
BIOINFORMATICS ORIGINAL PAPER Vol. 26 no. 3 2010, pages 385–391
doi:10.1093/bioinformatics/btp668

Systems biology

Protein complex prediction based on simultaneous protein
interaction network
Suk Hoon Jung1, Bora Hyun1, Woo-Hyuk Jang1, Hee-Young Hur1 and Dong-Soo Han2∗
1Department of Information & Communications Engineering, Korea Advanced Institute of Science and Technology,
119 Munjiro, Yuseong-gu, Daejeon, 305–714 and 2Department of Computer Science, Korea Advanced Institute of
Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon, 305–701, Korea

Received on February 24, 2009; revised on November 22, 2009; accepted on November 28, 2009

Advance Access publication December 4, 2009

Associate Editor: Olga Troyanskaya

ABSTRACT

Motivation: The increase in the amount of available protein–protein
interaction (PPI) data enables us to develop computational methods
for protein complex predictions. A protein complex is a group of
proteins that interact with each other at the same time and place. The
protein complex generally corresponds to a cluster in PPI network
(PPIN). However, clusters correspond not only to protein complexes
but also to sets of proteins that interact dynamically with each
other. As a result, conventional graph-theoretic clustering methods
that disregard interaction dynamics show high false positive rates in
protein complex predictions.
Results: In this article, a method of refining PPIN is proposed that
uses the structural interface data of protein pairs for protein complex
predictions. A simultaneous protein interaction network (SPIN) is
introduced to specify mutually exclusive interactions (MEIs) as
indicated from the overlapping interfaces and to exclude competition
from MEIs that arise during the detection of protein complexes.
After constructing SPINs, naive clustering algorithms are applied to
the SPINs for protein complex predictions. The evaluation results
show that the proposed method outperforms the simple PPIN-
based method in terms of removing false positive proteins in the
formation of complexes. This shows that excluding competition
between MEIs can be effective for improving prediction accuracy
in general computational approaches involving protein interactions.
Availability: http://code.google.com/p/simultaneous-pin/
Contact: dshan@kaist.ac.kr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Recent developments in biotechnology have resulted in an increase
in the amount of protein–protein interaction (PPI) data. Modeling a
PPI network (PPIN) with simple graphs enables many computational
methods for the study of protein functions (Broheè and Helden,
2006; Han et al., 2004), one of which is known as the automatic
protein complex prediction method. Protein complexes generally
correspond to clusters in a PPIN because proteins in a complex
are highly interactive with each other (Tong and Drees, 2002).
Therefore, computational methods for protein complex predictions,

∗To whom correspondence should be addressed.

such as MCODE (Molecular Complex Detection; Bader and Hogue,
2003), LCMA (Local Clique Merging Algorithm; Li et al., 2005),
SPC (Super Para-magnetic Clustering; Blatt et al., 1997), RNSC
(Restricted Neighborhood Search Clustering; King et al., 2004) and
DPClus (Altaf-Ul-Amin et al., 2006; Li et al., 2008), typically focus
on the extraction of clusters based on the graph theory.

One specific problem pertaining to conventional methods
originates from the fact that with these methods, a PPIN is regarded
as a static entity. In reality, a PPIN is not a static but a dynamic
entity; the functional state of the network depends on the expression of
protein nodes, which is intrinsically controlled by different regulatory
mechanisms through time and space (Han et al., 2004; Liang and
Li, 2007). In a dynamic network, a protein complex is a group of
proteins in which individual proteins interact with each other at the
same time and place (Spirin and Mirny, 2008). However, a cluster in a
PPIN may include proteins that interact dynamically with each other
as well. Conventional approaches based on a simple PPIN cannot
properly distinguish protein complexes from interactions that may
be activated at a different time and place because they disregard
interaction dynamics. This leads to false positive results in protein
complex detections (Spirin and Mirny, 2008).

A means of tackling this problem is to use the features of proteins
additionally as indirect evidence. Some methods use machine
learning methods, and some others enrich the protein interaction
network by assigning weights based on functional annotations; gene
expression data; or biological, chemical and physical properties (Pei
and Zhang, 2006; Qi et al., 2008; Zhang et al., 2006). Given that
these features are known to be relevant to protein mechanisms in
general, considering them in clustering algorithms may improve the
prediction results. However, using indirect evidence is not adequate
in itself to pinpoint complexes in PPIN because indirect evidence is
not determinative in complex formations.

