Gene expression

Mixture-model based estimation of gene expression variance from public database improves identification of differentially expressed genes in small sized microarray data

Mingoo Kim1,2,†, Sung Bum Cho1,2,†, and Ju Han Kim1,2,*

1Seoul National University Biomedical Informatics (SNUBI) and 2Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul 110-799, Korea

Received on June 10, 2009; revised on December 3, 2009; accepted on December 9, 2009

Advance Access publication December 16, 2009

Associate Editor: John Quackenbush

1 INTRODUCTION

The small number of samples in many microarray experiments is a challenge for the correct identification of differentially expressed genes (DEGs) by conventional statistical means. Information from public microarray databases can help more efficient identification of DEGs. To model various experimental conditions of a public microarray database, we applied Gaussian mixture model and extracted bi- or tri-modal distributions of gene expression. Prior variance of Baldi’s Bayesian framework was estimate for the analysis of the small sample-sized datasets.

Results: First, we estimated the prior variance of a gene expression by pooling variances obtained from mixture modeling of large samples in the public microarray database. Then, using the prior variance, we identified DEGs in small sample-sized test datasets using the Baldi’s framework. For benchmark study, we generated test datasets having several samples from relatively large datasets. The proposed method outperformed other benchmark methods in terms of detecting gold-standard DEGs from the test datasets. The results may be a challenging evidence for usage of public microarray databases in microarray data analysis.

Availability: Supplementary data are available at http://www.snu.ac.kr/publication/MixBayes

Contact: juhan@snub.ac.kr

Many methods have been introduced to address this variance estimation problem. A popular approach has been certain type of regularization of t-test. In the significance analysis of microarrays (SAM) (Tusher et al., 2001), a non-specific small constant is added to all variance estimates so that they are not to be too small. In Cyber-T (Baldi and Long, 2001), a posterior variance is estimated for the variance estimation of a gene combining a prior variance from neighboring genes and a data variance of the gene. Empirical Bayes methods compensate for the number of replicates by combining information across arrays (Efron and Raftery, 2001; Kendzierski et al., 2003; Maureen et al., 2006). The Bayesian approaches have tried to improve the identification of differentially expressed genes by using information across other genes having similar expression. On the other hand, a very different approach was suggested by Kim and Park (2004) to estimate the ‘natural’ variance of individual genes using a large number of experiments performed previously. This became possible with large public databases of microarray experiments such as the Gene Expression Omnibus (GEO) (Edgar et al., 2002) and ArrayExpress (Brazma et al., 2003). This approach has a natural strength over the Bayesian methods in that gene-specific variance is estimated not from the expression of other genes but from the prior values of expression of the same gene.

However, the GEO-adjusted method used the information in GEO database without considering any information in experimental data for estimating gene-specific variances. Moreover, the variance estimate is non-specific to the experimental dataset. Expression variance is not only gene-specific but also condition-specific. While one may want to obtain an estimation of gene-specific variance under certain condition that is comparable to that of the experimental dataset, direct computation over the whole GEO database performs the global variance rather than the variance within the desired condition.

Because GEO database is an aggregate of many experiments across many different conditions, we cannot assume that a gene has a single distribution across the whole GEO database. As demonstrated in Figure 1, the distribution of expression of a gene in GEO database may be composed of multiple distributions. Therefore, it makes more sense to assume that a gene expression has a multi-distributional structure in GEO database, instead of single compositional structure.

In the present study, we performed comparative study about estimating the gene-specific and condition-adjusted variances of...
The Gaussian mixture model improves the prior variance estimation. Without application of the Gaussian mixture model, the density function generated these bi- and tri-modal distribution plots. It may not be sensible to estimate gene-specific variance assuming that a gene has a single expression distribution across GEO database. Using Gaussian mixture model, we decomposed the distributions of 1737_s_at and 195_s_at into two and three Gaussian distributions, respectively. In the Affymetrix U95A platform, using Gaussian mixture model, 6173 (48.9%) and 4384 (34.7%) among the 12 625 probes are modeled to have bi- and tri-modal distributions, respectively.

