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ABSTRACT

Motivation: Protein complexes are of great importance for
unraveling the secrets of cellular organization and function. The AP-
MS technique has provided an effective high-throughput screening
to directly measure the co-complex relationship among multiple
proteins, but its performance suffers from both false positives and
false negatives. To computationally predict complexes from AP-
MS data, most existing approaches either required the additional
knowledge from known complexes (supervised learning), or had
numerous parameters to tune.
Method: In this article, we propose a novel unsupervised approach,
without relying on the knowledge of existing complexes. Our method
probabilistically calculates the affinity between two proteins, where
the affinity score is evaluated by a co-complexed score or C2S in
brief. In particular, our method measures the log-likelihood ratio of
two proteins being co-complexed to being drawn randomly, and we
then predict protein complexes by applying hierarchical clustering
algorithm on the C2S score matrix.
Results: Compared with existing approaches, our approach is
computationally efficient and easy to implement. It has just one
parameter to set and its value has little effect on the results. It can be
applied to different species as long as the AP-MS data are available.
Despite its simplicity, it is competitive or superior in performance over
many aspects when compared with the state-of-the-art predictions
performed by supervised or unsupervised approaches.
Availability: The predicted complex sets in this article are
available in the Supplementary information or by sending email to
asckkwoh@ntu.edu.sg
Contact: xlli@i2r.a-star.edu.sg
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
A protein complex is a group of two or more associated polypeptide
chains. Most proteins participate in cellular processes by interacting
with other molecules, often with other proteins in the assembly
of operational complexes. To better understand and detect the co-
complexed relationship among proteins, the screening technique of
affinity purification followed by mass spectrometry (AP-MS) has
been designed and applied by two research groups to detect the full
yeast interactome (Gavin et al., 2006; Krogan et al., 2006).

In an AP-MS experiment, a tagged protein is expressed in yeast
and then ‘pulled down’ from a cell extract, along with any proteins
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associated with it, by co-immunoprecipitation or by tandem affinity
purification. The set of pulled down proteins is then identified by
MS in a laborious and expensive process. This procedure has been
systematically applied to large sets of yeast proteins. The tagged
protein in AP-MS is also typically called the bait and the proteins
it pulls down are called the preys. AP-MS experiments measure
complex co-membership, and the fact that a prey is found by certain
bait means that there is either a direct physical interaction or an
indirect physical interaction (functional interaction) mediated by a
protein complex. Since AP-MS data provide us direct information
about the co-complex relationships among proteins, it is thus more
useful resources for complex detection compared with pairwise
protein interaction data. However, AP-MS screening may not be
good enough to detect protein complexes directly, because a single
bait protein may be involved in more than one complex in a cell,
it may therefore capture a set of prey proteins which actually never
occur in the same complex. In addition, it is well known that real
purification data are noisy and it contains many false positives and
false negatives (Gavin et al., 2006).

To deal with these problems, several notable computational
approaches have recently been proposed to identify protein
complexes from AP-MS data, which typically consist of following
three steps. The first step is to assess the protein interaction
affinities. Krogan et al. (2006) assigned a probability to each pair
of proteins by using a stacking algorithm (an advanced supervised
learning algorithm from machine learning) based on experimental
reproducibility and mass-spectrometry scores, with the hand-curated
MIPS complexes as the training set. Gavin et al. (2006) described
the socio-affinity (SA) scores of comparing the number of co-
occurrences of two proteins against the random expectation by
using a combination of spoke and matrix model. Collins et al.
(2007) developed the purification enrichment (PE) scores as a
modified version of SA scores, in the probabilistic framework of
a naïve Bayes classifier. Hart et al. (2007) designed a matrix-
model scoring algorithm based on the hypergeometric distribution.
Zhang et al. (2008) proposed the dice coefficient (DC) to measure
interaction affinity between two proteins based on similarity of
their co-purification patterns. After the affinity scores are calculated,
the second step is to construct a protein–protein interaction (PPI)
network by applying a threshold or cutoff value. Hart et al. (2007)
tried all thresholds to determine the one that yielded the set of
predicted complexes with the best performance of balanced accuracy
and coverage against the set of manually curated MIPS complexes.
Zhang et al. (2008) tested a series of thresholds and chose the one
that produced the best F1-measure (the harmonic mean of recall
and precision) on the MIPS complexes. Finally, the third step is
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to mine complexes on the constructed PPI network. A variety of
computational algorithms including MCODE (Bader and Hogue,
2003), Markov clustering (Enright et al., 2002) and DPClus (Altaf-
Ul-Amin et al., 2006) to name a few, are qualified for this job.
These algorithms can be characterized into two categories according
to the outcomes of complex mining. Collins et al. (2007), Pu
et al. (2007), Hart et al. (2007) and Friedel et al. (2009) exploits
the algorithms in the first category (such as Markov clustering
and hierarchical clustering) which output non-overlapping clusters,
(normally) followed by an optional step that adds shared proteins
to the clusters. On the other hand, Zhang et al. (2008), Geva
and Sharan (2011) make use of the algorithms in the second
category which output highly overlapping clusters based on some
graph algorithms such as maximal cliques or maximal bi-cliques.
The highly overlapping clusters should be merged to reduce the
number of clusters. In addition, Gavin et al. (2006) utilized iterative
hierarchical clustering approach multiple times, each time with a
different set of parameters, on the SA scored network, which is best
classified as the second category.

