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ABSTRACT

Motivation: The interpretation of gene interaction in biological
networks generates the need for a meaningful ranking of network
elements. Classical centrality analysis ranks network elements
according to their importance but may fail to reflect the power of
each gene in interaction with the others.
Results: We introduce a new approach using coalitional games to
evaluate the centrality of genes in networks keeping into account
genes’ interactions. The Shapley value for coalitional games is used
to express the power of each gene in interaction with the others
and to stress the centrality of certain hub genes in the regulation
of biological pathways of interest. The main improvement of this
contribution, with respect to previous applications of game theory
to gene expression analysis, consists in a finer resolution of the gene
interaction investigated in the model, which is based on pairwise
relationships of genes in the network. In addition, the new approach
allows for the integration of a priori knowledge about genes playing
a key function on a certain biological process. An approximation
method for practical computation on large biological networks,
together with a comparison with other centrality measures, is also
presented.
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1 INTRODUCTION
Gene expression data may be collected by means of microarray
technology (Golub et al., 1999; Parmigiani et al., 2003). Within
a single experiment of this sophisticated technology, the level of
expression of thousands of genes is estimated in a sample of cells
under given conditions (genetic diseases, environmental exposition,
pharmacologic treatment, levels of activation of a given pathway
of genes, etc.). Several approaches have been proposed to identify
‘central’ genes of different biological pathways within the huge
amount of information provided by this technology (Amaratunga
and Cabrera, 2004; Storey and Tibshirani, 2003; Tusher et al., 2001).

Gene co-expression networks (Zhang and Horvath, 2005)
and other biological networks (e.g. representing protein–protein
interactions) are increasingly used to explore the system-level

∗To whom correspondence should be addressed.

functionality of genes and proteins (Carlson et al., 2006; Jeong
et al., 2001). Co-expression networks, for instance, are connection
situations based upon the extent of correlation between pairs of
genes across a gene expression dataset. Nodes are genes and
connections are defined by co-expression of two genes. Often,
the Pearson’s correlation coefficient is the initial measure of gene
co-expression. This measure is then transformed into an adjacency
matrix, according to different alternative statistical procedures
(Carlson et al., 2006; Zhang and Horvath, 2005). Depending on the
aims of the study, weighted or unweighted networks, generated by
the dichotomization of the corresponding correlation matrix, may
be considered. Analytical methods for network elements ranking
are an important tool for the interpretation of gene interaction in
co-expression networks. Centrality analysis ranks single elements
according to their importance within the network structure, and
different measures of centrality focus on various aspects of the
structure of a network (Junker et al., 2006; Mason and Verwoerd,
2007), e.g. most central elements of protein networks were essential
to predict lethal mutations (Jeong et al., 2001). Highly connected
hub genes, largely responsible for maintaining network connectivity,
were likely essential for yeast survival (Carlson et al., 2006),
although standard centrality measures may fail to reflect the power
of each gene to interact with the others.

Cooperative game theory may also be used to analyze gene
expression data see, (for instance, Albino et al., 2008; Esteban
and Wall, 2009; Lucchetti et al., 2009; Fragnelli and Moretti,
2008; Moretti, 2009, 2010; Moretti et al., 2007, 2008). In (Moretti
et al., 2007), the class of microarray games has been introduced
to quantitatively evaluate the relevance of each gene in generating
or regulating a condition of interest (e.g. a disease), taking into
account the observed relationships in all subgroups of genes. In the
framework of microarray games, the relevance of genes is expressed
in terms of the Shapley value (Moretti and Patrone, 2008; Shapley,
1953). The Shapley value attributed to a certain gene in a given
microarray game corresponds to the relevance of that gene for the
mechanisms governing the genomic effects of the condition under
study. This game-theoretic approach has been successfully applied to
real datasets (Albino et al., 2008; Moretti et al., 2008) and provides
a characterization of a relevance index for genes which is mainly
based on the role they play inside gene-regulatory pathways (Moretti
et al., 2007). A comparison between the results provided by the
analysis of the Shapley value of microarray games and the results
provided by classic statistical testing is discussed in connection with
the pathogenesis of neuroblastic tumors in (Albino et al., 2008),
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and in (Moretti et al., 2008), where gene expression in children
differentially exposed to air pollution is studied.

Standard centrality measures (Junker et al., 2006; Mason
and Verwoerd, 2007) do not take into account the strength of
interrelations inside subgroups of genes, in contrast with a central
issue of coalitional games in cooperative game theory, which is
precisely to analyze the overall power of players according to their
role in all feasible ‘coalitions’. In the context of social networks,
(Gòmez et al., 2003) proposed a new family of centrality measures
based on coalitional games defined on networks. Our idea was to
use a similar approach in the context of co-expression networks.
We define an association game as a coalitional game (also known
as a cooperative game in characteristic function form) (N,v), where
N is the set of genes studied in the expression dataset and v is
the characteristic function, which assigns a ‘worth’ to each subset
(coalition) of genes in N . The worth of a coalition represents the
overall magnitude of the correlation between the genes of the
coalition and a set of key genes selected a priori (e.g. a set of genes
known to be involved in biological pathways related to chromosome
damage).

In order to study the cascade of activation/deactivation among
genes, gene interaction is restricted to the connections within an
associated interaction network or co-expression network �, and
therefore another coalitional game (N,wv

�) is studied, which is
defined as the restriction of the association game (N,v) to the co-
expression network computed on the dataset (Myerson, 1977). The
difference of the Shapley values computed on the two coalitional
games (N,v) and (N,wv

�) is considered as a gene centrality measure.
The article is organized as follows. Next section, after the

introduction of some preliminary notations, is devoted to the
presentation of the game-theoretic centrality measure. Section 3
presents a preliminary application of the method to a real dataset.
Section 4 introduces an approximation method for centrality
computation and the comparison of the results with other centrality
measures on a large network. Section 5 concludes the article.