Fig. 1. Examples about distributions of GEO-wide gene expression. Expression density plots were obtained from ∼1400 microarrays present in GEO database. Without application of the Gaussian mixture model, the density function generated these bi- and tri-modal distribution plots. It may not be sensible to estimate gene-specific variance assuming that a gene has a single expression distribution across GEO database. Using Gaussian mixture model, we decomposed the distributions of 1737_s_at and 195_s_at into two and three Gaussian distributions, respectively. In the Affymetrix U95A platform, using Gaussian mixture model, 6173 (48.9%) and 4384 (34.7%) among the 12 625 probes are modeled to have bi- and tri-modal distributions, respectively.

Table 1. Summary of test datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GEO ID</th>
<th>Replicates</th>
<th>(t-test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duchenne muscular dystrophy</td>
<td>GSE1004</td>
<td>21 (10/11)</td>
<td></td>
</tr>
<tr>
<td>Macular degeneration</td>
<td>GDS563</td>
<td>36 (18/18)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary adenocarcinoma</td>
<td>GSE2514</td>
<td>39 (19/20)</td>
<td></td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>GDS1650</td>
<td>102 (50/52)</td>
<td></td>
</tr>
</tbody>
</table>

Summary of test datasets

2.1 Datasets

2.2 Benchmark outline

2.3 Test statistics for differential expression

Identification of differentially expressed genes in small sized microarray data
newly proposed GEO-mixture test. The third are Bayesian methods which use
the posterior variance combining the data variance and the prior variance
from reference datasets. The fourth are hybrid methods which re-rank genes
based on the merged rank of two different methods. This scheme was
proposed by Kim and Park (2004) and claimed to have superior performance
when GEO-based methods are merged with regularized t-test. Note that the
hybrid methods are different from others in that they just vote and do not
calculate any actual statistics. In the followings, we list the formulas of the
six basic statistics. These cover all the basic forms and other statistics are
simple variants from these:

- **Mean-fold (FMean)**
 \[\mu_1 - \mu_2 \]
 where \(\mu_1 \) and \(\mu_2 \) are means for groups 1 and 2, respectively, for the
 i-th gene. In log scale, this is equal to fold ratio which is often preferred by
 biologists.

- **Standard t-test (TStan)**
 \[\frac{\mu_1 - \mu_2}{\sigma_{global} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]
 where \(n_1 \) and \(n_2 \) are the sample sizes in the groups 1 and 2, and \(\sigma_{global}^2 \)
 and \(\sigma_{data}^2 \) are the variance estimates in the groups 1 and 2, respectively,
 for the i-th gene.

- **Regularized t-test (TReg)**
 \[\frac{\mu_1 - \mu_2}{\sigma_{global} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]
 \(\sigma_2 \) is the fifth percentile of all variances of the other genes (Kim and
 Park, 2004).

- **GEO-global test (GGlobal)**
 \[\frac{\mu_1 - \mu_2}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]
 \(\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \) is the formula by Baldi and Long (2001) that models log-expression values by
 a normal distribution, respectively, from GEO database (see Section 2.4 for details).

- **GEO-pooled test (GPooled)**
 \[\frac{\mu_1 - \mu_2}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]
 \(\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \) are the variance estimates in the groups 1 and 2, respectively,
 for the i-th gene.

- **Mixture Bayesian test (GMixBayes)**
 \[\frac{\mu_1 - \mu_2}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]
 \(\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \) is the posterior variance for the i-th gene, calculated from
 the prior variance \(\sigma_{Global}^2 \) and the data variance \(\sigma_i^2 \) in the Bayesian
 framework. Please notice that while \(\sigma_{Global}^2 \) can adjust to different data,
 \(\sigma_{Global}^2 \) and \(\sigma_{Pooled}^2 \) are non-specific to experimental data (see
 Section 2.4 for the prior estimation and Section 2.5 for the Bayesian integration).

2.4 Estimation of prior variances from reference datasets

- **Global (GGlobal)**
 \[\sigma_{Global}^2 = \frac{1}{M} \sum_{k=1}^{M} \sum_{i,j \in D} \left(x_{ij} - \bar{x}_k \right)^2 \]
 where \(\sigma_{Global}^2 \) and \(\sigma_{Pooled}^2 \) are the estimates proposed by Kim and Park
 for gene-specific variances derived from GEO database. In Equations (7) and
 (8), \(D \) and \(j \) indicates the reference datasets and the number of the reference
 datasets. \(x_{ij} \) is a gene expression value of the k-th gene. \(i \) is the mean of
 the k-th gene of the whole microarray samples of the reference datasets. \(\bar{x}_k \)
 is the mean of k-th gene of the j-th reference dataset. \(\sigma_{Global}^2 \) is the estimate newly
 proposed in the present study, estimating variances from the microarray
 samples re-grouped by Gaussian mixture model. In Equation (9), \(M \) and \(y \)
 is the mixture distribution and the number of distributional components
 in the mixture distribution, respectively. \(\sigma_{Global}^2 \) is a pooled variance
 of the each compositional distribution of the mixture model. In our revised
 Bayesian framework, these variance estimates are used as prior variance.