Although the task of predicting protein complexes from AP-MS
data has been widely studied, there are still challenging research
problems. On the one hand, as indicated in Friedel et al. (2009), most
existing approaches rely on (more or less) supervised information
of known reference complexes. It is desirable and has great value
that an approach be independent of such supervised information
such that it can be applied to large-scale AP-MS datasets of other
organisms without a requirement of a sufficient size of known protein
complexes. Friedel et al. (2009) proposed an unsupervised algorithm
for complex identification based on Bootstrap sampling, whose
detailed process is quite computationally expensive. On the other
hand, only a few approaches (Friedel et al., 2009; Hart et al., 2007;
Pu et al., 2007) have dealt with the issue of integrating multiple
AP-MS datasets. It will benefit complex mining greatly if a flexible
and adaptive mechanism is provided for the combination of multiple
different AP-MS datasets. Hart et al. (2007) combined two AP-MS
datasets by multiplying P-values for the same interaction derived
from different datasets. Collins et al. (2007) and Pu et al. (2007) dealt
with problem by weighted summing the PE scores from different
datasets. Differently, Friedel et al. (2009) went into operation by
simply pooling their purification experiments. Further, traditional
approaches usually construct a PPI network first, and then apply a
clustering algorithm [mostly Markov Clustering algorithm (MCL)]
to it. During the process of deriving a PPI network from the original
AP-MS data, the useful quantity information that two proteins are
unlikely to be co-complexed is discarded. However, such kind of
information can play an important role in accurately assembling the
proteins into complexes, for it can be exploited to determine when
to stop clusters from growing further.

To deal with these problems, this paper first proposed a novel
scoring method, called co-complexed score (or C2S score in brief),
which represents the log likelihood ratio of a protein pair being
co-complexed to being randomly drawn, based on four probabilistic
parameters. Each AP-MS dataset has its own estimated probabilistic
parameters, which can be estimated solely on the AP-MS dataset
itself. Our method then integrated two most comprehensive AP-
MS datasets from Gavin et al. (2006) and Krogan et al. (2006) by
score matrix merging. Finally, a hierarchical clustering algorithm
is applied directly on this merged score matrix (instead of a
PPI network with a cutoff threshold). Our method terminates

the clustering process automatically (we will stop the cluster
merging process if the current merging step does not improve the
quality of clustering), and returns the remaining clusters as the
predicted complexes. In the experimental section, we will show
that our approach is competitive or superior in performance over
many aspects, compared with the state-of-the-art supervised or
unsupervised methods.

2 METHODS
Let E ={e1,e2, ...,eN } be an AP-MS dataset of N purifications. For each
purification e∈E, we use bait(e) to denote the bait used, and preys(e) the
set of pulled down preys. The set of all the baits used in E is then denoted
by baits(E)={bait(e)|e∈E}. Further, preys(E)=∪e∈Epreys(e) denotes the
set of all the proteins that have been pulled down as preys in at least one
purification.

2.1 Definition of C2S scores
Two proteins are co-complexed to each other if both of them are members
of the same protein complex. In the ideal situation, when a protein is used as
bait in a purification experiment, all its co-complexed proteins will be pulled
down as preys. However, real purification data are noisy and it contains
many false positives and false negatives for a variety of reasons such as
tag interference, low protein abundance. Thus, we regard each purification
experiment as a piece of evidence about the co-complex relationship among
proteins. All the purifications related to a pair of proteins are accumulated
to infer the affinity (or the quantitative measurement of the co-complex
relationship) of the protein pair. More specifically, a purification is related
to a protein pair {x, y} if it can be categorized into one of the following four
evidence types:

• Type 1: a purification with bait x (or y) pulls down the protein y (or x);

• Type 2: a purification with bait x (or y) does not pull down the protein
y (or x);

• Type 3: a purification whose bait is different from x and y pulls down
both x and y at the same time;

• Type 4: a purification whose bait is different from x and y pulls down
one and only one of the proteins x and y.

Otherwise, or equivalently, if a purification contains neither x nor y, it is
not useful for measuring their affinity and thus we will not take it into
consideration.