2 APPROACH

2.1 Preliminaries
An (undirected) graph or network is a pair 〈V ,E〉, where V is a finite
set of vertices or nodes and E is a set of edges e of the form {i,j}
with i,j∈V , i �= j.

A path between nodes i and j in a graph 〈V ,E〉 is a finite sequence
of nodes (i0,i1,..., ik), where i= i0 and j= ik , k ≥1, such that
{is,is+1}∈E for each s∈{0,...,k−1} and such that all these edges
are distinct. Two nodes i,j∈V are connected in 〈V ,E〉 if i= j or if
there exists a path between i and j in E. The length of a path between
i and j in a graph 〈V ,E〉 is the number of edges in the path and a
shortest path between i and j in a graph 〈V ,E〉 is a path between i

and j with minimum length. We denote by SP i,j
E the set of all the

shortest paths between two nodes i,j∈V , i �= j, in a graph 〈V ,E〉.
A cycle in 〈V ,E〉 is a path from i to i for some i∈V . A path

(i0,i1,...,ik) is without cycles if there do not exist a,b∈{0,1,...,k},
a �=b, such that ia = ib. A forest is a graph where each path is without
cycles.

A connected component of V in 〈V ,E〉 is a maximal subset of V
with the property that any two nodes in this subset are connected in

〈V ,E〉. The set of all the connected components in 〈V ,E〉 is denoted
by CE .

Now, we introduce some basic game-theoretical notations. A
coalitional game or characteristic-form game is a pair (N,v), where
N denotes a finite set of players and v is the characteristic function,
assigning to each S ⊆N , v(S)∈ IR, with v(∅)=0 by convention. If the
set N of players is fixed, we identify a coalitional game (N,v) with
the corresponding characteristic function v.Agroup of players T ⊆N
is called a coalition and v(T ) is called the worth of this coalition.
We will denote by G the class of all coalitional games.

Let C ⊆G be a subclass of coalitional games. Given a set of players
N , we denote by CN ⊆C the class of coalitional games in C with N
as set of players.

The unanimity game (N,uR) on ∅ �=R⊆N is the game described
by uR(T )=1 if R⊆T and uR(T )=0, otherwise. Every coalitional
game (N,v) can be written as a linear combination of unanimity
games in a unique way, i.e. v=∑

S⊆N,S �=∅λS(v)uS (see, for

instance, Owen, 1995). The coefficients λS(v), for each S ∈2N \{∅},
are called unanimity coefficients of the game (N,v).

A payoff vector or allocation (x1,...,xn) of a coalitional game
(N,v) is a vector ∈ IRN describing the payoffs of the players, such
that each player i∈N receives xi.

A one-point solution (or simply a solution) for a class CN of
coalitional games is a function ψ that assigns a payoff vector ψ(v)
to every coalitional game in the class, that is ψ :CN → IRN .

The most widely used solution in the theory of coalitional games
is the Shapley value, introduced in (Shapley, 1953). This solution
can be described in several ways. First, we need to introduce the
notions of order on N and of marginal vector.

We define the set �N of possible orders on the set N as the set of
all bijections σ :N →N , where σ(i)= j means that with respect to σ,
player j is in the i-th position. Let (N,v) be a coalitional game with
N as the set of players. For σ∈�N , the marginal vector mσ (v) is
defined by

mσi (v)=v([i,σ])−v((i,σ)) for all i∈N,

where [i,σ]={j∈N :σ−1(j)≤σ−1(i)} is the set of predecessors of i
with respect to σ including i, and (i,σ)={j∈N :σ−1(j)<σ−1(i)} is
the set of predecessors of i with respect to σ excluding i.

The Shapley value φ(v) of a game (N,v) is then defined as the
average of marginal vectors over all |N |! possible orders in �N (|N |
is the cardinality of the set N). In formula

φi(v)=
∑

σ∈�N

mσi (v)

|N |! for all i∈N . (1)

An alternative representation of the Shapley value can be given in
terms of the unanimity coefficients (λS(v))S∈2N \{∅} of a game (N,v),
that is:

φi(v)=
∑

S⊆N :i∈S

λS(v)

|S| (2)

for each i∈N .

2.2 Genes and games
Suppose to have a set K of key genes assumed to be equally
important for the regulation of a certain biological process. Let N
be the set of genes who are studied together with genes in K on a
sequence of (microarray) experiments under a condition of interest,
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for instance, a genetic disorder. Let I ⊆{{i,k}|i∈N,k ∈K} be the set
of interactions between genes in N and key genes in K . We will say
that a gene i∈N and a key gene k ∈K interact if and only if {i,k}∈ I .
The triple (N,K,I) is said a gene-k-gene (gkg) situation.

Given a set of genes S ⊆N , the higher the number of key genes
which interact with genes in S, the higher the likelihood that genes
in S are also involved in the regulation of the biological process of
interest. In order to measure the strength of association of pathways
of genes in N , for each group S ⊆N we compute the number of
key genes interacting only with genes in S. Let v :2N →N be the
map assigning to each coalition S ∈2N \{∅} the number v(S) of key
genes in K which only interact (in I) with genes in S. By convention,
v(∅)=0. The pair (N,v) is called association game corresponding
to (N,K,I). Note that the assumption of equal importance for key
genes is central for the definition of the characteristic function v.
In fact, the value v(S), for each S ∈2N \{∅}, represents a measure
of the relevance of coalition S in terms of the number of key
genes directly interacting only with genes in S. The possibility to
compare the relevance of different coalitions makes sense thanks to
the assumption of equal importance of key genes.

In the remainder of the article, to simplify the presentation of
the game-theoretic model, we will also assume that key genes
are independent, i.e. they do not directly interact between them.
However, this assumption is not fundamental as the one of equal
importance. If a group of m key genes directly interact, it will
be sufficient to collapse them into an individual key-unit whose
importance equals m times the importance of a single key genes.

