomics to infer metabolic flux, we compared IOMA’s
performance when given both proteomics and metabolomics, to
its performance when only one of the sources is given as input.
To utilize IOMA only with proteomic data, we considered zero
saturation coefficients (a+ and a−) for all enzymes, while for
utilizing it only with metabolomic data, we considered a constant
expression level for each enzyme across the various conditions
(e/eref = 1). We find that, quite expectedly, when only a single data
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Fig. 4. An example flux distribution predicted by IOMA following the
knockout of talB (Transaldolase B). The network shows E.coli’s glycolysis
and PPP. Green (red) edges represent a measured increase (decrease) of
flux between the wild-type and knockout strains. The letters F, M and I,
represent predictions made by FBA, MOMA and IOMA, respectively, with
green (red), representing a predicted increase (decrease) in flux. Predictions
of no significant change in flux are not shown. As evident, IOMA correctly
predicts the measured pattern of increased flux throughout glycolysis and
decreased flux throughout the PPP pathways, with only two mismatches,
while FBA and MOMA perform significantly worse.

source is used, the accuracy achieved is lower than that obtained
when using both data sources together, with the prediction accuracy
obtained when using only proteomic or metabolomic down to 0.45
and 0.42, respectively. Notably, using either data source alone still
improves the prediction accuracy upon FBA and MOMA. Gene
expression is significantly easier to measure than proteomics and was
previously shown to significantly correlate with protein levels (Lee
et al., 2000; Tuller et al., 2007). Here, we find an average correlation
of 0.65 (with 19 knockouts yielding a significant P-value <0.05)
between measured gene and protein expression levels across all gene
knockouts in the employed dataset (Ishii, 2007). Considering this
high correlation, we further explored the predictive performance of
IOMA’s given gene expression data instead of proteomic data. The
analysis shows that IOMAobtains an accuracy of 0.49 when utilizing
gene expression and metabolomics with a hypergeometric P-value
of 3.15×10−4 and 8.63×10−8 for the prediction of increased
and decreased fluxes compared to the wild-type strain, respectively

(higher than the accuracy obtained with FBAand MOMAas reported
above).

4 DISCUSSION
This study presents a novel approach for integrating quantitative
proteomic and metabolomic data with a genome-scale metabolic
network model to predict flux alterations under different
perturbations, based on a mechanistic model for determining
reaction rate. The method predicts feasible flux distributions while
accounting for missing concentration levels of substrate and product
metabolites for some enzymes, for potential noise in both the
proteomic and metabolomic data, and for the simplifying rate
equation formalism used. IOMA is shown to successfully predict
changes in fluxes both in E.coli’s central metabolism under various
genetic perturbations and in a simulated RBC kinetic model,
displaying a significant improvement versus the commonly used
FBA and MOMA methods.

Metabolic fluxes are the most informative and direct indices of
the metabolic and physiological state of cells/tissues, and hence,
inferring their state in different biological contexts is probably the
holy grail of metabolic modeling. However, in a somewhat spiteful
way, while we are facing an ever increasing availability of numerous
pertaining high-throughput ‘omics’ data including transcriptomic,
proteomic and metabolomic measurements, the measurement of
fluxes is still very challenging and limited to a small fraction
of the reactions present in cells. Hence, there is an emerging
need to continue and develop new computational methods for
robustly inferring the flux state, while capitalizing on these other
available ‘omics’ measurements. In this context, IOMA presents
an important step forward in this direction, which hopefully will
be followed upon by others. IOMA profits from the absolute
quantification of metabolites levels (in contrast to fold changes), that
are becoming available, while absolute quantification of proteins is
not necessary. Apart from the specific kind of reaction rate laws
utilized in this work, IOMA can be used with a variety of rate laws
including different types of regulation or enzyme saturation. The
only restriction is that the rate laws can be represented in the form
of Equation (5), where estimates of the terms a+ and a− can be
recomputed based on available data. Future work for improving
flux predictions, could possibly utilize existing information on
the thermodynamic constants of reactions to further constraint the
model’s solution space, following Henry et al. (2007).

Another potential application of IOMA is the prediction
of metabolic flux alterations associated with human metabolic
disorders (as means for predicting potential clinical biomarkers).
Encouragingly, genome-scale human metabolic models have already
shown their value in this highly important clinical task [e.g. in the
case of inborn errors of metabolism (Shlomi and Cabili, 2009)],
but as the methods used up until now have been simple and
straightforward, there is certainly much room for improvement
ahead, to which methods like IOMA are bound to serve as solid
starting points.
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