The information we need is not only the gene-specific global variance but
also how much the expression of a gene varies within the replicates under
certain condition, i.e. within-condition variance. Since the GEO database is
an aggregate of heterogeneous experiments under different conditions, what
\(\sigma_{Global}^2 \) measures is not condition-adjusted but the total variance, that is, the
sum of within and between condition variances. \(\sigma_{Global}^2 \), which averages the variances of
data sets, also has the risk of measuring the variability between
conditions, but in a lesser degree because the heterogeneity of a dataset is
expected to be smaller than that of whole GEO database.

On the other hand, we decomposed the distribution of a gene in GEO
database into a number of Gaussian distributions, representing conditions
of the gene. Then we calculated \(\sigma_{Global}^2 \) by averaging the variances of
the Gaussian distributions. We found that \(\sigma_{Global}^2 \) was much smaller
than \(\sigma_{Global}^2 \), indirectly verifying that \(\sigma_{Global}^2 \) effectively excluded between-
condition variance. For the computation of Gaussian mixture model, we used
Mclust, an R package which uses the EM algorithm for mixture modeling
and the BIC criteria for model count determination (Fraley and Raftery, 1999).

2.5 Bayesian framework for variance integration

Bayesian framework has been used for differential expression analysis of
microarray study (Bald I and Long, 2001; Gottardo et al., 2003). Previously,
the prior variance was estimated from the neighboring genes or fixed to a non-
specific value. The GEO database, however, can provide natural estimates
of prior. We can estimate the prior of a gene using the prior GEO expression
values of the same gene instead of the expression values of other genes.

For Bayesian integration of the prior variance and the data variance, we use
the formula for Bald I and Long (2001) that models log-expression values by
normal distributions, parameterized by corresponding means and variances
with hierarchical prior distributions.

\[\sigma_{Posterior}^2 = \frac{\sigma_{Global}^2 \sigma_{Data}^2}{\sigma^2 + \sigma^2} \]

In essence, the posterior variance is represented as a weighted average of
prior variance and data variance. The parameter, \(\kappa = \frac{\sigma^2}{\sigma^2 + \sigma^2} \), determines
the degree of confidence in the prior variance \(\sigma_{Prior}^2 \) versus the data variance
\(\sigma_{Data}^2 \). Different posterior variances are derived from the same data variance
depending on the prior variances. In case of \(\sigma_{MixBayes}^2 \), \(\sigma_{MixPos}^2 \) is derived when
\(\sigma_{MixBayes}^2 \) is used for prior.

3 RESULTS

3.1 Performance comparison

For the four test datasets, our proposed method, \(\text{GmixBayes} \) is compared to the standard methods, \(F_{Mean}, T_{Stan}, \) and \(T_{Reg} \) and the previous GEO-adjusted methods, \(G_{Global} \) and \(G_{Pooled} \). Sample sizes
were chosen from two to five, under which standard methods were
known to be ineffective (Pavlidis et al., 2003). This range was also
used by Kim and Park (2004).
3.1.1 Comparison of each dataset
Figure 2 demonstrates the performance of the six test statistics for the four datasets. The methods show relatively high performance for the Haslett’s dataset and relatively low performance for the Singh’s dataset. This variation is an expected one since the performance is dependent not only on the test statistics but also on the characteristics of the dataset such as the number of samples and the degrees of within-group homogeneity and between-group separation. Despite the variations, common tendencies in the performance curves are well demonstrated with the different datasets. First, GMixBayes shows the best performance in most of the comparisons (13 out of 16 comparisons). Second, regularized t-test shows improved performance than standard t-test. This confirms the previous studies of variance regularization. Third, the performance of the statistics estimating variances from test datasets, TStat, TReg and GMixBayes increases as the number of samples is increased. But the performance of the statistics ignoring test dataset variances, FMean, GGlobal and GPool does not increase as much as the increment of sample size. Note that GMixBayes is the only method that uses both test and reference datasets for gene-specific variance estimation, while GGlobal and GPool utilizes reference datasets only.