Example 1. Consider a set of genes N ={1,2,3,4}, a set
of key-genes K ={a,b,c} and a set of interactions I =
{{1,a},{1,b},{3,b},{3,c}, {4,c}}, as they are depicted by thin lines
in Figure 1.

The association game (N,v) is such that v(∅)=v(2)=
v(3)=v(4)=v(2,3)=v(2,4)=0, v(1,3)=v(1,2,3)=2, v(1,3,4)=
v(1,2,3,4)=3 and v(S)=1 for all the remaining coalitions.

If gene i∈N has not directly an interaction with k ∈K , it may still
be possible for i to interact with k via an interaction with another
gene j∈N (an intermediary) which in turn has an interaction with
k, or more generally, via a sequence of intermediaries. So, it is
essential to understand which genes really interact, directly or via
intermediaries, and how the network of such interactions may affect
the worth of coalitions of genes.

Let us consider now an interaction network 〈N,�〉, the nodes of
the graph being the genes. The set of edges � indicates interaction
ties between pairs of genes, i.e. a set {i,j}⊆N is an element of � if
and only if i and j have an interaction. Implicitly, this graph shows
us which coalitions are feasible, i.e. which coalitions have all their
members related by interactions.

Given a gkg situation (N,K,I) with the corresponding association
game (N,v) and an interaction network 〈N,�〉, following the
approach in (Myerson, 1977), we use the structure of an interaction
network to define a new game (N,wv

�), where the value wv
�(S) of

a coalition S equals the sum of the values assigned by v to the
connected components of the network restricted to this coalition S.
The game wv

� is called the graph-restricted game.

Definition 1. Let (N,K,I) be a gkg situation and let (N,v) be
the corresponding association game. Let 〈N,�〉 be an interaction
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Fig. 1. Interaction network �̂ (thick lines) and the interactions of the gkg
situation described in Example 1 (thin lines).
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Fig. 2. Interaction network �̄ (thick lines) and the interactions of the gkg
situation described in Example 1 (thin lines).

network. The graph-restricted game (N,wv
�) is defined by

wv
�(S)=

∑

T∈C�S

v(T ) (3)

for each S ∈2N \{∅}, where C�S
is the set of all the connected

components in 〈S,�S〉, and with the convention wv
�(∅)=0.

Example 2. Consider the gkg situation of Example 1 with the
corresponding association game (N,v). Consider the interaction
network (N,�̂) where �̂={{1,2},{2,3}}. All the interactions are
represented in network of Figure 1.

The graph-restricted game (N,wv
�̂

) is such that wv
�̂

(1)=
wv
�̂

(1,2)=wv
�̂

(1,4) =wv
�̂

(1,2,4)=wv
�̂

(1,3)=wv
�̂

(1,3,4)=1, wv
�̂

(1,

2,3)=2, wv
�̂

(1,2,3,4)=2 and wv
�̂

(S)=0 for all the remaining

coalitions.

Example 3. Consider the gkg situation of Example 1 with the
corresponding association game (N,v). Consider the interaction
network (N,�̄) where �̄={{1,2},{2,3},{2,4},{3,4}}. All the
interactions are represented in network of Figure 2.

The graph-restricted game (N,wv
�̄

) is such that wv
�̄

(3,4)=
wv
�̄

(2,3,4)=1, wv
�̄

(1)=wv
�̄

(1,2)=wv
�̄

(1,4) =wv
�̄

(1,2,4)=wv
�̄

(1,

3)=1, wv
�̄

(1,2,3)=wv
�̄

(1,3,4)=2, wv
�̄

(1,2,3,4)=3 and wv
�̄

(S)=0
for all the remaining coalitions.

Starting from the basic paper (Shapley and Shubik, 1954), the
Shapley value of a game has been considered as a player’s power in
several different applications [see, for instance, the survey (Moretti
and Patrone, 2008) for references to the use of the Shapley value as
a power index in different contexts]. Here, players are genes and the
Shapley value is considered as a gene’s power. The intuition behind
the meaning of gene’s power attributed to relation (1) follows from
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this consideration. An order σ on a set of genes N may be interpreted
as a sequence of activations of study genes and the corresponding
marginal vector may be seen as a measure of the power of study
genes to establish relevant interactions with key genes according to
σ. However, in absence of information about which sequences of
activations are more likely, it is reasonable to average the marginal
vectors over all possible orders as an indication of the expected
power of genes.

The difference between the power of a gene in the graph-restricted
game and its power in the association one is proposed as a centrality
measure for co-expression networks [see (Gòmez et al., 2003) in
the context of social networks]. Let (N,K,I) be a gkg situation and
let (N,v) be the corresponding association game. Let 〈N,�〉 be an
interaction network. The centrality measure γ(v,�) is defined by

γi(v,�)=φi(w
v
�)−φi(v), (4)

for each i∈N , where φ(v) is the Shapley value of the association
game v and φ(wv) is the Shapley value of the corresponding graph-
restricted game wv

�. According to relation (4), genes with strictly
positive γ represent those genes with a positive differential power
between the graph-restricted game and the association game. In the
applications introduced in Sections 3 and 4, we will be interested to
study such genes, because they are genes whose power increases as
a consequence of their interactions in the network.

Example 4. Consider the gkg situation with the corresponding
association game (N,v) and the interaction network of Example
2. According to relation (1), we have that φ(v)= ( 3

2 ,0,1,
1
2 ) and

φ(wv
�̂

)= ( 4
3 ,

1
3 ,

1
3 ,0). Thus, the centrality measure gives γ(v,�̂)=

(− 1
6 ,

1
3 ,− 2

3 ,− 1
2 ).

