
[10:55 16/6/2010 Bioinformatics-btq263.tex] Page: 1788 1788–1789

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 14 2010, pages 1788–1789
doi:10.1093/bioinformatics/btq263

Systems biology Advance Access publication May 25, 2010

A parallel algorithm to compute chemical organizations in
biological networks
Florian Centler1,∗, Christoph Kaleta2, Pietro Speroni di Fenizio3 and Peter Dittrich4

1Department of Environmental Microbiology, UFZ – Helmholtz Centre for Environmental Research, Permoserstraße
15, D-04318 Leipzig, 2Department of Bioinformatics, Friedrich-Schiller University Jena, Ernst-Abbe-Platz 2, D-07743
Jena, Germany, 3Coimbra University, Engenharia Informática, Coimbra, Portugal and 4Friedrich-Schiller University
Jena, Bio Systems Analysis Group, Ernst-Abbe-Platz 2, D-07743 Jena, Germany
Associate Editor: Jonathan Wern

ABSTRACT

Summary: Analysing genome-scale in silico models with
stoichiometry-based methods is computationally demanding.
The current algorithms to compute chemical organizations in
chemical reaction networks are limited to small-scale networks,
prohibiting a thorough analysis of large models. Here, we introduce
a parallelized version of the constructive algorithm to determine
chemical organizations. The algorithm is implemented in the
Standard C programming language and parallelized using the
message passing interface (MPI) protocol. The resulting code can
be executed on computer clusters making use of an arbitrary number
of processors. The algorithm is parallelized in an embarrassing
parallel manner, providing good scalability.
Availability: An implementation of the algorithm including
source code can be obtained from http://www.minet.uni-
jena.de/csb/prj/ot/tools
Contact: florian.centler@ufz.de
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1 INTRODUCTION
Stoichiometry-based network analysis methods like flux balance
analysis (Edwards et al., 2001), elementary mode analysis (Schuster
et al., 1999) and chemical organization analysis (Dittrich and
Speroni di Fenizio, 2007) have proven useful in gaining a better
understanding of the functioning of biochemical systems at the
systems level (Centler et al., 2008; Price et al., 2004; Trinh
et al., 2009). With the ongoing efforts to elucidate more and
more biochemical details, genome-scale metabolic networks have
become available for an increasing number of organisms (Feist
et al., 2009). Analysis of such networks with species and reaction
numbers ranging in the thousands pose a new computational
challange (Kaleta et al., 2009a). To meet this challange, we
introduce a parallelized version of the constructive algorithm to
determine chemical organizations. A chemical organization is a
set of network species constituting a subsystem of the whole
network, that fulfills two properties: (i) algebraic closure and (ii)
self-maintenance. The first property ensures that the species of an
organization cannot generate a species that is not already contained
in that set, while the second property ensures that a flux vector
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exists such that all species of the organization are produced at a
sufficient rate for their survival. Hence, organizations represent
species combinations that are likely to persist over time; novel
species cannot occur due to the closure property and species do not
vanish due the self-maintenance property. Every organization is
also a semi-organization, a closed set that is semi-self-maintaining.
Semi-self-maintenance is a weaker condition than self-maintenance.
It merely requires that for each species of the set for which a reaction
exists in which it is consumend, a reaction also exists in which it
is produced. The set of organizations forms a hierarchy that can
be visualized in a Hasse diagram. Organizations are vertically
arranged according to size, with the organization containing
the fewest species at the bottom. Links are drawn between two
organizations, if the upper organization contains all species of the
bottom organization and there is no other organization between
them. Formal definitions of these concepts can be found in Dittrich
and Speroni di Fenizio (2007).

2 METHODS
The constructive algorithm to compute chemical organizations (Centler et al.,
2008) consists of two steps. In the first step, all semi-organizations of the
reaction network are determined in a bottom-up fashion. The central function
of the algorithm determines, given a semi-organization, the smallest semi-
organizations that contain this semi-organization. This is done by adding new
species to the semi-organization to form a larger semi-organization. The
newly found semi-organizations are added to a list of semi-organizations
which still need to be processed. The algorithm starts by initializing this
list with the smallest semi-organization of the reaction network. In each
iteration of the algorithm, the smallest semi-organization is taken from this
list and the semi-organizations above it are determined. This is repeated
until the list of semi-organizations to be processed is empty. In the second
step, every computed semi-organization is tested for the property of self-
maintenance. This involves the processing of a linear programming problem
for each semi-organization. The parallelization of both steps of the algorithm
follows an inverted client–server model. In the first step, the server keeps
track of the list of semi-organizations which still needs processing, and
distributes the task of determining larger semi-organizations for one semi-
organization of that list to the client CPUs as they become available. In the
second step, the server evenly distributes the linear programming problems to
the available client CPUs. Both the computation of larger semi-organizations,
and the computation of the linear programming problem can be executed in
isolation, not requiring any communication with other CPUs. This allows for
a parallelization in an embarrassingly parallel fashion with good scalability
and an expected linear speedup.
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Fig. 1. Speedup for computing the first 100 organizations of a genome-scale
network model of E.coli.

3 IMPLEMENTATION AND PERFORMANCE
The constructive algorithm was implemented in the Standard C
programming language, and parallelization was realized using
the message passing interface (MPI) protocol (Message Passing
Interface Forum, 1994). The program reads a reaction network
model in SBML format (Finney and Hucka, 2003) using
libSBML (Bornstein et al., 2008) and can compute organizations as
well as connected organizations (Centler et al., 2008). For solving
linear programming problems, either the lpsolve library (Berkelaar
et al., 2005) or GLPK (Makhorin, 2003) can be used. To avoid
processing the same set of species twice when trying to expand a
semi-organization, a hash structure is used to keep track of already
processed species sets. This hash structure is, however, kept local
at the client CPUs to avoid excessive communication between
processors. The drawback is that the effectiveness of the hash facility
decreases if using many CPUs, as the same species set might then be
processed by more than one client CPU. The code can be configured
to write restart files and terminate after a predefined execution
time for cluster systems where runtime is restricted. To assess the
performance of the parallelized algorithm, we record the runtime
to compute the first 100 organizations of a genome-scale reaction
network model of Escherichia coli (Scenario 1 in Centler et al.,
2008) using 1–16 CPUs. The speedup is almost ideal for up to about
ten client CPUs, but slows down for higher numbers of processors as
communication demand increases and efficiency of the hash facility
decreases (Fig. 1). Nevertheless, absolute runtime stays close to ideal
parallelization, even for large numbers of CPUs (Fig. 2), indicating
good scalability.

4 CONCLUSION
The computational time required to compute the organizations for a
given reaction network model does not solely depend on the network
size, but also its structure (Centler et al., 2008). Being NP-hard, the
computation of all organizations will remain unfeasable for certain
networks, even when using the parallelized version of the algorithm
on a computer cluster. Nevertheless, the parallelized version reduces
runtime to practical limits for large models, especially if many CPUs
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Fig. 2. Runtime for computing the first 100 organizations of a genome-scale
network model of E.coli.

are available. For example, all connected organizations of three
previously not tractable networks (Kaleta et al., 2009b) could be
determined using the parallelized algorithm.
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