Unlike previous approaches, this article focuses on competitive
interactions in a PPIN, which are considered to provide more direct
and determinative evidence in the identification of proteins in the
formation of a complex. Interactions must occur simultaneously in a
protein complex; consequently, excluding interaction competitions
is a necessary condition during the formation of a complex. Thus,
competitive interactions in a PPIN should be prudently selected
before they are included in a predicted complex.

In addition, many proteins are known to usually have a number
of interacting partners, some of which may cooperate or even
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compete for the activation of certain functions. The cooperation and
competition between partners of a protein are controlled by different
regulatory mechanisms (Colley et al., 1997), and they determine
which function is going to be activated among those the protein
may serve (Bryce et al., 2001; Pierrat et al., 2007; Tabuchi et al.,
2002). Moreover, some proteins are reported to have alternative
interaction partners, which are competitive, but their alternation
serves the same or a similar function (Elion et al., 1991; Qi and
Elion, 2005). Consequently, the cooperation and competition may
generate variations in the formations of complexes and functional
modules that overlap with each other (Hu et al., 2005; Valente et al.,
2009).

Among a number of interaction partners, detecting the cooperative
partners for a certain function is essential for an understanding
of functional mechanisms of proteins. However, too few genes
have been studied through experiments, which are typically
accomplished only with great difficulty. Therefore, in this research,
an understanding of the cooperation between a protein and its
partners is approached by eliminating instances of interaction
competition through computations.

In this article, a network model is developed that incorporates
interaction competition information drawn from the structural
interface data of protein domains. A framework using the network
model for graph-theoretic clustering methods is then proposed for
protein complex predictions. The network model, simultaneous
protein interaction network (SPIN), captures different sets of non-
competitive interactions extracted from the original PPIN. Network
clustering on non-competitive interactions excludes superfluous
members in the formation of a protein complex.

This research seeks instances of interaction competition based on
interaction interfaces. Many competitive interactions are mediated
by the same interfacial surface. More than one protein cannot
physically bind to the same or an overlapping surface on a protein at
the same time; such interactions are identified as mutually exclusive
interactions (MEIs; Hu et al., 2005; Kim et al., 2006)

A SPIN is a simple graph composed of nodes and edges which
allows any naive graph-theoretic clustering algorithm to be applied
to it to computationally predict protein complexes. In this article,
MCODE and LCMA are applied to SPINs, as constructed from
Saccharomyces cerevisiae (yeast) interactome and are then applied
to plain yeast PPIN for comparison. The prediction results are
compared with experimentally derived yeast protein complexes
recorded in the MIPS complex database (Guldener et al., 2006).

According to the result analysis, SPIN-based clustering
outperforms simple PPIN-based clustering. Our model results in a
significantly improved F1-score when compared with PPIN-based
methods. Moreover, it detects all of the complexes detected by PPIN-
based clustering while also generating additional true positives in
all thresholds. This result was possible because only superfluous
members for a complex formation were removed by the SPIN-based
method apart from a small number of cases.

2 METHOD

2.1 Competition between MEI partners
Aclose look into the physical interfaces between interacting proteins provides
information on mutual exclusiveness among the interacting partners of a
protein, and mutual exclusiveness results in interaction competition. If two or
more interaction partners can bind to a common or an overlapping interfacial
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Fig. 1. An example of MEIs: (a) Two proteins, P2 and P3, can bind to a
common surface on P1. (b and c) Only one of these interactions can occur
at a given moment because the surface on protein P1 is available only for
one interaction.

surface of a protein, the surface is considered to be physically available only
for one partner at a given moment. Such interactions are mutually exclusive,
as the occurrence of one of these interactions automatically excludes the
occurrence of the remaining interactions. A target protein whose partners
compete for the interaction is termed the host protein in this article. In
addition, the term MEI is used to denote a pair of interactions that is mutually
exclusive for a host protein. A case in which more than two interfacial
surfaces are overlapped or partially cascaded is represented by a set of MEIs.
Figure 1 depicts an example of the modeling of an MEI.