Qualitatively speaking, it is reasonable that the evidence types 1 and 3
should be a plus (positive effect) to the estimated affinity, while evidence
types 2 and 4 be a minus (negative effect). Both types 1 and 3 requires
co-occurrences of the two proteins in a single purification: bait–prey co-
occurrence for type 1 and prey–prey co-occurrence for type 3. The more
co-occurrences of two proteins, the more likely they are to be co-complexed.
For a pair of proteins (x, y), these four types of evidences are illustrated in
Figure 1, where z is a protein different from x and y.

Next, the problem is: to what extent does each unit of evidence (or a
purification) contribute to our belief that proteins x and y are co-compexed?
To answer this question, we would like to propose the four probabilistic
parameters listed as follows: (How to estimate these parameters for a given
AP-MS dataset will be addressed later in Section 2.2)

Fig. 1. Four evidence types for a protein pair {x,y}.
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• rbp: the probability that, in a purification, a co-complexed protein of
the bait will be detected as a prey.

• ρbp: the probability that a protein is detected as a prey in a purification
experiment for non-specific reason.

• rpp: in a purification where a prey is detected, the probability that a
co-complexed protein of the prey will also be detected as another prey
in the purification.

• ρpp: the probability that, in a purification where a prey is pulled down,
another protein is detected as prey in the purification for non-specific
reason.

Thereupon, a novel measurement called C2S score is defined. Each C2S
score is a measurement of the log-likelihood ratio of observed purifications
given the hypothesis that the protein pair is co-complexed relative to the
likelihood of the same results if the protein pair is drawn randomly. This is
similar to the PE score in spirit. However, the proposed C2S score is totally
probabilistic in nature, and it is fundamentally different from the existing
scoring methods such as SA or PE score in that C2S takes into consideration
both positive evidences and negative evidences equally, while SA and PE
score concentrate more on positive ones, e.g. PE scores have overlooked the
evidence type 4.

For a given pair of proteins {x, y} in E, its C2S score is calculated by

C2SE (x,y)= log
P(E|x and y are co-complexed)

P(E|x and y are randomly related)

= log
∏

e∈E

P(e|x and y are co-complexed)

P(e|x and y are randomly related)

=
4∑

i=1

parai ×countETi(x,y)

(1)

where countETi(x,y) denotes the number of purifications in E that are
of evidence type i with respect to the protein pair {x, y}, while parai,
representing the evidence that each purification of type i contribute to the
C2S score of the protein pair, is defined as

parai = log
P(an evidence unit of type i|x and y are co-complexed)

P(an evidence unit of type i|x and yare randomly related)
.

and is in turn calculated as:

parai =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

log
rbp
ρbp

, i=1;
log

1−rbp
1−ρbp

, i=2;
log

rpp
ρpp

, i=3;
log

1−rpp
1−ρpp

, i=4.

(2)

However, if any protein in the pair does not occur (as bait or prey) in
the AP-MS data, their C2S score will be 0. Finally, we use the following
example to illustrate how to calculate the value of countETi(x,y) from an
AP-MS dataset.

Example 1. Let E ={e1,e2,e3,...,e8} denote a dataset of eight purification
experiments, which are illustrated as follows. Take e1 as an example: it has
the bait p1 that pulls down four preys {p2,p3,p6,p10}.

e1 :p1 →p2,p3,p6,p10 e2 :p1 →p3,p4,p6 e3 :p10 →p3,p6

e4 :p4 →p5,p7 e5 :p8 →p7,p4 e6 :p9 →p1,p3,p10

e7 :p5 →p1,p4,p7 e8 :p3 →p1,p2,p9

For a pair of proteins {p3,p4}, we have countET1(p3,p4)=0 and
countET2(p3,p4)=|{e4,e8}|=2 because in the only two purifications (e4 and
e8) whose baits are from {p3, p4}, the other protein is not pulled down;
countET3(p3, p4)=|{e2}|=1 and countET4(p3, p4)=|{e1,e3,e5,e6,e7}|=5
because p3 and p4 are both detected as preys in e2, while one and only
one of {p3,p4} is detected as a prey in e1,e3,e5,e6,e7.

2.2 Parameter estimation
So far, we have defined the C2S score based on the four probabilistic
parameters. In this section, we describe how to estimate them from AP-MS
data. For each protein x, we use the notation PulledBy(x) = {y|∃e∈E such that
(bait(e)=y)∧(x∈preys(e))} to denote the set of all the baits that pulled down
x, and notation PulledDown(x)=∪e:bait(e)=xpreys(e) to denote the set of all
the preys that have been pulled down at least once in the purifications with
bait x. For example, we have PulledBy(p3)={p1,p9,p10}, PullDown(p3)=
{p1,p2,p9}, PullDown(p1)={p2,p3,p4,p6,p10} and PulledBy(p1)={p3,p9}
in the data illustrated in Example 1.