3.1.2 Comparison summary
Figure 3 exhibits the summary of the performances in Figure 2. GMixBayes was the best performer across all sample range, returning 17 and 37% more of top genes than the second best FStat in 2v2 and 3v5 tests, respectively, and 13 and 3% more of top genes than the second best TReg in 4v8 and 5v5 tests, respectively. GGlobal and GPool were better than TStat and TReg in 2v2 test but their improvement in 2v2 was not as large as to be comparable to TStat in 5v5 and TReg in 3v3, as claimed in the Kim and Park’s study. In each dataset, the Kim and Park’s GEO methods outperformed only in Stearman’s dataset where the performances of GGlobal and GPool in 2v2 were comparable to TStat in 5v5 and TReg in 4v4. The detailed information about the magnitude of improvement of GMixBayes is available in the supplementary web site.

3.1.3 Reproducibility of the results
There can be many possible reasons why some of the performance improvements of Kim and Park are not observed in our study. First of all, the results of Kim and Park are only based on single test dataset, Singh’s dataset. As can be seen in Figure 2, there are variations in performance among test datasets. Thus it is probable that the result of Kim and Park are dependent on the specific dataset. Second, the configuration of reference datasets, GEO database specifically, has changed. Kim and Park used ∼500 microarrays from GEO for reference, while we used ∼1400 microarrays. This difference in reference datasets may affect the performance of the test statistics, especially more for GPool and GGlobal which depend on reference datasets only. This may explain the reason why we failed to replicate the reported performance improvement of GPool and GGlobal in Singh’s test dataset. The list of the specific 500 datasets used as reference datasets in the study of Kim and Park were not able to be reconstructed from the current 1400 arrays simply because the information was not available (personal communication with the authors). Although TReg outperforms the Kim and Park’s GEO methods in general, the opposite results were observed in 2v2 comparison. In 3v3 comparison, TReg was not superior to the Kim and Park’s GEO methods with the Haslett dataset. We observed similar results with increasing number of DEGs in the test datasets (see Supplementary Material). These results indicated that the Kim and Park’s method may outperform with small number of samples (n < 4).
3.1.4 Comparison in hybrid method with regularized t-test
Another advantage of previous GEO-adjusted methods, G_{Pooled} and G_{Global}, is that they perform well when combined with T_{Reg} at gene rank level. The hybrid method averaged 75% of the value of the lower rank and 25% of the value of the higher rank to merge ranks in T_{Reg} and the corresponding GEO-adjusted methods. This 75%/25% ratio was highly tuned empirically for better results in the previous study (Kim and Park, 2004). In the present study using the proposed 75%/25% ratio, G_{Pooled} and G_{Global} could find 52 and 75% more of the top genes, respectively, in hybrid use with T_{Reg} than in single use (the percentages are averages over the four datasets). The performance of G_{MixBayes}, however, is little improved with hybrid use with T_{Reg}. Specifically, its performance was improved by 13% in Halsleite’s, 1% in Strannska’s, 2% in Stearmin’s and 1% in Singh’s test datasets. This limited improvement in the hybrid scheme with G_{MixBayes} is possibly because G_{MixBayes} already incorporates the benefit of T_{Reg} in the level of statistical calculation through the Bayesian integration of test- and reference-dataset variances. There might have been less room for improvement by adding information from T_{Reg} at the level of gene ranks. Although their substantial improvements by hybrid method, G_{Global} and G_{Pooled} outperform G_{MixBayes} only in Stearmin’s test dataset (t-test, $P < 0.05$). In the rest, G_{MixBayes} outperformed significantly (t-test, $P < 0.05$).

3.2 Sources of improvement
Here, higher performance of G_{MixBayes} over G_{Pooled} and G_{Global} was well demonstrated in the four test datasets. G_{MixBayes}, is modified from earlier GEO-adjusted methods in two aspects: estimation of prior variance using Gaussian mixture model and Bayesian integration of both testing and reference dataset variances. To assess the individual contributions of the two modifications for the performance improvement, we performed two additional comparisons:

1. Comparing G_{Pooled} and G_{Global} to G_{Mixture}, an un-integrated version of G_{MixBayes}.
2. Comparing G_{MixBayes} to the Bayesian version of G_{Pooled} and G_{Global}.