The first step in the detection of MEIs is to identify the interface of each
protein interaction, which is represented by a set of interfacial residue pairs.
In this research, an interface between a protein pair is examined at the level
of the protein domain. The protein domain is an evolutionary conserved unit
of the structure and function of the protein; therefore, it is regarded as a
subunit that mediates PPIs (Boxem et al., 2008).

Figure 2 illustrates the process of MEI extraction using PSIMAP (Gong
et al., 2005). PSIMAP provides information pertaining to interfacial residue
pairs in physical domain–domain interactions (DDI) based on an analysis
of the crystal structures of proteins, the protein interacting pairs and the
complexes recorded in the PDB (Berman et al., 2000). Similar to PSIMAP,
this study adopts the SCOP domain definition. For each domain, we compute
overlapping interfacial residues for all possible pairs of partners with which
the domain interacts.(Fig. 2b and c) In this process, self-pairing of each
partner domain should be considered as well because a protein may have
several interacting partner proteins mediated by an identical DDI.

Another consideration is that a pair of domains can interact through
several different interfaces (Aragues et al., 2007; Winter et al., 2006). Hence,
although two partner domains seem to have an overlapping binding site
on a host domain, they could still bind simultaneously by using disjoint
alternative binding sites on the host. Therefore, two partners are recognized
to be mutually exclusive if and only if they have no other option but to
compete for an overlapping interfacial surface on the host domain.

The next step is protein domain assignment by referring Interpro (Hunter
et al., 2009) that offers integrative protein signature data. A DDI interface
is used in identifying the interface of a PPI mediated by the corresponding
DDI, and MEIs are inferred by referring to the mutually exclusive DDI
data that is obtained (Fig. 2d). In this process, the DDI within a protein
is ignored because its interface is considered to be already occupied by an
intra-molecular interaction (Gong et al., 2005).

It is possible to represent an MEI relationship using a Boolean expression.
In conventional network model, an interaction is represented with a static
edge regardless of the time and/or conditions. With this conjecture, the
interaction list of a protein can be represented as a conjunction of all
interactions where an interaction has a value of true when it occurs. However,
two interactions of a MEI should be connected by XOR (⊕) as both cannot
occur simultaneously.

Figure 3 illustrates an example of representing MEI information in a
simple network. The notation xIntpi is used to represent interactions with
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(a) (b) (c) (d)

Fig. 2. (a) 3D structures of proteins and complexes recorded in PDB. (b) PSIMAP detects interfacial residues between domains. (c) A DDI map
including the information of mutually exclusive interfaces. (d) Two PPIs are mutually exclusive when their interaction structures correspond to mutually
exclusive DDIs.
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Boolean expression for the network with MEI information
- xSPIN< P , I, MEI > = ( i1 i3 ) i2

= (¬ i1 i2 i3 ) ( i1 i2 ¬ i3 )

Fig. 3. Boolean expression of MEI information for a simple network.

MEI information for protein pi using a Boolean expression. In the network,
p1 has an MEI pair, < i1, i3 >; thus, its interactions are represented as xIntp1

= ( i1 ⊕ i3 ). Another consideration for representing MEI information is that
the interaction of an MEI that will occur cannot be determined. Therefore,
interactions of the protein p2 are represented as xIntp2 = ( i1 ∧ i2 ) ∨ ( ¬i1
∧ i2 ), and consequently i2, which ignores i1, which participates in the MEI
process on counterpart protein p1.

Using xIntpi annotated to each protein, the Boolean expression
xSPIN<P,I,MEI> is generated to represent the MEI information in a PPIN,
where P is a protein set, I is an interaction set and MEI is a set of MEIs
in the network. xSPIN<P,I,MEI> is reserved by the conjunction of xIntpi for
all proteins in the network. Accordingly, it represents all interactions and
mutually exclusive relationships in the network. In the disjunctive normal
form (DNF) of xSPIN<P,I,MEI>, each conjunctive clause represents a set of
non-competitive interactions in the PPIN.