As an example of Shapley value computation via relation (1), we
show here the calculation for gene 1. In total, there are 4!=24 orders
in�N . There are precisely 6 orders σ∈�N such that σ−1(1)=1 and
other 6 orders σ∈�N such that σ−1(4)=1. In addition, for each
intermediate coalition S ⊆{2,3,4} of one or two genes, there are two
orders on N such that S is the set of precessors of 1. Consequently,
from relation (1), the Shapley value of gene 1 is

φ1(v)= 1
24

(
6(v({1)−v(∅))+6(v(1,2,3,4)−v(2,3,4))

+2(v(1,2)−v(2))+2(v(1,3)−v(3))+2(v(1,4)−v(4))
+2(v(1,2,3)−v(2,3))+2(v(1,3,4)−v(3,4))
+2(v(1,2,4)−v(2,4))

)

= 1
24

(
6×(1−0)+6×(3−1)+2×(1−0)+2×(2−0)

+2×(1−0)+2×(2−0)+2×(3−1)+2×(1−0)
)

= 1
24

(
6+12+2+4+2+4+4+2

)= 36
24 = 3

2 .

Next section is devoted to illustrate a more efficient way to calculate
the Shapley value of genes.

Example 5. Consider the gkg situation with the corresponding
association game (N,v) and the interaction network of Example 3.
Again, according to relation (1), we have that φ(v)= ( 3

2 ,0,1,
1
2 )

(nothing changed in game v) and φ(wv
�̄

)= ( 4
3 ,

1
3 ,

5
6 ,

1
2 ). Thus, the

centrality measure gives γ(v,�̄)= (− 1
6 ,

1
3 ,− 1

6 ,0). Note that with
respect to Example 4, where edges {2,4} and {3,4} were not present,
gene 2 continues to be the unique one with strictly positive centrality
according to γ , even if genes 3 and 4 increase their centrality.

It should be noted that −v(N)≤γi(v,�)≤wv
�(N) for each i∈N .

As a consequence, γ centrality computed on different interaction

networks are comparable scores only if they are defined on the same
interval scale, that is if the worth of the largest coalition in the
graph-restricted game is the same for both interaction networks.

2.3 Centrality computation
Actually, the computation of the Shapley value using relation (1)
may be very hard even if the number of genes is quite small. For
instance, with only 10 genes, relation (1) needs 10!=3628800 orders
of genes. In order to make real applications, it is useful to decompose
the association game and the corresponding graph-restricted game
by means of a relatively small number of unanimity games with non-
null unanimity coefficients. As a consequence, the Shapley value of
such games may be computed in a less complex way via relation (2).
In the following, we briefly describe this decomposition procedure.

Let (N,K,I) a gkg situation. For each key gene k ∈K , the set of
genes in N which have a strong interaction with k are denoted by
Nk ={i∈N |{i,k}∈ I}. In the remainder of the article, genes in Nk ,
for each k ∈K , will be shortly referred as most associated genes. Let
(N,v) be the corresponding association game. It is easy to show that
the characteristic function v can be written as a sum of unanimity
games:

v=
∑

k∈K,Nk �=∅
uNk

. (5)

Example 6. Consider the gkg of Example 1. We have that Na =
{1},Nb ={1,3},Nc ={3,4}. From relation (5), the corresponding
association game v is given by

v=u{1}+u{1,3}+u{3,4}.
Consequently, according to relation (2) (with unanimity coefficients
λS(v)=1, if S ∈{{1},{1,3},{{3,4}}, and λS(v)=0, otherwise) , the
Shapley value of v can easily be calculated as the following sum of
vectors

φ(v)= (1,0,0,0)+( 1
2 ,0,

1
2 ,0)+(0,0, 1

2 ,
1
2 )= ( 3

2 ,0,1,
1
2 ).

The remainder of this section is devoted to provide a natural
decomposition of a graph-restricted game based on the reformulation
of the association game given in (5).

First, we need to introduce the concept of minimal component
containing a coalition S. Let 〈N,E〉 be a graph. We denote by 〈N,FE〉
a graph where FE is a maximal subset of E with the property that
〈N,FE〉 is a forest. The set of all the forests for E is denoted by
FE . Let S ∈2N \{∅}. A minimal component containing S in a forest
〈N,E〉 is a minimal subset of N which contains S and with the
property that any two nodes in this set are connected in 〈N,E〉.
Note that in a forest, a minimal component containing S, if exists,
is unique. This fact allows us to denote the minimal component
containing S in a forest FE (if it exists) by MFE

(S), and the set of all
the minimal components containing S in a graph 〈N,E〉 is denoted
by ME (S)={MFE

(S)|FE ∈FE}.
Let 〈N,�〉 be a graph. Consider a unanimity game (N,uS), with

S ∈2N \{∅} and such that M�(S) �=∅. Without loss of generality,
suppose that M�(S)={Mi1

� (S),...,Mir
� (S)}, with r ≥1. We define a

new game (N,wuS
� ) in the following way

wuS
� =

r∑

j=1

(−1)j+1
∑

1≤i1<···<ij≤r

u
M

i1
� (S)∪···∪M

ij
� (S)

. (6)
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Example 7. Consider the interaction network of Example 3. Let
S ={1,3}. Note that M�̄(S)={{1,2,3},{1,2,3,4}}. From relation
(6) we have that

wuS

�̄
=u{1,2,3}+u{1,2,3,4}−u{1,2,3}∪{1,2,3,4} =u{1,2,3}.

Games defined according to relation (6) are crucial for the
computation of the Shapley value of graph-restricted games in
practical situations. In fact, it can be proved that the game wuS

� is the
restriction of the unanimity game uS to graph �, and is also known
as the connecting S in � game (Gòmez et al., 2004). Consequently,
it can be easily shown that given a gkg situation (N,K,I) with the
corresponding association game (N,v) and an interaction network
〈N,�〉, the graph-restricted game (N,wv

�) may be computed via the
following formula

wv
�=

=∑
k∈K,Nk �=∅,M�(Nk)�=∅w

uNk
�

=∑
k∈K,Nk �=∅,M�(Nk)�=∅∑|M�(Nk)|

j=1 (−1)j+1∑
1≤i1<···<ij≤r u

M
i1
� (Nk)∪···∪M

ij
� (Nk)

,

(7)

where M�(Nk)={Mi1
� (Nk),...,M|M�(Nk)|

� (Nk)}, for each k ∈K
with Nk �=∅ and M�(Nk) �=∅.