It is relatively straightforward to estimate probabilistic parameters ρbp and
ρpp for a given AP/MS dataset E:

ρbp =
∑

e∈E |preys(e)|∑
e∈E (n−1)

=
∑

e∈E |preys(e)|
|E|×(n−1)

, (3)

and

ρpp =
∑

x∈preys(E)
∑

e∈E:x∈preys(e) (|preys(e)|−1)∑
x∈preys(E)

∑
e∈E:x∈preys(e) (n−2)

, (4)

where n is the number of all distinct proteins that appear in the dataset.
As to the other two parameters rbp and rpp, the technique for unsupervised

estimation is a little more complicated. The key point here is to construct an
approximate set of co-complexed proteins for each bait protein directly from
AP-MS data. For estimating rbp, we use the back-link set as the approximate
set of co-complexed proteins, while for rpp, we use the reciprocal set. Their
definitions are given in the following description.

For each protein x∈ baits(E), the notation backlink(x) = PulledBy(x)∩
preys(E) denotes the back-link set of x which consists of all the baits that
pulled down x and were also detected as preys in other purifications in E.
Each protein in backlink(x) is called a back-link protein of x. In Example
1, we have PulledBy(p4)={p1,p5,p8}, but p8 has never been detected as a
prey in all the eight purifications, so backlink(p4)={p1,p5}. Let e∈E be a
purification of bait x, the number of proteins in backlink(x) that are detected
as preys in e can be expressed as |backlink(x)∩preys(e)|. In the average,
the probability that a back-link protein of x will be detected as a prey in a
purification with bait x is estimated as∑

e∈E |backlink(bait(e))∩preys(e)|∑
e∈E |backlink(bait(e))| .

Let tpr be the true positive rate (or the probability that a protein being
pulled down by a bait is co-complexed with the bait) with 0.6 as the default
value. The sensitivity analysis of the values of tpr will be illustrated in the
experimental section. Thus, the parameter rbp is estimated approximately by
averaging the percentages over all experiments as follows:

rbp =
∑

e∈E |backlink(bait(e))∩preys(e)|∑
e∈E |backlink(bait(e))| × 1

tpr
. (5)

For each protein x∈ baits(E), we also define reciprocal(x) =
PulledBy(x)∩ PullDown(x) to be the reciprocal set of proteins that not
only are pulled down by x, but also pull down x. Each protein in
reciprocal(x) is called a reciprocal protein of x. As in Example 1, we
have PulledBy(p3)={p1,p9,p10} and PullDown(p3)={p1,p2,p9}, and thus
we have reciprocal(p3)=PulledBy(p3)∩ PullDown(p3)={p1,p9}. Then, if
a protein x is detected as a prey in a purification e, the number of the
reciprocal proteins of x that are also detected in e can be expressed as
|reciprocal(x)∩preys(e)|, and the number of all its reciprocal proteins that
are possible to be detected as preys in e is |reciprocal(x)−{bait(e)}|. In the
average, the probability that a reciprocal protein of x will be co-purified with
x as preys in a purification is estimated as∑

x∈baits(E)
∑

e∈E:x∈preys(e) |reciprocal(x)∩preys(e)|∑
x∈baits(E)

∑
e∈E:x∈preys(e) |reciprocal(x)−{bait(e)}| .

Furthermore, the probability that a reciprocal protein of x is also a co-
complexed protein of x can be estimated as σ =1−(1− tpr)2. Therefore,
the probabilistic parameter rpp can be estimated approximately as:

rpp =
∑

x∈baits(E)
∑

e∈E:x∈preys(e) |reciprocal(x)∩preys(e)|∑
x∈baits(E)

∑
e∈E:x∈preys(e) |reciprocal(x)−{bait(e)}| × 1

σ
. (6)
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2.3 Score matrix merging
In Sections 2.1 and 2.2, we have discussed how to compute the C2S score
given an AP-MS dataset. We are now ready to extend it to multiple AP-MS
datasets. In particular, let {Ei|1≤ i≤L} be a set of AP-MS datasets, the score
matrices can be merged as follows:

C2S(x,y)=
L∑

i=1

wi ×C2SEi (x,y), (7)

where wi denotes the weight of the i-th dataset.
In this article, we treat Gavin and Krogan data equally, so each dataset

is assigned with the unit weight. While for Krogan’s dataset, we divided
it into two subsets: Krogan-LC and Krogan-MALDI according to the mass
spectrometry techniques used, which are also treated equally—each subset
is assigned the weight of 0.5 so that their total weight is equal to 1.