2.2 SPIN
The SPIN is a subnetwork of a PPIN. A SPIN is comprised of a set
of non-competitive interactions and all of the proteins inherited from the
original network. A non-competitive interaction set selectively includes one
of the mutually exclusive pairs of each protein in order to achieve mutual
exclusion among the interactions. Therefore, its interactions may be activated
simultaneously without competition in nature. SPINs from a PPIN can be
viewed as snapshots, each of which represents a possible coactive state that
the dynamic network may attain.

Based on the xSPIN<P,I,MEI> computed from the MEIs, SPINs
are extracted from the PPIN based on each conjunctive clause in
xSPIN<P,I,MEI>. In Figure 4, the PPIN has two MEIs < i3, i5 > and

spin2spin1PPIN

i1 i2
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i1 i2

i4
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i1 i2

i5 i6

i4

(c)(b)(a)

Fig. 4. An example of a SPIN construction: from a PPIN with two MEIs in
(a), the SPIN construction process generates two SPINs (b and c).

< i3, i6 >; therefore, its set of interactions is represented by ( i1 ∧ i2 ∧
¬i3 ∧ i4 ∧ i5 ∧ i6 ) ∨ ( i1 ∧ i2 ∧ i3 ∧ i4 ∧ ¬i5 ∧ ¬i6 ) in the DNF. As each
conjunctive clause represents a non-competitive interaction set, two SPINs
are generated from each clause.

2.3 SPIN-based framework for protein complex
prediction

SPINs are not necessarily generated from the whole interactome because the
SPIN is constructed only to find a set of possibly coactivated interactions
cooperating for a function. In addition, the computation cost of the SPIN
construction process is high because the number of SPINs is at most 2n with
n MEIs based on the two choices of including one interaction or the other for
each MEI and the number of nodes in a SPIN is the same as that of the original
PPIN. Therefore, it is appropriate to generate SPINs from a subnetwork that
is small but nonetheless large enough to include a functional module or a
complex. For protein complex predictions, clustering algorithms deal with
dense regions in a PPIN, implying that a subnetwork for SPIN construction
should cover one of the dense regions.

Figure 5 illustrates SPIN framework for protein complex prediction
consisting of three phases. In the proposed framework, subnetwork
preparation precedes the SPIN construction process, and a clustering is
finally performed on generated SPINs to predict the protein complexes. The
subnetwork preparation adopts a naive clustering algorithm which is used in
post-clustering as well. Adopting the same clustering algorithm dramatically
reduces the computation cost for SPIN construction but does not change
the prediction results because the generated subnetworks cover all of the
complexes that can be predicted by the post-clustering algorithm. Although
a subnetwork is a cluster, a SPIN generated from the network may not be a
cluster as it will lose some interactions. Therefore, clustering is performed
on generated SPINs in the post-clustering phase.

The proposed framework focuses on the extraction of non-competitive
sets of proteins in a PPIN; hence, protein complex detection from extracted
sets exploits conventional clustering algorithms. In this research, MCODE
and LCMA are adopted from among various conventional graph-theoretic
clustering algorithms for the evaluation of the framework.

MCODE (Bader and Hogue, 2003) utilizes connectivity values in a PPIN
to detect protein complexes. This algorithm is based on vertex weighting
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PPIN Sub-network SPIN

Sub-network
Preparation 

SPIN cluster

SPIN
Construction

Post - 
clustering

Fig. 5. Outline of the SPIN-based framework.

according to the local neighborhood density and then on an outward traversal
from a dense seed protein with a high weighting value to include neighboring
vertices recursively whose weight satisfies some given threshold.

LCMA (Li et al., 2005; Zhang et al., 2006) generates overlapping clusters
based on local clique merging. It first locates local cliques for each vertex
of the graph and then merges the detected local cliques according to their
affinity to form maximal dense subgraphs.

Most clustering algorithms require parameters that serve to influence the
accuracy of the prediction results. The MCODE algorithm requires the two
parameters known as WVP and Fluff. In this research, WVP was set to 0.1,
and Fluff was set to 0. These values were expected to extract good results
according to the original research of MCODE (Bader and Hogue, 2003). For
the same reason, NA was set to 0 in the LCMA (Li et al., 2005, 2008).