From relations (2) and (7), it immediately follows that the Shapley
value of a graph-restricted game wv

� can be computed using the
following relation

φi(wv
�)

=∑
k∈K,i∈Nk,M�(Nk)�=∅∑|M�(Nk)|

j=1 (−1)j+1∑
1≤i1<···<ij≤r

1
|Mi1

� (Nk)∪···∪M
ij
� (Nk)| ,

(8)

for each i∈N .

Example 8. Consider the gkg with the corresponding association
game (N,v) and the interaction network of Example 2. Note that
M

�̂
(Na)={{1}}, M

�̂
(Nb)={{1,2,3}} and M

�̂
(Nc)={∅}.

According to relation (7), we can write the graph-restricted game
wv
�̂

as a sum of unanimity games

wv
�̂

=u{1}+u{1,2,3}. (9)

Consequently, φ(wv
�̂

)= ( 4
3 ,

1
3 ,

1
3 ,0).

Example 9. Consider the gkg with the corresponding association
game (N,v) and the interaction network of Example 3. Note that
M�(Na)={{1}}, M�(Nb)={{1,2,3},{1,2,3,4}} and M�(Nc)=
{{3,4},{2,3,4}}.

According to relation (7), we can write the graph-restricted game
wv
� as a sum of unanimity games

wv
�=u{1}

+u{1,2,3}+u{1,2,3,4}−u{1,2,3}∪{1,2,3,4}
+u{3,4}+u{2,3,4}−u{3,4}∪{2,3,4}
=u{1}+u{1,2,3}+u{3,4}.

(10)

Consequently, φ(wv
�)= ( 8

6 ,
2
6 ,

5
6 ,

3
6 ). Note that the role of the minimal

components {1,2,3,4} and {2,3,4} in the computation of the graph-
restricted game wv

� is redundant (both of them are superset of
‘smaller’ minimal component, and consequently the contribution of
the corresponding unanimity games to the computation of wv

� is
null). Such redundant components may be a priori eliminated from

the analysis, with a consequent reduction of computational burden
in relations (7) and (8).

In the next section, we present an application of this centrality
measure on a microarray data from children exposed to air pollution
(Moretti et al., 2008).

3 PRELIMINARY APPLICATION
We present a preliminary application of the method to gene
expression data published in (van Leeuwen et al., 2008), where
genome-wide oligonucleotide microarray analysis was applied to
blood cells of 23 children from Teplice (TP) region in the Czech
Republic. The TP region is a mining district characterized by high
levels of airborne pollutants including carcinogens. We consider the
gene expression matrix X of 20130 genes and 23 samples from TP
that was distilled from the data filtering and preparation as described
in (van Leeuwen et al., 2008).

As a set of key genes, we used four genes known to be
strongly associated with micronuclei frequencies, a biomarker of
chromosome damage: (i) PRC1 (protein regulator of cytokinesis 1);
(ii) TP53 [tumor protein p53 (li-fraumeni syndrome)]; (iii) ZWINT
(zw10 interactor); and (iv) CCNB2 (cyclin b2). As a first filtering
step, absolute values of Pearson’s correlation coefficients between
each study gene and each key gene were computed, providing
four lists of correlation coefficients (one list for each key gene)
with 20130 genes each, and the union of the top 25 genes from
the four lists were selected for further analysis (n=96). From the
gene expressions of the selected 96 genes, the corresponding gene
correlation matrix was computed, and an unweighted network, based
on dichotomizing the correlation matrix, was considered. More
precisely, two genes were considered to interact (i.e. linked by
an edge in the network) if and only if their absolute Pearson’s
correlation coefficient was >0.75 (Fig. 3).

According to this criterion, it was possible to define the association
game on the total set of 96 genes as the set of players, and the
corresponding graph-restricted game. From the association game,
only 9 genes obtained a non-null Shapley value ranging from 1 to
0.25 (Fig. 3, most associated genes). In fact, from relation (5), the
association game is defined by

v=u{1,2,3,4}+u{26,27,28}+u{38}+u{72}
and, as a consequence of relation (2), φ1(v)=φ2(v)=φ3(v)=
φ4(v)=0.25, φ26(v)=φ27(v)=φ28(v)= 1

3 , φ38(v)=φ72(v)=1 and
φi(v)=0 for each other gene i.

In order to compute the Shapley value on the graph-restricted
game, as it was described in Section 2.3, we first should find the
sets of minimal connected components M�(Nk), for each key gene
k. By definition, this requires the computation of the set of all the
forests F (�). Several algorithms exist for generating all spanning
trees of a graph that can be easily adapted to find all the forests
[e.g. (Gabow and Myers, 1978; Kapoor and Ramesh, 1995; Minty,
1965). However, as the number of forests in a graph can be very
large (especially for graphs generated from datasets with thousands
of genes) this option is excluded for practical purposes on large
datasets.