2.4 Hierarchical clustering for complex mining
Once a C2S score matrix has been constructed, a simple hierarchical
clustering algorithm can be applied directly to cluster the set of proteins
into multiple clusters. It starts from the set of all singleton protein clusters.
It then merges the two clusters with the highest similarity at each iteration,
where the definition about the similarity between two clusters is given below.
The detailed procedure is illustrated in Algorithm 1.

Note that a cluster is a subset of proteins collective. For any two clusters
ci and cj , their similarity is defined as the C2S score value averaged over all
protein pairs between the clusters, that is:

sim(ci,cj)= 1

|ci|×|cj|
∑

x∈ci,y∈cj

C2S(x,y). (8)

For any two singleton clusters ci ={x} and cj ={y}, it is evident that
sim(ci,cj)=C2S(x,y).

In our algorithm, this merging process will terminate automatically only if
it cannot find any pair of clusters with positive similarity, or in other words,
if the similarity between any two nearest clusters is less than or equal to zero.
It is attributed to the fact that evidence types (2) and (4) has introduced a lot of
negative values into the C2S score matrix, which prevents any further cluster
merging. This automated stop process is theoretically sound and better than
the existing methods such as Gavin et al. (2006) where a merging threshold
has to be manually set by a user.

Once terminated, the set of remaining clusters will be outputted as the set
of predicted complexes, which are sorted in the descending order of their
confidence scores expressed by the averaged co-complex score over all pairs
within a predicted complex:

confidence(c)=
∑

x∈c,y∈c C2S(x,y)

|c|×(|c|−1)
for any cluster c. (9)

3 RESULTS
In this section, we first elaborate the AP-MS datasets we used
and list the complex sets predicted by current state-of-the-arts (for
comparison). Then, we compare our predicted complex sets on the
integrated Gavin and Krogan’s data with those existing ones in
terms of widely used evaluation metrics such as accuracy, recall,
co-localization and functional co-annotation. Finally, the result of
applying our method on Gavin’s data alone is also presented.

3.1 The AP-MS datasets used and the predicted
complex sets compared

Gavin et al. (2006) used only one mass spectrometry method
(MALDI-TOF) to identify proteins co-purified with a bait, while

Algorithm 1. Hierarchical clustering on the merged
C2S score matrix
Step 1 (Initialization): Initialize the cluster set C = {{x}|x is a

protein appearing in the AP-MS datasets} by creating a
cluster {x} for each single protein x. The similarity
matrix is initialized according to the C2S score metric,
that is, sim({x},{y})=C2S(x,y).

Step 2 (Identification of the two most similar clusters): the
similarity matrix is scanned and the highest value
simbest is identified, with corresponding pair of clusters
denoted as (ci, cj).

Step 3 (Termination or not?): If simbest is larger than 0, go to
step 4; otherwise, return the current set C of clusters
(with at least two proteins) as the set of predicted
complexes.

Step 4 (Merging clusters and update the similarities): A new
cluster cnew is created by merging the two clusters ci
and cj . The cluster cnew is then added into C, while ci
and cj are removed. Then, for each ck ∈C (different
from cnew), calculate its similarity with the new cluster
cnew as follows:

sim(cnew,ck)= |ci|×|ck |×sim(ci,ck)+|cj|×|ck |×sim(cj,ck)

(|ci|+|cj|)×|ck |

Step 5 (Loop): Go to Step 2

Table 1. Details of AP-MS datasets

AP-MS datasets #Purifications #Baits #Preys

Gavin 2166 1993 2671
Krogan 4332 2294 5333
Krogan-HighConf 3575 2143 2567

Krogan et al. (2006) used two separate methods [MALDI-TOF
and Liquid chromatography-mass spectrometry (LC-MS)/MS].
Therefore, the Krogan’s dataset can be divided into two subsets
Krogan-MALDI and Krogan-LC, each corresponding to the mass
spectrometry method used. In addition, confidence scores were
assigned for protein identification by mass spectrometry, so we
prune Krogan’s dataset with the cut-off thresholds (99.6 for LC-
MS/MS protein identification, and 3.4 for MALDI-TOF protein
identification) used by Hart et al. (2007) and thus yield a more
reliable dataset (called ‘Krogan-HighConf’) from Krogan’s raw
data. The number of purifications, the number of distinct baits and
the number of distinct preys for each dataset are summarized in
Table 1.