A set of SPINs, which are generated from a PPIN, shares all of the proteins
and many of the interactions from the PPIN; hence, extracted clusters may
be identical. Therefore, identical results should be trimmed at the end of the
post-clustering stage.

When the procedures in Figure 5 are viewed from a different angle, they
can collectively be regarded as a filter attachment for conventional clustering
methods because the results of subnetwork preparation are identical to those
of a conventional clustering method. However, in this study, subnetwork
preparation is not considered to be an actual clustering step but is instead
considered to be a type of preprocessing for SPIN construction, as the primary
purpose of the subnetwork preparation is to reduce the computational costs
in this framework.

3 RESULTS
In an effort to evaluate the proposed framework for detecting protein
complexes, it was compared with plain PPIN-based clustering
methods. Two experiments were performed on a SPIN using
the two clustering algorithms MCODE and LCMA. They are
considered SPIN-based methods and were termed SPIN_MCODE
and SPIN_LCMA, respectively. The same algorithms were also
applied to a plain PPIN for comparison, and they are termed
PPIN_MCODE and PPIN_LCMA for convenience sake. For fair
comparisons, identical parameters for the PPIN- and SPIN-based
methods were used in a clustering algorithm.

Additionally, we performed experiments based on random SPIN
in a comparison to determine whether or not our improvement
stems from using structural MEI information. In these experiments,
the same procedure used with the SPIN framework was utilized;
however, after a subnetwork preparation step, each prepared
subnetwork was assigned with randomly generated MEIs with the
same number as its structural MEIs.

The following subsections present the results of the experiments,
explain the relationship between the clusters in the SPINs and a plain
PPIN, compare the prediction results with known complexes, and
discuss the effect of the SPIN-based framework.

3.1 Reference sets
Experiments were performed on the S.cerevisiae (yeast) interactome
downloaded from the MIPS MPact database (Guldener et al., 2006).
After removing all the self-interactions, the final network contained
15 524 interactions among 4579 yeast proteins. Two clustering
algorithms on two base networks, PPIN and SPIN, generated four
predicted cluster sets, and these prediction results were compared
with known protein complexes recorded in the MIPS yeast complex
database (Guldener et al., 2006). There were 267 manually annotated
complexes that were considered as gold standard data.

3.2 MEI extraction
From 14 594 multi-domain PDB entities (release date December
5, 2008), PSIMAP extracted 4948 DDIs with 64 985 examples
of interface evidence among 2527 domains. Among them, 1842
domains were revealed to have at least one pair of partner domains
that were mutually exclusive, and the number of mutually exclusive
pairs was 6174 in total. Supplementary Table 1 lists the mutually
exclusive DDIs, overlapping residue indexes and PDB evidence.

In PPI network, it was found that 100 proteins had at least one
MEI competing for the interaction with them, and there were 458
MEIs in the network. Supplementary Table 2 lists the MEIs on each
host protein along with the mutually exclusive DDI pair to which
the MEIs refer.

As discussed an actual complex should not have MEIs within it,
we investigated the occurrence of MEIs in MIPS complexes. There
were 14 MEIs in six out of 267 MIPS complex data. We hypothesized
that there might be incomplete interface data. Specifically, host
proteins of the 14 MEIs might have an unknown alternate binding
site which allow for the MEIs to occur simultaneously.

3.3 The relationship between the clusters in PPIN and
SPIN

A SPIN is constructed by refining a PPIN, and proteins in the refined
network cannot be more interactive compared with those in the
PPIN. Additionally, SPIN-based methods use the same clustering
algorithm as comparison methods with the same parameters.
Therefore, a SPIN cluster must be a subgraph of the corresponding
PPIN cluster.

Table 1 shows a summary of the prediction results of the four
methods. LCMAs extract a much larger number of clusters compared
with MCODEs because, unlike MCODE, LCMA finds loosely
connected clusters that may be overlapped.

