
[15:37 30/7/2010 Bioinformatics-btq351.tex] Page: 2204 2204–2207

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 17 2010, pages 2204–2207
doi:10.1093/bioinformatics/btq351

Data and text mining Advance Access publication July 17, 2010

BigWig and BigBed: enabling browsing of large distributed
datasets
W. J. Kent, A. S. Zweig∗, G. Barber, A. S. Hinrichs and D. Karolchik
Center for Biomolecular Science and Engineering, School of Engineering, University of California, Santa Cruz (UCSC),
Santa Cruz, CA 95064, USA
Associate Editor: Jonathan Wren

ABSTRACT

Summary: BigWig and BigBed files are compressed binary indexed
files containing data at several resolutions that allow the high-
performance display of next-generation sequencing experiment
results in the UCSC Genome Browser. The visualization is
implemented using a multi-layered software approach that takes
advantage of specific capabilities of web-based protocols and Linux
and UNIX operating systems files, R trees and various indexing and
compression tricks. As a result, only the data needed to support the
current browser view is transmitted rather than the entire file, enabling
fast remote access to large distributed data sets.
Availability and implementation: Binaries for the BigWig and
BigBed creation and parsing utilities may be downloaded at http://
hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/. Source code
for the creation and visualization software is freely available for non-
commercial use at http://hgdownload.cse.ucsc.edu/admin/jksrc.zip,
implemented in C and supported on Linux. The UCSC Genome
Browser is available at http://genome.ucsc.edu
Contact: ann@soe.ucsc.edu
Supplementary information: Supplementary byte-level details of
the BigWig and BigBed file formats are available at Bioinformatics
online. For an in-depth description of UCSC data file formats and
custom tracks, see http://genome.ucsc.edu/FAQ/FAQformat.html
and http://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html

Received on February 18, 2010; revised on June 10, 2010; accepted
on June 28, 2010

1 INTRODUCTION
Recent improvements in sequencing technologies have made it
possible for labs to generate terabyte-sized genomic data sets.
Visualization of these data sets is a key to scientific interpretation.
Typically, loading the data into a visualization tool such as the
Genome Browser provided by the University of California, Santa
Cruz (UCSC) (Kent et al., 2002; Rhead et al., 2010) has been
difficult. The data can be loaded as a ‘custom annotation track’, but
for very large data sets the upload form times out before the data
transfer finishes. To work around this limitation, some labs with
access to Solexa and later-generation sequencing machines have
installed a local copy of the Genome Browser, but this requires
a significant initial time investment by systems administrators and
other informatics professionals, as well as continuing efforts to keep
the data in the local browser installation current.

∗To whom correspondence should be addressed.

Though visualization of results is just one of the many informatics
challenges of next-generation sequencing, it is one that we are
well positioned to address at UCSC. We have developed two new
data formats, BigWig and BigBed, that make it practical to view
the results of next-generation sequencing experiments as tracks in
the UCSC Genome Browser. The BigWig and BigBed files are
compressed binary indexed files that contain the data at several
resolutions. Rather than transmitting the entire file, only the data
needed to support the current view in the Genome Browser are
transmitted. Collectively, BigWig and BigBed are referred to as Big
Binary Indexed (BBI) files.

2 SYSTEM AND METHODS
BigBed files are generated from Browser Extensible Data (BED) files. Like
the BED format, the BigBed format is used for data tables with a varying
number of fields. BED files consist of a simple text format: each line contains
the fields for one record, separated by white space. The first three fields
are required, and must contain the chromosome name, start position and
end position. The standard BED format defines nine additional, optional
fields, which (if present) must appear in the predefined order (Supplementary
Table 1). Alternatively, BED files may depart from the standard format after
the third field, continuing with fields specific to the application and data set.
BigBed files that contain custom fields, unlike those of simple BED format,
must also contain the field name and a sentence describing the custom field.
To help others understand custom BED fields, an autoSql (.as) (Kent and
Brumbaugh, 2002) declaration of the table format can be included in the
BigBed file (Supplementary Table 2).

BigWig files are derived from text-formatted wiggle plot (wig) or
bedGraph files. They associate a floating point number with each base in the
genome, and can accommodate missing data points. In the UCSC Genome
Browser, these files are used to create graphs in which the horizontal axis
is the position along a chromosome and the vertical axis is the floating
point data (Fig. 1). Typically, these graphs are represented by a wiggly
line, hence the name ‘wiggle’. Three text formats can be used to describe
wiggle data at varying levels of conciseness and flexibility. Values may be
specified for every base or for regularly spaced fixed-sized windows using the
‘fixedStep’ format. The ‘variableStep’ format encodes fixed-sized windows
that are variably spaced. The ‘bedGraph’ format encodes windows that are
both variably sized and variably spaced.