By applying our unsupervised method, two predicted complex
sets are generated:

• C2S: on Gavin dataset, Krogan-MALDI data subset and
Krogan-LC data subset

• C2S-HighConf: on Gavin dataset, Krogan-HighConf-MALDI
data subset and Krogan-HighConf-LC data subset.
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Table 2. Statistics of predicted complex sets to be compared

Predicted complex set #Complexes Avg. complex size #distinct proteins

C2S 1039 4.93 5121
C2S-HighConf 679 3.79 2571
Hart 390 4.33 1689
Pu 400 5.14 1913
BT-893 893 6.25 5187

The existing complex sets predicted by combining Gavin and
Krogan data for comparison include:

• Hart: the predicted complex set from Hart et al. (2007), using
a supervised method;

• Pu: the predicted complex set from Pu et al. (2007), using a
supervised method; and

• BT-893: the predicted complex set from Friedel et al. (2009),
using an unsupervised Bootstrap method.

The statistics of these predicted complex sets to be compared are
summarized in Table 2.

3.2 Comparative evaluation on reference complexes
To evaluate the accuracy of the predicted complex set, sensitivity
(Sn) and positive predictive value (PPV) were calculated with regard
to the following two widely used benchmark complex reference sets:

• CYC2008 contains 408 manually curate complexes (Pu et al.,
2008); and

• MIPS contains 214 manually curated complexes from the MIPS
database (Mewes et al., 2004).

The sensitivity and the PPV between a reference complex ri and a
predicted complex cj are calculated from the number Ti,j of proteins
shared between them (Brohee and Helden, 2006):

Sn=
∑

i maxj Ti,j∑
i |ri| , and

PPV=
∑

j maxi Ti,j∑
j
∣∣∪i(ri ∩cj)

∣∣ =
∑

j maxi Ti,j∑
j
∣∣(∪iri

)∩cj
∣∣ .

Please note that the definition of PPV here is a little bit different
from the original definition given by Brohee and Helden (2006).
We propose this new definition is due to the fact that the original
definition cannot evaluate overlapping clusters properly as reported
by Li et al. (2010). For example: if the known gold standard MIPS
complex set is taken to match with itself, then the resulting PPV
value is 0.77 instead of 1; when CYC2008 is taken to match with
itself, the resulting PPV is only 0.68. The new proposed PPV can
address this issue and yield PPV value of 1 when a complex set
is matched with itself. In addition, it is worth mentioning that
our definition is equivalent to the original definition when all the
reference complexes do not overlap with each other.

As a summary metric, the accuracy of a prediction (Acc) can then
be defined as the geometric average of sensitivity and PPV,

Acc=√
Sn×PPV

Table 3. Sensitivities (Sn), PPVs and Acc compared on reference complexes

Predicted complex set CYC2008 (408) MIPS (214)

Sn PPV Acc Sn PPV Acc

C2S 0.680 0.837 0.755 0.582 0.821 0.692
C2S-HighConf 0.643 0.889 0.756 0.5294 0.889 0.686
Pu (400) 0.691 0.789 0.738 0.593 0.795 0.686
Hart (390) 0.610 0.863 0.725 0.514 0.846 0.660
BT-893 0.720 0.759 0.740 0.582 0.773 0.671

From Table 3, we observed that C2S and S2S-HighConf achieved
the best accuracy compared with the state-of-the-arts which used
the benchmark complexes to select reliable protein interactions.
Our proposed unsupervised method has an advantage to be directly
applied to mine protein complexes from other less well-studied
species, even without the known protein complexes existing.

When evaluating the predicted complex set over a reference set,
other commonly used evaluation metrics include precision, recall
and F-measure. Let r be a reference complex, c be a predicted
complex. The matching degree between r and c is used to measure
how well they match with each other (Bader and Hogue, 2003):

MD(r,c)= |r∩c|2
|r|×|c| .

Given a threshold ω, we say that r and c match each other if
MD(r, c) ≥ω. Let Mref be the number of reference complexes that
match at least one predicted complex, and Mpre be the number of
predicted complexes that match at least one reference complex.
Precision, recall and F-measure are then defined as (Chua et al.,
2008):

Precision= Mpre

|C| , Recall= Mref

|R| ,

F-measure= 2×Precision×Recall

Precision+Recall
.

However, due to the fact that the reference complex set CYC2008 is
far from complete, an unmatched predicted complex may be also a
true complex, so we do not think precision is a good way to measure
the quality of a predicted complex set. In addition, we have the
following Disjoint property, which is easy to prove.
[Disjoint Property]: For a given predicted complex set C and
a reference complex set R, if the predicted complexes in C and
the complexes in R are disjoint, respectively, then each reference
complex in R matches at most one predicted complex in C, and
each predicted complex in C matches at most one reference complex
in R when ω is larger than 0.5. In this situation, it is evident that
|Mref|=|Mpre|.

Proof. See the Supplementary Material for detailed information.

Since all the compared approaches here rely on a partitioning-
based clustering method, the predicted complexes can be considered
as (approximately) disjoint. Therefore, we only compare recall
values for these predicted complex sets, with different values of ω.