Applying the SPIN concept increases the number of predicted
clusters in both MCODE and LCMA. However, the number of
distinct proteins in SPIN clusters is fewer than that in PPIN clusters.
This indicates that the clustering on the SPINs results in the removal
of proteins in the original clusters. As many interactions and all of
the proteins appear in common in the SPIN and the PPIN, many
SPIN clusters are identical to PPIN clusters. On the other hand,
the occurrence of MEIs creates a difference between the results
of the SPIN- and PPIN-based methods. PPIN_MCODE generates
nine unique clusters that have MEIs. When the SPIN is constructed,
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Table 1. Summary of the prediction results from the four methods

MCODE LCMA

PPIN_MCODE SPIN_MCODE PPIN_LCMA SPIN_LCMA

(a) Predicted clusters 140 171 1696 2073
(b) Proteins in clusters 620 543 3731 2967
(c) Identical clusters 131 1554
(d) Unique clusters 9 40 142 519
(e) MEIs included 147 0 1274 0

(a) the number of predicted clusters. (b) The number of distinct proteins of the predicted clusters. (c) The number of clusters that are predicted
by the naive- and SPIN-based method in common. (d) The number of unique clusters (a–c). (e) The number of MEIs included in clusters
without distinction; all unique PPIN clusters have MEIs.

enforcing mutual exclusion eliminates some of the interactions
in the network regions where nine PPIN clusters are located. As
a result, SPIN_MCODE generates 40 unique clusters that were
also subgraphs of the corresponding PPIN clusters. Likewise, 142
clusters of PPIN_LCMA were redefined into 519 clusters by the
SPIN-based method.

3.4 Comparison with known complexes
The results were assessed using an evaluation metric used in earlier
studies (Altaf-Ul-Amin et al., 2006; Bader and Hogue, 2003; Li
et al., 2005, 2008) to determine how effectively a predicted cluster
matches a known complex, and vice versa. Equation 1 calculates the
overlapping score OS( p, m ) between a predicted cluster p ∈ P and
a known complex m ∈ M, where P is the set of predicted clusters
and M is the set of known complexes as recorded in MIPS.

OS(p,m)= |Vp ∩Vm|2
|Vp|×|Vm| (1)

In Equation (1), | Vp ∩ Vm | is the size of the intersection protein set
of the predicted cluster and the known complex, |Vp| is the number
of proteins in the predicted cluster and |Vm| is the number of proteins
in the known complex. A known complex and a predicted cluster
are considered as a match if their overlapping score is equal to or
larger than a specific threshold. Conventionally, a predicted cluster
and a known complex are considered to a match if OS( p, m ) ≥ 0.2
(Altaf-Ul-Amin et al., 2006; Bader and Hogue, 2003; Li et al., 2005,
2008).

After all known complexes and predicted clusters have their best
match calculated according to their OS scores, three evaluation
criteria are applied to quantify the quality of the protein complex
detection methods:

• Precision (p): measures the fraction of the predicted clusters
that match the positive complexes among all predicted clusters.

• Recall (r): measures the fraction of known complexes matched
by predicted clusters, divided by the total number of known
complexes.

• F1: the F1 score combines the precision and recall scores. It is
defined as 2pr/(p+r).

Recall quantifies the extent to which a prediction set captures the
known complexes. Precision measures the exactness or fidelity
of the prediction set. The F1 measure provides a reasonable

Table 2. Performance comparison between the methods based on PPIN,
SPIN and random SPIN (Ran_SPIN)

Algorithm Network Recall Precision F1

MCODE
PPIN 0.213 0.314 0.254
SPIN 0.243 0.441 0.314
Ran_SPIN 0.199 0.358 0.255

LCMA
PPIN 0.401 0.098 0.158
SPIN 0.528 0.128 0.207
Ran_SPIN 0.438 0.094 0.155

combination of both precision and recall. All three values range
from 0 to 1, with 1 being the best score. These three criterions
are frequently used in many computational areas including protein
complex detection (Qi et al., 2008). Here, because our reference set
MIPS is incomplete, some predicted clusters which are most likely
true complexes will be regarded as false positives if they do not
match the current MIPS complexes well. As such, the F-measure of
the algorithms should not be taken at their absolute values but only
as comparative measures.

The performance comparison is presented in Table 2. For
each method, we report the precision, recall and F1, with the
threshold OS ≥ 0.2. As can be seen, our methods based on SPIN
dominate PPIN-based methods in all measures. In terms of the F1
measures, SPIN_MCODE achieved a 23% higher value compared
with the PPIN_MCODE value. When using the LCMA algorithm,
SPIN_LCMA achieved a 31% higher F1-value compared with the
PPIN_LCMA result.