In this preliminary application, the computation of the Shapley
value on the graph-restricted game may be done by means of visual
inspection of the graph, looking at the shortest paths (thicker edges
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Fig. 3. Interaction network between genes (nodes). Interactions between gene’s pairs are represented by edges. Isolated genes were removed. Thicker edges
show the shortest paths among the most associated genes. Most central genes according to the γ measure of centrality are shown.

in Fig. 3), which connect nodes of unanimity coalitions (the most
associated genes in Fig. 3). It is in fact easy to check that all
minimal components containing the unanimity coalition {1,2,3,4}
must include the component {1,2,3,4,10,24} or the component
{1,2,3,4,22,24}. Consequently, by relation (7), the graph-restricted
game is

wv
�=u{1,2,3,4,10,24}+u{1,2,3,4,22,24}−u{1,2,3,4,10,22,24}

+u{26,27,28}+u{38}+u{72}
and, by relation (2), φ1(wv

�)=φ2(wv
�)=φ3(wv

�)=φ4(wv
�)=

φ24(wv
�)= 2

6 − 1
7 = 4

21 , φ10(wv
�)=φ22(wv

�)= 1
6 − 1

7 = 1
42 , φ26

(wv
�)=φ27(wv

�)=φ28(wv
�)= 1

3 , φ38(wv
�)=φ72(wv

�)=1 and
φi(wv

�)=0 for each other gene i.
By relation (4) and the above calculations, only three genes have

a γ centrality measure larger than zero, i.e. OR2B2, SCD and ODF4
(Table 1 and Fig. 3, most central genes). The same value of γ for
SCD and ODF4 can be explained by the fact that these two genes
can be alternatively used to connect genes PHIP and CCT3 (Fig. 3,
thicker edges). Instead, OR2B2 plays a more critical role, since it is
necessary to connect genes A_23_P102183 and CCT3.

Such genes are connected to genes associated to the key gene
TP53. This is a consequence of the fact the other three key genes
do not contribute to γ centrality, being the terms φ(u{26,27,28})+
φ(u{38})+φ(u{72}) both in φ(v) and φ(wv

�).
Among genes with positive γ , gene OR2B2 encodes for an

olfactory receptor protein which is member of a large family of

Table 1. Genes with γ centrality measure greater than zero

ID Symbol Name γ Centrality

24 OR2B2 Olfactory receptor, family 2, 4
21

subfamily B, member 2
10 SCD Stearoyl-CoA desaturase 1

42
(delta-9-desaturase)

22 ODF4 Outer dense fiber of 1
42

sperm tails 4

Methods were implemented using R language (R Development Core Team, 2004).

G-protein-coupled receptors. G proteins have been suggested to be
involved in the respiratory burst (release of ROS) caused by asbestos
(Elferink and Ebbenhout, 1988). In addition, it is known that fine and
ultra-fine particulate matter air pollution may reach the brain through
olfactory receptor neurons and the trigeminal nerves (Calderòn-
Garcidueña et al., 2007). The principal product of SCD is oleic
acid, which is formed by desaturation of stearic acid. The ratio of
stearic acid to oleic acid has been implicated in the regulation of cell
growth and differentiation through effects on cell membrane fluidity
and signal transduction. ODF4 encodes a protein that is localized in
the outer dense fibers of the tails of mature sperm. As a functional
annotation, all such genes encode for transmembrane proteins.
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4 APPROXIMATE COMPUTATION
As we already observed in the last section, the implementation of
algorithms aimed to generate the set of all forests in a real biological
network is an unpractical approach because of the huge storage
memory and the computational burden. This section is devoted to
the description of an alternative approach based on approximate
calculations, and to its application on a large biological network
where also other centrality measures are applied.

Let (N,K,I) be a gkg situation and let 〈N,�〉 be an interaction
network. For instance, with |N |=15, |K|=1, |I|=5 and |�|=21
(i.e. 〈N,�〉 has a graph density equal to 0.2), the exact computation
of the Shapley value of the restricted game wv

� according to relation
(8) and our R language implementation, required <4 min (on a PC
with a 2 GHz processor and 2 GB of memory). But the problem
explodes exponentially in time on more dense graphs. Even if the
time required for the computation is specific to the implementation,
the main complexity issue deals with the number of operations
needed to find all forests. Note that for a complete graph the Cayley’s
formula states that there are precisely nn−2 spanning trees, where
n is the number of nodes; in general, if a connected graph is not
complete, the number of spanning trees depends on the structure of
the graph, and it can be computed using the Kirchhoff’s matrix-tree
theorem (see, for instance, Bondy and Murty, 1976). For certain
classes of graphs, such a number may be bounded from above: for
instance, a k-regular connected graph on n vertices contains less than
kn spanning trees (Alon, 1990) or, alternatively, less than (n−1)ndn

(where d is the graph density of a k-regular connected graph on n
vertices).

For this reason, in order to make feasible (and reasonable in
terms of elapsed time) the application of the method also to larger
biological networks, we avoided the exhaustive generation of all
forests and the consequent exact computation of the Shapley value
of a restricted game. Alternatively, we limited the computation of
relation (8) to the ‘smallest’ minimal components connecting the
most associated genes on a graph, i.e. to those components which
belong to forests where each most associated gene is connected to
another most associated one by a shortest path.

Definition 2. Let 〈N,�〉 be an interaction network. For each forest

F�∈F (�) and each pair of nodes i,j∈N,i �= j, let Fi,j
� be the unique

path in F� between i and j. For each S ∈2N \{∅},the set of smallest
minimal components is defined as the set

M̄�(S)={MF� (S)|F�∈F (�) and

∀ i∈S ∃ j∈S,i �= j, s.t. Fi,j
� ∈SP i,j

E }. (11)

Example 10. Consider again the interaction situation depicted in
Figure 3. If we consider the set of smallest minimal components for
coalition N0 ={1,2,3,4} (i.e. the genes most associated to TP53), we
have that M̄�(N0)={{1,2,3,4,10,24},{1,2,3,4,22,24}}. Instead,
if we consider the set of most associated genes N71 ={72}
(i.e. TUBA6 which is the unique gene most associated to PRC1), we
have that M̄�(N71)={{72}}. In fact, the second condition in relation
(11) is always satisfied if |S|=1 (there are no distinct elements in
S), and therefore M̄�(N71)=M�(N71) (a similar reasoning may
be done for gene HMG4L in the role of PRC1).

To complete the example, note that M̄�(N71)={{26,27,28}}.
The approximate Shapley value of wv

� is computed according to
Equation (8) with M̄� in the role of M�.