It can be seen from Figure 2 that C2S and C2S-HighConf have
similar recall with the supervised methods (Hart and Pu), and
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Fig. 2. The comparison of recall with different values of ω.

Fig. 3. The effect of varying tpr on sensitivity, PPV and accuracy.

they evidently outperform the unsupervised method (BT-893) which
drops faster with the increased value of ω.

3.3 The effect of varying tpr
Recall that in the parameter estimation, we have to set the value
of tpr, which stands for the true positive rate. Here, we investigate
how the variation of tpr affects the performance of our approach.
Figure 3 shows the sensitivity, PPV and accuracy on the combined
Gavin and Krogan data under different values of tpr.

As we change the value of tpr, the performance of our approach
remains quite stable. The accuracy drops slightly from 0.76 to
0.75 when the value of tpr is increased from 0.5 to 0.8, which is
consistently better than all the other approaches compared in Table 2.

3.4 Comparative evaluation on co-localization and
functional co-annotation within complexes

Since a protein complex is usually assembled by the proteins
with same/similar localization to carry out a specific function, the
similarity of co-localization and that of functional co-annotation
among proteins in the same complex provide indirect evidences
about the quality of the predicted complexes.

As to the similarity of functional co-annotation, we use the
relevance similarity described by Schlicker et al. (2006) based on the
protein annotations of the Gene Ontolgoy (GO) (Ashburner et al.,

Table 4. Comparison of co-localization and functional co-annotation within
complexes

Predicted complex set COLOC (%) GO-BP (%) GO-MF (%)

C2S-HighConf-405 89.2 85.9 80.3
BT-409 89.1 86.5 79.3
Pu 84.6 85.8 77.7
Hart 88.1 87.5 78.0

2000). As in Friedel et al. (2009), the GO score of a complex set is
the weighted mean over all complex scores, and in turn, the score
of a complex is the average relevance similarity of all protein pairs
in the complex. The GO scores are calculated for the ‘biological
process (GO-BP)’ and ‘molecular function (GO-MF)’ ontologies
separately. As to the similarity of co-localization, we use the protein
localizations derived by Huh et al. (2003). The co-localization score
(COLOC) for a complex is defined as the maximum fraction of
proteins in this complex which share the same localization, and it
is the weighted average over all complexes for a predicted complex
set.

To make a fair evaluation on co-localization and functional co-
annotation within complexes, we extract the first 405 predicted
complexes from C2S-HighConf ranked by their confidences
measured by Equation (9), and denote the complex set as ‘C2S-
HighConf-405’ which covers 1725 distinct proteins. This is because
we want all the compared complex sets to be of comparable size.
The compared complex sets by Pu and Hart contain 400 and 390
complexes, respectively, and the BT method used 408 complexes
(denoted as BT-408) which have good performance measured on
co-localization information.

From Table 4, we observe that C2S-HighConf-405 has similar
(slightly higher) quality to Hart and BT-409 on the three scores, and
they have substantially higher scores than Pu.

3.5 Evaluating predicted complex set from the Gavin
data alone

We also applied our C2S approach to the Gavin dataset alone, with
the predicted complex set (called C2S-Gavin) of 474 complexes
covering 1942 distinct proteins. The previous predictions used for
comparison include the Bootstrap predictions (Friedel et al., 2009),
the predictions based on the DCs (Zhang et al., 2008), the complete
Gavin complexes (Gavin et al., 2006), the CODEC-w0 and the
CODEC-w1 (Geva and Sharan, 2011).

The sensitivities, PPVs and accuracies of these predicted complex
sets against the two reference complex sets are summarized in
Table 5. It can be seen that C2S-Gavin has the highest accuracy
among all these predictions. Its PPV value is only slightly lower
than Gavin-Core, but the sensitivity is much higher.

We also measured the Recall with different values of ω. From
Figure 4, it is evident that our approach remains the best among the
compared predictions when ω varies from 0.2 to 0.9.

From Table 6, it can be seen that the C2S-Gavin has achieved
substantially higher co-localization and functional co-annotations
than those previous predictions. Furthermore, to make comparison
against the high confidence Gavin-Core predictions, 231 predicted
complexes with the highest scores (denoted as ‘C2S-Gavin-231’) are
extracted from C2S-Gavin. The complex set C2S-Gavin-231 covers
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Construction of co-complex score matrix

Table 5. Comparisons of Sensitivities (Sn), PPVs and Acc of predictions on
Gavin data alone against two reference complex sets

Predicted complex set CYC2008 (408) MIPS (214)

Sn PPV Acc Sn PPV Acc

C2S-Gavin (474) 0.588 0.884 0.721 0.500 0.895 0.669
BT-Gavin (381) 0.631 0.756 0.691 0.547 0.774 0.650
Zhang-Gavin (851) 0.607 0.679 0.642 0.547 0.699 0.618
Gavin-Core (478) 0.392 0.914 0.598 0.350 0.907 0.564
Gavin-All (491) 0.570 0.552 0.561 0.517 0.605 0.559
CODEC-w0-Gavin (1082) 0.552 0.506 0.528 0.486 0.535 0.510
CODEC-w1-Gavin (1005) 0.549 0.542 0.546 0.484 0.600 0.539

Fig. 4. Comparison of recall by varying ω for predictions on Gavin data
alone.