In contrast with SPIN-based methods, the experiments based on
random SPIN showed minor changes compared with the PPIN-based
results in all three measures. This indicates that the improvements
of the SPIN-based methods stem from the use of structural MEI
information.

As the proposed framework aims to exclude superfluous proteins
in the formation of complexes, the overlapping score of a known
complex with a SPIN cluster is expected to be equal to or greater
than the score of the corresponding PPIN cluster. Table 3 shows the
number of known complexes matched by the clusters extracted by
MCODE and LCMA from the PPIN, the SPIN and the random SPIN
with respect to different thresholds. The word loss in parentheses
refers the number of complexes that are matched by PPIN clusters
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Table 3. The number of known complexes matched by predicted clusters from PPIN, SPIN and random SPIN with respect to different thresholds

MCODE LCMA

PPIN SPIN (gain, loss) Ran_SPIN (gain, loss) PPIN SPIN (gain, loss) Ran_SPIN (gain, loss)

OS>0.0 133 133 (0, 0) 128 (0, 5) 261 261 (0, 0) 247 (0, 14)
OS≥0.1 88 91 (3, 0) 80 (6, 14) 180 216 (36, 0) 176 (18, 22)
OS≥0.2 57 65 (8, 0) 53 (4, 8) 107 141 (34, 0) 117 (27, 17)
OS≥0.3 43 51 (8, 0) 40 (1, 4) 67 96 (29, 0) 64 (6, 9)
OS≥0.4 33 38 (5, 0) 30 (0, 3) 27 47 (20, 0) 29 (6, 4)
OS≥0.5 28 32 (4, 0) 28 (0, 0) 14 30 (16, 0) 14 (0, 0)
OS≥0.6 17 23 (6, 0) 17 (0, 0) 6 18 (12, 0) 6 (0, 0)
OS≥0.7 11 16 (5, 0) 11 (0, 0) 1 8 (7, 0) 1 (0, 0)
OS≥0.8 10 14 (4, 0) 10 (0, 0) 0 5 (5, 0) 0 (0, 0)
OS≥0.9 7 9 (2, 0) 7 (0, 0) 0 3 (3, 0) 0 (0, 0)
OS=1.0 7 9 (2, 0) 7 (0, 0) 0 3 (3, 0) 0 (0, 0)

The word ‘loss’ in parentheses refers the number of complexes that are matched by PPIN clusters but missed after our modification, and ‘gain’ denotes the number of true positives
found in addition to the result of the PPIN-based method.

but missed after our modification, and gain denotes the number
of true positives found in addition to the result of the PPIN-based
method.

The table discards the number of known complexes in the case that
OS = 0, which are matched by no predicted cluster. OS > 0 indicates
that the known complex has a matching predicted cluster in that it
shares at least one protein. As a SPIN cluster is a subgraph of a PPIN
cluster, the number of complexes matched by SPIN clusters cannot
exceed that matched by PPIN clusters at the threshold of OS > 0.
However, for the remaining thresholds, SPIN-based methods show
better results than PPIN-based approaches.

The values of loss were all zero for the SPIN-based methods.
This finding indicates that the results of the SPIN-based methods
perfectly covered all the true positive matches from the PPIN-based
methods with the thresholds listed in the table while also generating
additional true positives. Unlike SPIN constructed using structural
MEIs, alternating with random MEIs results in some loss of known
complexes as well as additional gains. This result was possible
because randomizing the MEI information may remove true and
false positive proteins all together as results.

Our model may incorrectly remove true positive protein members,
although it generates no loss of matched complexes. In this
experiment, SPIN_MCODE removed only false positive proteins,
whereas SPIN_LCMA showed two cases of protein loss as it
removed two true positive members for matching with known
complexes. (See MIPS complexes 410.20 and 160 in Supplementary
Table 4.) However, in these cases, the known complexes had a
higher OS with the SPIN cluster compared with those that used the
PPIN cluster, as the SPIN framework removed many superfluous
proteins. This result indicates that the proposed network model
using structural MEI information can be successfully applied to
graph-theoretic clustering methods for complex predictions with few
faults.