Data files of fixedStep format are divided into sections, each of which
starts with a line of the form:

fixedStep chrom=chrN start=position step=N span=N

where ‘chrom’ is the chromosome name, ‘start’ is the start position on the
chromosome, ‘step’ is the number of bases between items and ‘span’ shows
the number of bases covered by each item. Step and span default to 1 if they
are not defined. This section line is followed by a line containing a single
floating point number for each item in the section.

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/17/2204/199001 by guest on 17 April 2024

http://
http://hgdownload.cse.ucsc.edu/admin/jksrc.zip
http://genome.ucsc.edu
http://genome.ucsc.edu/FAQ/FAQformat.html
http://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html
http://creativecommons.org/licenses/


[15:37 30/7/2010 Bioinformatics-btq351.tex] Page: 2205 2204–2207

BigWig and BigBed

Fig. 1. Genome Browser image of BigWig annotation tracks. The top track is displayed as a bar graph, the bottom track as a point graph. Shading is used to
distinguish the mean (dark), one standard deviation above the mean (medium) and the maximum (light). Peaks with clipped tops are colored magenta.

The variableStep format is similar, but the section starts with a line of the
format:

variableStep chrom=chrN span=N

and each item line contains two fields: the chromosome start position, and
the floating point value associated with each base.

The bedGraph format is a BED variant in which the fourth column
is a floating point value that is associated with all the bases between
the chromStart and chromEnd positions. Unlike the zero-based BED and
bedGraph, for compatibility reasons the chromosome start positions in
variableStep and fixedStep are one-based.

To create a BigBed or BigWig file, one first creates a text file in
BED, fixedStep, variableStep or bedGraph format and then uses the
bedToBigBed, wigToBigWig or bedGraphToBigWig command-line utility
to convert the file to indexed binary format. In addition to the text file
and (in the case of BigBed) the optional .as file, the conversion utilities
require a chrom.sizes input file that describes the chromosome (or contig)
sizes in a two-column format (chromosome name, chromosome size). The
fetchChromSizes program may be used to obtain the chrom.sizes file for
any genome hosted at UCSC. All of the command-line utilities can be run
without options to display a usage summary.

The wigToBigWig program accepts fixedStep, variableStep or bedGraph
input. The bedGraphToBigWig program accepts only bedGraph files, but has
the advantage of using much less memory. The wigToBigWig program can
take up to 1.5 times as much memory as the wig file it is encoding, while
bedGraphToBigWig and bedToBigBed use only about one-quarter as much
memory as the size of the input file.

Once a BigBed or BigWig file is created, it can be viewed in the UCSC
Genome Browser by using the custom track mechanism (Supplementary
Material). In brief the indexed file is put on a website accessible via HTTP,
HTTPS or FTP, and a line describing the file type and data location in the
form:

track type=bigBed bigDataUrl=http://srvr/myData.bb

is entered in the custom track section of the browser. Additional settings in
var=value format can be used to control the name, color, and other attributes
of the track. When the custom track is loaded and displayed, the Genome
Browser fetches only the data it needs to display at the resolution appropriate
for the size of the region being viewed. While it may take a few minutes to
convert the input text file to the indexed format, once this is done there is no
need to upload the entire file, and the response time on the browser is nearly
as fast as if the file resided on the local UCSC server.

Because the BigWig and BigBed files are binary, we have created
additional tools that parse the files and describe the contents. The
bigWigSummary and bigBedSummary programs can quickly compute
summaries of large sections of the files corresponding to zoomed-out views in
the Genome Browser. The bigWigInfo and bigBedInfo can be used to quickly
check the version numbers, compression status and data ranges stored in a
file. The bigBedToBed, bigWigToWig and bigWigToBedGraph programs
can convert all or just a portion of files back to text format.

3 IMPLEMENTATION
The BigBed and BigWig readers and writers are written in portable
C; other programs that can interface with C libraries can make use
of the code directly. For those working in languages that do not
interface well with C, the Supplemental Information describes the
file format in sufficient detail to reimplement it in another language.
Several layers of software are involved in enabling the remote access
of the BigBed and BigWig files. This section describes the software
architecture, algorithms and data structures at a high level, and
should be useful to anyone trying to understand the code enough
to usefully modify it or to implement similar file formats that work
well in a distributed data environment.