Table 6. Comparison of co-localization, functional co-annotation for
predictions on Gavin data alone

Predicted complex set COLOC (%) GO-BP (%) GO-MF (%)

C2S-Gavin 85.29 81.64 76.05
BT-Gavin 78.93 78.35 71.92
Zhang-Gavin 75.51 75.64 70.92
Gavin-All 70.27 74.36 68.19
CODEC-w0-Gavin 68.83 69.75 66.15
CODEC-w1-Gavin 76.78 78.71 72.87

1128 distinct proteins, which is identical with Gavin-Core. Even
though C2S-Gavin-231 contain fewer complexes than Gavin-Core
of 478 complexes, it gets the co-localization score of 90.8%, the
‘GO-Biological Process’ co-annotation score of 91.3% and the ‘GO-
Molecular Function’ co-annotation score of 81.8%, which is 2.3,
10.0, 5.3% higher than Gavin-Core, respectively, indicating C2S-
Gavin can predict protein complexes significantly better than the
existing techniques.

We also observed that the results obtained by using Gavin data
alone are around 2–3% lower than those using integrated Gavin
and Krogan’s data, indicating that our proposed method is able to
effectively incorporate multiple biological evidences and achieve
better results.

3.6 Running time
We implemented the C2S algorithm using Java programming
language under the Eclipse framework. On a Lenovo X200 laptop
with Intel core 2 duo P8400 (2.26 GHz) and 2 G memory, it takes
about 4 min to run the C2S algorithm on the integrated Gavin and
the Krogan’s raw data.

4 CONCLUSIONS AND DISCUSSIONS
In order to predict protein complexes from AP-MS data, we have
proposed a novel scoring method (C2S scores) for evaluation
of the log-likelihood ratio of a protein pair being co-complexed
based on four probabilistic parameters that are learned solely
on the AP-MS dataset. Multiple AP-MS datasets can then be
integrated by merging their corresponding C2S score matrices. On
the merged C2S score matrix, we developed a hierarchical clustering
algorithm which is capable of terminating the clustering process
automatically and the final clusters will be treated as the predicted
protein complexes. Experimental comparisons have shown that our
approach is better than or competitive to other existing ones in
many aspects. Furthermore, compared with existing approaches, our
approach has the following advantages:

• It is easy to implement and runs efficiently. Even on the
combined dataset of Gavin and Krogan, our program only takes
4 min to finish on a laptop.

• The hierarchical clustering process can be easily visualized
and easy to understand. It could provide more biological
insights for the complex formation. In addition, it can terminate
automatically without the requirement of a user predefined
threshold.

• There is only one parameter in our algorithm and our results
are not sensitive to its value.

• It is unsupervised, and do not require the knowledge of existing
complexes. As such, we can be directly applied to other newly
generated AP-MS data in yeast or other species.

• All the four probabilistic parameters can be estimated solely
from the AP-MS dataset itself.

In future work, we plan to propose more accurate methods for
co-complex score measurement, and new mechanisms for data
integration:

• More accurate scoring methods: the scoring method in this
article is actually an average of measurement across all the
purifications in a given AP-MS dataset. However, different
purifications should have their own characteristics such as
different precisions or recalls. It will lead to a more accurate
scoring method by taking these factors into consideration, and
further lead to a predicted complex set with higher quality.

• New mechanisms for data integration: here, multiple AP-MS
datasets get integrated by first calculating the core matrices for
individual datasets, and then merging these individual matrices
into a single consolidated matrix, which can be called the
score-matrix-level integration. However, there are several other
locations in the Figure 5 where the integration of multiple AP-
MS dataset may be included. The first possibility is to merge
all the purifications from multiple dataset together, which is
called the raw dataset level integration. And another option is to
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Fig. 5. The flowchart of protein complex prediction based on C2S score
matrix.

integrate the result sets mined from individual score matrices,
following by a post-processing step to merge the redundant
ones. We will leave them as our future work.

Furthermore, we plan to design a post-processing phase, similar to
that of Pu et al. (2007) and that of Friedel et al. (2010), such that
proteins can be contained in more than one complex.
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