3.5 The effect of the SPIN construction
The proposed network model refines a PPIN by excluding interaction
competitions and it generates several subnetworks that represent
possible coactive states in a process of interaction dynamics. This

YDR328C YDR328C YDR328C YDR328C

YDR054C YDR054C YDR054C

YDL132W YDL132W YDL132W

YFL009W

YOR057W

YJR090C

YLR079W

YIL046W

YGR140W
YMR168C

Id:445.10

Id:445.20 Id:445.30

Id:270.10.10

YDR318W

YNL311C, YLR399C, YLR429W, YLR224W, YBR087W,
YLR097C, YJR089W, YDR139C, YLR352W, YLR368W, 
YML088W

 YMR094W 

MIPS Complex PPIN_LCMA predicted SPIN_LCMA predicted

Fig. 6. Comparisons among the known complexes and clusters predicted
by LCMAs based on PPIN and SPIN. The gray ovals represent known
complexes from MIPS, the quadrangle is a PPIN cluster, and the dotted
quadrangles are SPIN clusters. A protein that appears in several complexes
is underlined.

refinement consequently removes superfluous proteins and identifies
overlapping complexes in a network clustering.

Figure 6 is a example illustrating a refinement effect by
contrasting the known complexes and clusters predicted by LCMA
based on the PPIN and the SPIN. The gray ovals represent known
complexes from MIPS, the quadrangle is a PPIN cluster and the
dotted quadrangles are SPIN clusters. A protein that appears in
several known complexes is underlined. The three complexes shown
in the figure, 445.10, 445.20, 445.30, are Skp1-Cdc53-F-box protein
(SCF) complexes that appear to be E3 ubiquitin-protein ligases
that target a number of important regulatory proteins for ubiquitin-
dependent proteolysis (Skowyra et al., 1997). They share three
proteins YDL132W, YDR054C and YDR328C, which serve as
a core, and have exchangeable adaptor subunits that specifically
recruit various substrates to the core. In this research, PPIN_LCMA
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could not differentiate these overlapping complexes but predicted
a massive cluster matched by these three and another complex
270.10.10 with several superfluous proteins. On the other hand,
given the structural interface data, our SPIN construction process
specified competitions among exchangeable proteins YFL009w,
YJR090c and YIL046w for the interaction with the core protein
YDR328c. Consequently, for the network region in which the PPIN
cluster was found, SPIN_LCMA redefined four smaller clusters
that correspond to known complexes with a higher overlapping
score, differentiating the varieties of SCF complexes. Like the
above example, SPIN-based methods not only removed superfluous
proteins but also identified variations in complex formations when
additional proteins share an interface.

Supplementary Table 3 lists MIPS complexes matched by
MCODEs based on PPIN and SPIN along with their overlapping
scores and matched proteins, and Supplementary Table 4 lists those
for LCMAs.

4 CONCLUSIONS
This study introduces a network refinement model based on the
structural interface data of protein pairs for protein complex
predictions. A simple PPIN, which is represented as a static
entity, includes competitive interactions that cannot participate
in complex formations together. In the proposed framework, a
SPIN construction reserves sets of non-competitive interactions by
considering mutual exclusions among the interactions in a network.
This allows network-clustering algorithms to identify stable clusters
that may possibly be matched by to actual protein complexes.

An evaluation of the proposed framework involved the testing of
two graph-theoretic clustering algorithms on SPIN and on a simple
PPIN for comparison. The comparison showed that the SPIN-based
framework outperforms the plain PPIN-based method. It found
all of the complexes that the PPIN-based method found as well
as additional true positives by removing superfluous proteins for
complex formations.

From the evaluation, it is concluded that considering MEIs
is worthwhile for complex predictions. Information on mutual
exclusiveness is drawn from structural interface data, which remains
insufficient. This indicates that SPIN-based methods will become
more useful as the additional interface data becomes available.

The authors are planning to extend the concept of SPIN so that
it can represent the dynamics of complex formations and functional
modules of a PPIN. Modeling the dynamics of an interaction
network will lead to a better understanding of protein mechanisms.
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