3.1 Data transfer layer
Though BigBed and BigWig can be used locally, the primary
design goal for this format was to enable efficient remote access.
This is done using existing web-based protocols that are generally
already available at most sites. Unlike typical web use, bigBed and
bigWig files require random access. At the lowest layer, we take
advantage of the byte-range protocols of HTTP and HTTPS, and
the protocols associated with resuming interrupted FTP transfers, to
achieve random access to binary files over the web. Web servers
supporting HTTP/1.1 accept byte-ranges when the data is non-
volatile. OpenSSL provides SSL support for HTTPS via the BIO
protocol. FTP uses the resume command and simply closes the
connection when sufficient data has been read.

2205

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/17/2204/199001 by guest on 17 April 2024

http://srvr/myData.bb


[15:37 30/7/2010 Bioinformatics-btq351.tex] Page: 2206 2204–2207

W.J.Kent et al.

3.2 URL data cache layer
Since remote access is still slow compared to local access, and
data files typically are viewed many times without changing, we
implemented a cache layer on top of the data transfer layer. Data are
fetched in blocks of 8 Kb, and each block is kept in a cache. The
cache is implemented using two files for each file that is cached: a
bitmap file that has a bit set for each file block in cache and a data file
that contains the actual blocks of data. The data file is implemented
very simply using the sparse file feature of Linux and most other
UNIX-like operating systems. The cache software simply seeks to
the position in the file where the block belongs and writes it. The
operating system allocates disk space only for the parts of the file
that are actually written.

The cache layer is critical to performance. Parts of the file,
including the file header and the root block of the index, are accessed
no matter what part of the genome is being viewed. These parts need
be transmitted only once. In addition if multiple users view the same
region of the genome, later users will benefit from the cache, as will
a single user looking at the same region multiple times.

Though a cache can help convert remote access to local access,
a minimum of one remote access—to check whether the file has
changed at the remote site—is required even on a completely
cached file. Minimizing the number of cache checks is one of the
motivations for keeping the index and the zoomed data in the same
file as the primary data. Even though a change check involves
little in the way of data transfer, it does require a round trip on
the network, which can take from 10 to 1000 ms depending on the
network connectivity. For similar reasons, though data are always
fetched at least one full block at a time, the system will combine
multiple blocks into a single fetch operation whenever possible.

3.3 Indexing
The next layer handles the indexing. It is based on a single
dimensional version of the R tree that is commonly used for indexing
geographical data. The index size is typically less than 1% of the
size of the data itself.

A BigBed file can contain overlapping intervals. Overlapping
intervals are not as easy to index as strings, points or non-
overlapping intervals, but several effective techniques do exist,
including binning schemes (Kent et al., 2002), nested containment
lists (Alekseyenko and Lee, 2007) and R trees (Guttman, 1984).
R trees have several properties that make them attractive for this
application. They perform well for data at a variety of scales in
contrast to binning schemes that typically have a ‘sweet spot’ at
a particular scale of data close to the smallest bin size. R trees
also minimize the number of seeks (and hence network roundtrips)
compared to nested containment lists, another popular genomics
indexing scheme.

The basic idea behind an R tree is fairly simple. Each node of
the tree can point to multiple child nodes. The area spanned by a
child node is stored alongside the child pointer. The reader starts
with the root node, and descends into all nodes that overlap the
query window. Since most child nodes do not overlap, only a few
branches of the tree need to be explored for a typical query.

Though a separate R tree for each chromosome would have been
simpler to implement, we elected to use a single tree in which the
comparison operator includes both the chromosome and the position.
This allows better performance on roughly assembled genomes with

hundreds or thousands of scaffolds, and also lets the files be applied
to RNA as well as DNA databases. To improve the efficiency of the
single R tree, we store the chromosome ID as an integer rather than
a name, and include a B+ tree to associate chromosome names and
IDs in the file. In the source code, the combined B+ tree and R tree
index is referred to as a cirTree.

One additional indexing trick is used. Because the stored data are
sorted by chromosome and start position, not every item in the file
must be indexed; in fact by default only every 512th item is indexed.
The software finds the closest indexed item preceding the query, and
then scans through the data, discarding some of the initial items if
necessary. This may seem wasteful, since hundreds of thousands of
bytes may be transferred in the same time that it takes to seek to
a new position on disk, but in practice little time is lost and as a
benefit the index is less than 1% of the size of the data.