In the above comparison, G_{Mixture} used the pooled variance of mixture distributions of the reference datasets without using the experimental dataset. The Bayesian version G_{Pooled} and G_{Global} was computed by substituting prior variance of equation (10) with the σ^2_{Pooled} and σ^2_{Global}.

As demonstrated in Figure 4, both of our modifications improved the performance. Bayesian integration improved the performance of all methods in all test datasets. It improved more as increasing number of samples were in test datasets, resulting steep performance curves. This is because the more stable variance estimation of test datasets was used for Bayesian integration. We also found performance improvements when the mixture prior estimation is used alone. In the three methods using the prior variance only, G_{Mixture} outperforms G_{Pooled} and G_{Global} in three out of four test datasets. The improvements were constant across all sample sizes because the sample size only affected the variance estimates of test datasets which were not used for these prior-only methods. The improving effects were additive when Bayesian integration and mixture prior estimation were used together. This may be because they incorporated different information in the steps of variance calculation. The maximum performance was achieved when both Bayesian integration and mixture prior were used.

3.3 The effect of other parameters
There are a number of parameters that may affect the results of the present analysis. We evaluated the performance of the benchmark statistics with the following different parameter set.

3.3.1 GEO change
The change of reference datasets in GEO database may affect the estimation. This may be in part the reason why G_{Global} and G_{Pooled} did not perform as well in the present study as claimed in the previous one. To test whether our findings are only specific to current state of GEO, we compared the performance of G_{MixBayes}, G_{Global}, and G_{Pooled} across various states of GEO database (Fig. 5). By means of random-sampling from GEO, we compared the methods using reference datasets with 500–1200 arrays. For reliability, we repeated the computation 100 times for each sample size. Five hundred is the same size to the study of Kim and Park, though this composition is not identical. The maximum size that we could produce enough replications from the total of 1400 microarrays was 1200. Across all conditions, we found that G_{MixBayes} consistently outperformed both G_{Global} and G_{Pooled}. Therefore, we believe that the findings are not limited to the specific state of reference datasets that G_{MixBayes} may outperform in the future composition of GEO.
3.3.2 Top K genes In this study, the performance of test method is measured as the number of genes common between top 50 in gold-standard DEG list and the test DEG list. Depending on the number of top K genes, the performance can change. We reproduced the results under other top K genes and found that our results are not significantly affected by K (see Supplementary Material).

3.3.3 Prior confidence In Bayesian integration, the prior confidence parameter should be determined by user. We used k = 6 in this study. Similar results were obtained in other k values ranging from 6 to 15 (see Supplementary Material).

4 DISCUSSION AND CONCLUSIONS

In this analysis, we improved identification of differentially expressed genes in datasets having a small number of samples by obtaining prior variance from mixture modeling of microarray data in the public database.

The success of our methods seemed to come from estimation of prior variances using mixture modeling. The Baldi’s Bayesian framework performs well in the microarray data having small samples. This is re-validated in our analysis (Fig. 4). Instead of estimating prior variance based on uni-modal distribution, we selected prior variance from the multi-modal mixture model. As shown in Figure 1, a large number of genes had bi- or tri-modal distributions in their expression values. Simple pooled variances of such genes are likely to be larger than that of a single density of the mixture model because the pooled variance is equivalent to the sum of variances from each component of the mixture model. This is especially the case with the Kim and Park’s method. Therefore, the prior variances tended to be small and it influenced the posterior variances to be small in the Bayesian estimation. This might contribute to the better performance of our approach because test statistics will increase as the variance decreases with a same mean difference obtained from the experimental data. This may be the same reason for outperforming the regularized t-test.

The number of data is still increasing in public microarray data repositories. With the success of the microarray application in genomic research, more investigators are willing to use microarray experiment. However, the number of samples and cost are the main obstacles to the application of microarray. This research provided a candidate solution for the analysis of small sample-sized data using public repositories.

ACKNOWLEDGEMENTS

This study was supported by a grant from the Ministry of Education, Science and Technology, Republic of Korea (M20706000020-07M0600-02010) and in part by a grant of the Korea Health 21 R&D Project, Ministry of Health, Welfare and Family Affairs, Republic of Korea (0405-BC02-0604-0004). S.B.C’s educational training was supported by a grant from the Ministry of Education, Science and Technology, Republic of Korea (M10729070001-07N2907-00110).

Conflict of Interest: none declared.

REFERENCES

M.Kim et al.