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ABSTRACT

Summary: TFInfer is a novel open access, standalone tool for
genome-wide inference of transcription factor activities from gene
expression data. Based on an earlier MATLAB version, the software
has now been extended in a number of ways. It has been
significantly optimised in terms of performance, and it was given
novel functionality, by allowing the user to model both time series and
data from multiple independent conditions. With a full documentation
and intuitive graphical user interface, together with an in-built data
base of yeast and Escherichia coli transcription factors, the software
does not require any mathematical or computational expertise to be
used effectively.
Availability: http://homepages.inf.ed.ac.uk/gsanguin/TFInfer.html
Contact: gsanguin@staffmail.ed.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Transcription regulatory networks play a fundamental role in
mediating external signals and coordinating the response of the
cell to its changing environment. Recent technological advances
in molecular biology, such as ChIP-on-chip and ChIP-seq,
are uncovering an increasing amount of data about the static
structure of these networks, providing us with information about
interactions between promoters and specific transcription factors
(TFs). However, despite these advances, intracellular concentrations
of active TF proteins remain very challenging to measure directly
in a dynamic fashion, thus limiting our ability to understand the
dynamics of transcriptional regulation. To obviate these problems,
several research groups have proposed statistical approaches that
infer TF activity levels by combining connectivity data about the
structure of the regulatory network with microarray data (e.g. Sabatti
and James, 2006; Sanguinetti et al., 2006). In this note, we present
a novel implementation of one of these methods (Sanguinetti et al.,
2006) which makes it freely available to the academic community
in an intuitive, user-friendly platform. The method employs a linear
approximation (in log space) to the dynamics of transcription and is
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based on a state space model of the following form

yn(t)=
q∑

m=1

Xnmbnmcm(t)+µn +εnt

cm(t)=γmcm(t−1)+ηmt .

(1)

Here, yn(t) is the mRNA log expression level for gene n at time t, X
is a binary connectivity matrix (assumed known) encoding whether
gene n is bound by TF m, bnm encodes the regulatory strength with
which TF m affects gene n and cm(t) is the (log) concentration of
active TF m at time t; the other terms are used to model noise
and biases. The model places Gaussian prior distributions over
the concentrations cm(t) and strengths bnm and uses a factorized
variational approximation to infer posterior distributions given
mRNA time course observations. Notice that the probabilistic nature
of the model means that noise is treated in a natural and principled
way, and estimates of the quantities of interest are always associated
with a measure of the corresponding uncertainty. Since only the
product of bnm and cm(t) appears in the likelihood, there is a
sign ambiguity in the inferred quantities [see online tutorial and
Sanguinetti et al. (2006) for further discussion].

While the approach does rely on a simplified model of
transcription, the model’s results have been shown to capture
important physiological effects which have led to the formulation
and experimental validation of several hypotheses (Davidge et al.,
2009; McLean et al., 2010; Partridge et al., 2007). However, the
model was until now only available as working code in MATLAB,
requiring expert intervention to be used which resulted in significant
bottlenecks in the analysis pipeline. We have now produced a
new release which presents several significant advantages over the
previous version:

• it is open source, and significantly more efficient com-
putationally;

• it is fully documented and has an intuitive Graphical User
Interface (GUI);

• it contains template connectivities for Escherichia coli and
Saccharomyces cerevisiae;

• it has been given extra functionalities, handling both time-series
data and data from several independent conditions, possibly
with replicates.
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Fig. 1. Work flow of TFInfer.

2 SOFTWARE OVERVIEW
The model and GUI are implemented in C# which allows an efficient
implementation of the variational Bayesian expectation maximization
algorithm. For the numerical routines we used dnAnalytics (http://
dnanalytics.codeplex.com/), a C# open source library for scientific
computing. ZedGraph, an open source plotting tool, is used for displaying
the results of the model in graphical format.