This procedure was used to calculate an approximate γ centrality
for a larger graph with 201 nodes and 2083 edges. Only one key gene
(again gene TP53) was considered, on the same dataset introduced
in Section 3. In this case, 250 genes with the highest absolute
value of Pearson’s correlation with TP53 were initially selected
for further analysis. From the gene expressions of the selected
250 genes, following the same method described in Section 3, a
network was constructed. More precisely, a link between two nodes
was established if and only if their absolute Pearson’s correlation
coefficient was greater than 0.75. Only genes connected (directly or
via other nodes) to TP53 were considered (finally, |N |=201). We
focused exclusively on the component connected to key gene TP53
because the contribution of the other key genes to γ centrality in a
larger network (constructed according to the procedure previously
described) is the same as it was calculated at the end of Section 3
on the network depicted in Figure 3, that is null.

The algorithm for the approximate computation of γ centrality
was applied to the generated interaction network (elapsed time
29.3 min).

The number of smallest minimal components connecting the most
associated genes A_23_P102183, CHMP6, CCT3 and PHIP, was
105. This number was calculated combining in all possible ways all
the shortest paths between each pair of most associated genes, as
obtained by the application of the R function get.all.shortest.paths()
in the package igraph (Csardi and Nepusz, 2006), under the
condition that the resulting graphs were forests. Many of these
smallest minimal components were redundant (Example 9) and
therefore removed before the computation of relation (8). After
removal, the number of non-redundant components used for
computation in relation (8) was 21. This is in fact the upper bound
of |M�| for the exact computation of the Shapley value according
to our R implementation of relation (8).

Only nine genes showed an approximate γ centrality strictly
positive (indeed, representing genes with a positive differential
power). Those findings were compared with the most nine central
genes according to other four common measures of centrality. In the
following, we briefly introduce those measures. In order to do that,
we denote by d(u,v) the minimum number of edges to connect two
nodes u and v in 〈N,�〉:

(1) Degree centrality (Nieminen, 1974; Shaw, 1954): the degree
centrality of v∈N is defined as the number of edges in e∈�
such that v∈e.

(2) Closeness centrality (Beauchamp, 1965; Sabidussi, 1966): the
closeness centrality of node v∈N is defined as |N |−1∑

y∈N d(v,y) .

Therefore, it measures the extent to which node v∈N is close
to all other nodes in the 〈N,�〉.

(3) Betweenness centrality (Bavelas, 1948; Freeman, 1977): let
u,v,z∈N and let nu,v be the number of paths formed by
precisely d(u,v) edges and let nu,v(z) be the number of paths
formed by precisely d(u,v) edges which contains node z. The
rate of communication between u and v that can be monitored
by an interior node z is denoted by δu,v(z)=nu,v(z)/nu,v.
If no shortest path between u and v exists δu,v(z)=0 by
definition. The betweenness centrality of z is defined as∑

u,v∈N,u �=v,u �=z,v �=zδu,v(z).

(4) Eigenvector centrality (Bonacich, 1972): let v∈N . Then the
eigenvector centrality of v is defined as the v-th element of the
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Table 2. Common findings among lists of nine genes with highest centrality
according to different centrality measures

Appr. γ Deg. Clos. Bet. Eigen.

approxim. γ 9 2 4 6 0
Deg. 2 9 7 3 7
Clos. 4 7 9 5 5
Bet. 6 3 5 9 1
Eigen. 0 7 5 1 9

principal eigenvector of the adjacency matrix corresponding
to 〈N,�〉. This principal eigenvector is normalized such that
its largest entry is 1. This centrality is a measure for how
well connected a node is to other highly connected nodes in
a network.

The time needed to compute the nodes’ centrality according to each
of the four measures described above was<1 s, using the R functions
in the package igraph (Csardi and Nepusz, 2006).

For each pair of centrality measures considered, the number of
common genes among the first nine with highest centrality for each
measure are reported in Table 2. Note that the betweenness centrality
has the maximum level of overlap with the list of genes ranked
according to the approximate γ centrality.

The nine central genes selected according to the approximate γ
are reported on Table 3. Note the presence of genes SCD, ODF4
and OR2B2, that were found in the analysis of the smaller network
introduced in Section 3 (see Table 3, where indications from other
centrality measures are shown too). Among genes that are predicted
to be central only by gamma centrality (namely, SFPQ, OR2B2
and THRAP1), we observe that SFPQ is a multifunctional protein
that has been suggested to play a role in tumorigenesis, as SFPQ
translocation occurs in papillary renal cell carcinoma (Clark et al.,
1997; Rubin and Sive, 2007). Moreover, nuclear relocalization and
hyperphosphorylation of the protein that SFPQ encodes [known
as polypyrimidine tract binding protein-associated splicing factor
(PSF)] occur during apoptosis (Shav-Tal et al., 2001). PSF has been
shown to exhibit multiple functions in nucleic acid synthesis and
processing in vitro and in tissue culture, including RNA polymerase
II. Similarly, THRAP1 (also known as MED13) is a component
of the Mediator complex, a co-activator involved in the regulated
transcription of nearly all RNA polymerase II-dependent genes. The
role of gene OR2B2 was discussed at the end of the previous section.

From Tables 2 and 3, it seems that γ centrality behaves very close
to betweenness centrality, at least with respect to the most central
genes (six genes in common among the top nine).