3.4 Compression
The data regions of the file (but not the index) are compressed using
the same deflate techniques that are used in gzip as implemented in
the zlib library, a very widespread, stable and fast library built into
most Linux and UNIX installations. The compression would not be
very efficient if each item was compressed separately, and it would
not support random access if the entire data area were compressed
all at once. Instead the regions between indexed items (containing
512 items by default) are individually compressed. This maintains
the same degree of random accessibility that was enabled by the
sparse R tree index while still achieving nearly the same level of
compression as compressing the entire file would.

The final layer of software is responsible for fetching and
decoding blocks specified by the index. It is only this final layer
that differs between BigWig and BigBed.

4 RESULTS AND DISCUSSION
The BigBed and BigWig files succeed in overcoming browser upload
timeout limits. By deferring the bulk of the data transfer to be on
demand, the upload phase of BigWig and BigBed files now takes
less than a second even on home and remote networks, well within
the 300-s upload time limit at UCSC. The on-demand connectivity
requirements are modest, adding 0.5–1.0 s of data transfer time
overhead depending on where the Big file is hosted (Supplementary
Table 3).

BigBed and BigWig files are similar in many ways to BAM
files (Li et al., 2009), which are commonly used to store
mappings of short reads to the genome. BAM files are also
binary, compressed, indexed versions of an existing text format,
SAM. The samtools C library associated with SAM and BAM
(http://samtools.sourceforge.net/) caches the BAM index, though
not the data files. Samtools also can fetch data from the internet
via FTP and HTTP, but not HTTPS. BAM files are not designed
for wiggle graphs, and are more complex than BED files, but they
do store alignment, sequence and sequence quality information very
efficiently. While this capability theoretically could be added as an
extension to BigBed, we have adopted BAM for short read mapping
to avoid a proliferation of formats. BAM files are supported as
custom tracks at UCSC, and we have added HTTPS support to BAM
using the data transfer and data cache layers developed for BigBed
and BigWig.

2206

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/17/2204/199001 by guest on 17 April 2024

http://samtools.sourceforge.net/


[15:37 30/7/2010 Bioinformatics-btq351.tex] Page: 2207 2204–2207

BigWig and BigBed

BigBed and BigWig files have been in use at genome.ucsc.edu
since June 2009, and have proven to be popular. As of February
2010, we have displayed data from nearly 1300 files using
these formats. The broader bioinformatics community has started
to support these files as well, with Perl bindings available at
http://search.cpan.org/∼lds/Bio-BigFile/ and a Java implementation
in progress (Martin Deacutis, personal communication) for use in the
Integrative Genome Viewer (http://www.broadinstitute.org/igv/).
Though the use of BigBed and BigWig requires access to the
command line creation tools needed to create the files and a website
or FTP site on which to place them, this is not an undue burden
in the context of the informatics demands of a modern sequencing
pipeline, and is clearly preferable to the long and uncertain uploads
of large custom tracks in text formats.

ACKNOWLEDGEMENTS
We would like to acknowledge James Taylor, Heng Li and Martin
Deacutis for their testing and feedback on these formats, and Lincoln
Stein for developing the Perl bindings.

Funding: This work was supported by the National Human Genome
Research Institute (5P41HG002371-09, 5U41HG004568-02). The
open access charge was funded by the Howard Hughes Medical
Institute.

Conflict of Interest: none declared.

REFERENCES
Alekseyenko,A.V. and Lee,C.J. (2007) Nested containment list (NCList): a new

algorithm for accelerating interval query of genome alignment and interval
databases. Bioinformatics, 23, 1386–1393.

Guttman,A. (1984) R-Trees: a dynamic index structure for spatial searching. In
Proceedings of 1984 ACM SIGMOD International Conference on Management of
Data, pp. 47–57.

Kent,W.J. and Brumbaugh,H. (2002) autoSql and autoXml: code generators from the
Genome Project. Linux J., 99, 68–77.

Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res., 12,
996–1006.

Li,H. et al. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence
Alignment/Map (SAM) Format and SAMtools. Bioinformatics, 25, 2078–2079.

Rhead,B. et al. (2010) The UCSC Genome Browser database: update 2010. Nucleic
Acids Res., 38, D613–D619.

2207

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/17/2204/199001 by guest on 17 April 2024

http://search.cpan
http://www.broadinstitute.org/igv/