The work flow of TFInfer is shown in Figure 1 (overlapping tiles); the
starting frame requires the user to browse for the expression data, specify its
characteristics (time-series, replicates, etc.) and browse for the connectivity
data. If template connectivity is selected, the user is asked to select either
a file for yeast (based on available ChIP-on-chip data) or a file for E.coli
(compiled manually from the Ecocyc data base, http://www.ecocyc.org/).
Otherwise, the user can specify any binary connectivity matrix.

Once the data are selected, a summary of the data are displayed (number
of genes and time points). If this is accepted, a list of all the TFs included in
the connectivity matrix is displayed; the user can select a subset of TFs by
clicking on the list of TFs names. Once this is completed, the optimisation
starts; its progress (with respect to a maximum number of iterations, default
1500) is monitored through a progress bar at the bottom of the screen.

Once the run is complete, the user can visualise TF activity profiles by
clicking the box next to the TF name. This displays a time series activity
profile with associated error bars, and by clicking the save plot button the
graph can be saved in a variety of formats. An example of the output of
TFInfer is given in Figure 2, depicting the predicted activity of the FNR
regulator in the switch from aerobic to microaerobic conditions, showing
the overshoot in activity observed in Partridge et al. (2007).

2.1 Data files format and software requirements
Standard file format for TFInfer is comma separated file. This is a standard
format supported by many spreadsheet applications including Microsoft
Excel. Two types of input file are required; a csv file containing the logged
gene expression data and a file specifying the connectivity matrix (which
must be a binary matrix). Replicates are handled by uploading separate
data files. For logged gene expression data, the file should contain a list
of genes and the corresponding expression levels in different experimental
conditions. Connectivity is specified in the form of grid where every entry
(zero or one) specifies the connection between the corresponding TF and

Fig. 2. Sample results obtained using TFInfer on data from Partridge et al.
2007.

the gene; the first row of the file will contain the names of the TFs, and
the first column the names of the genes. For S.cerevisiae and E.coli, this
connectivity information is supplied as the part of the software; the gene
names used are the systematic b names for E.coli and the open reading frame
(ORF) identifiers for yeast. The software requires Microsoft .Net framework
(version 2), which is freely downloadable (a link is provided on the TFInfer
website). It runs on Windows platforms and on Linux/Mac via Mono.

3 CONCLUSION
Statistical methods for inferring TF activities are an important
area of research in computational biology due to their ability to
extract information which is not readily available through standard
experimental practice. We believe that the time has arrived for these
methods to become standard software used in biological laboratories
to complement experimental work, much in the way that sequence
alignment tools are now routinely used by experimentalists. By
providing a simple yet powerful implementation of an already tried
and tested method, we hope TFInfer will become accessible and
useful to a wide community of scientists working on gene regulation.

Funding: University of Sheffield Director of Research devolved
fund (to H.A., G.S. and J.G.). M.D.R. and J.G. thank the BBSRC
for support through the SysMO initiative (www.sysmo.net) and are
members of the SysMO-SUMO consortium.

Conflict of Interest: none declared.

REFERENCES
Davidge,K.S. et al. (2009) Carbon monoxide-releasing antibacterial molecules target

respiration and global transcriptional regulators. J. Biol. Chem., 284, 4516–4524.
McLean,S. et al. (2010) Peroxynitrite toxicity in Escherichia coli K-12 elicits expression

of oxidative stress responses, and protein nitration and nitrosylation. J. Biol. Chem.,
285, 20724–20731.

Partridge,J.D. et al. (2007) Transition of Escherichia coli from aerobic to micro-aerobic
conditions involves fast and slow reacting regulatory components. J. Biol. Chem.,
282, 11230–11237.

Sabatti,C. and James,G. (2006) Bayesian sparse hidden components analysis for
transcription regulation networks. Bioinformatics, 22, 739–746.

Sanguinetti,G. et al. (2006) Probabilistic inference of transcription factor concentrations
and gene-specific regulatory activities. Bioinformatics, 22, 2775–2781.

2636

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/20/2635/193813 by guest on 13 M
arch 2024

http://
http://www.ecocyc.org/