This result is not surprising, but it can be explained by means
of the very basic properties of the γ index. The definition of γ
centrality, based on the notions of minimal components for coalitions
(see relation 8), gives more importance to geodesic paths which
connect the most associated genes. This is in fact a generalization
of the notion of betweenness centrality, where all geodesic paths are
considered equally important. The interaction networks depicted in
Figure 4 clarify this point. In the interaction network of Figure 4a,
where all genes between 2 and 7 are needed to connect the most
associated genes 1 and 8, γ centrality behaves similar to degree
centrality, providing the same level of importance to all genes

Table 3. Most 9 central genes according to γ centrality

Symbol Name Appr. γ

UBE12,3 ubiquitin-activating enzyme E1 0.0018
BEXL13 brain expressed X-linked-like 1 0.0014
SFPQ splicing factor proline/glutamine-rich 0.0012
SCD3 stearoyl-CoA desaturase (delta-9-desaturase) 0.0010
ODF41,2,3 outer dense fiber of sperm tails 4 0.0010
SPAG92,3 sperm associated antigen 9 0.0010

(polypyrimidine tract binding protein associated) 0.0010
OR2B2 olfactory receptor, family 2, subfam. B, memb. 2 0.0010
STK231,2,3 serine/threonine kinase 23 0.0010
THRAP1 thyroid hormone receptor associated protein 1 0.0008

Numbers shows genes found among the nine most central genes according to degree
centrality (1), closeness centrality (2), betweenness centrality (3) and eigenvector
centrality (4).

Fig. 4. Two different interaction networks (A and B) with eight genes
(interactions are represented by thick lines). Gene 1 and 8 are the most
associated genes in both networks, which directly interact (thin lines) to
the key gene k. Centrality values of nodes according to different centrality
measures are shown in the corresponding tables.

between 2 and 7 (differently from the other measures, which assign
the biggest amount of importance to nodes 4 and 5 and the smallest
amount to 2 and 7). On the other hand, we would tend to discard a
long path between two genes, in favor of a one-edge path, because
in this case it imposes additional intermediaries genes which are
not needed to connect associated genes. This is the case of the
interaction network depicted in Figure 4b, where genes 3 and 5
are intermediary genes not necessary to connect associated genes 1
and 8, and therefore they receive a null level of centrality both from
γ and betweenness centralities, whereas the other measures give an
intermediate level of centralities to such nodes.

5 CONCLUSION
In this article, a new measure of the importance of genes in
biological networks based on coalitional games is introduced. The
new measure, calculated from the Shapley value of two coalitional
games, has been used to express the centrality of each gene
in interaction with the others and keeping into account a priori
knowledge about genes playing a key function on a certain biological
process.

The use of γ index as a centrality measure is supported by the
basic intuition that it is a difference of power indices between a
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Fig. 5. An interaction network �̌ (thick lines) and the interactions of a
gkg situation described with only one keygene k (thin lines). Note that
the subgraphs individuated by paths (4,2,3,1) and (4,2,6,5,1) satisfy the
hypothesis (1), (2) and (3) of the TAM property. So, the TAM property would
require that the sum of centrality values of nodes which are in (4,2,3,1) is
larger or equal than the sum of nodes in (4,2,6,5,1). It is easy to check
that, according to relations (4) and (8), γ3 = 1

4 − 1
6 = 1

12 >2×( 1
5 − 1

6 )= 1
15 =

γ5 +γ6.

situation where binary interactions are considered (i.e. the graph-
restriction game) and another one where they are not (i.e. the
association game), and by the comparison with properties related to
other centrality measures on some examples. In order to generalize
these argumentations, an important issue for future research is to
address a comprehensive analysis of the properties satisfied by the
Shapley value on graph-restricted games, with the objective to better
contextualize its interpretation as a centrality measure.

In this direction, we believe that the following property
[namely, Total Aggregation Monotonicity (TAM) property] may be
a crucial property both for the interpretation and the axiomatic
characterization of the γ centrality index. Consider a gkg situation
(N,{k},I) (i.e. with only one key gene) and an interaction network
〈N,�〉.

If there exist two subgraphs 〈S,�S〉 and 〈T ,�T 〉 such that:

(1) S∩T =W ⊇Nk (the set of the most associated genes is a
subset of the intersection of S and T ),

(2) �S ∪�T =� (subgraphs are exhaustive: together they
represent all the interactions in �),

(3) |S|≤|T | (the cardinality of S is smaller than the cardinality
of T ),

then the TAM property requires that the sum of the centrality values
given to nodes in S is larger or equal than the sum of the centrality
values given to nodes in T . The interpretation of the TAM property
is related to the basic principle that the smaller pathways of genes
provide a less complex explanation of the observed network of
interactions, and for this reason they must be put into prominence.
In addition, it may serve to regulate the behavior of a desired
centrality index on separated components after the decomposition of
an interaction network in simpler subgraphs. An example showing
how the TAM property applies to γ centrality is given in Figure 5.

An approximation method for the calculation of γ centrality in
practical biological networks is also presented. According to this
procedure, the generation of all spanning forests in a biological
network is not needed, but the analysis is limited to a smaller
subset of forests characterized by the property that each pair of most
associated genes is connected by a shortest path.

According to (Zhou et al., 2002), where a method of analysis
using the shortest path to identify genes from the same biological
process has been presented and validated on yeast interaction
networks, a shortest path between two genes i and j involved in
the same biological process represents the most reliable explanation
of dependence between i and j. As a consequence of their validation
procedure, (Zhou et al., 2002) demonstrated that the genes on the
shortest path between i and j are likely to be important intermediate
players in the same process.

Therefore, it seems natural to focus on shortest paths in order to
provide a more parsimonious representation of a graph-restricted
game that makes feasible the application on a real interaction
network. On the other hand, many shortest paths may exist between
two genes on an interaction network, and therefore the selection of
those genes that better represent the dependance between the most
associated genes is still a problem involving the interaction of all
possible coalitions, in the restricted domain defined by all shortest
paths.

Of course, the price for using the method based on shortest paths
is that genes outside those particular paths receive a null value of
approximated γ centrality, even if their exact γ value is not null.
On the other hand, this result is not in contrast with the principle
that genes which are not on the shortest paths should receive a lower
amount of centrality than genes on the shortest paths. In other words,
the approximated method provides results which are consistent with
the TAM property illustrated above.
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