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ABSTRACT

Motivation: Classifying biological data into different groups is a
central task of bioinformatics: for instance, to predict the function
of a gene or protein, the disease state of a patient or the phenotype
of an individual based on its genotype. Support Vector Machines
are a wide spread approach for classifying biological data, due to
their high accuracy, their ability to deal with structured data such as
strings, and the ease to integrate various types of data. However, it
is unclear how to correct for confounding factors such as population
structure, age or gender or experimental conditions in Support Vector
Machine classification.
Results: In this article, we present a Support Vector Machine
classifier that can correct the prediction for observed confounding
factors. This is achieved by minimizing the statistical dependence
between the classifier and the confounding factors. We prove that
this formulation can be transformed into a standard Support Vector
Machine with rescaled input data. In our experiments, our confounder
correcting SVM (ccSVM) improves tumor diagnosis based on
samples from different labs, tuberculosis diagnosis in patients of
varying age, ethnicity and gender, and phenotype prediction in the
presence of population structure and outperforms state-of-the-art
methods in terms of prediction accuracy.
Availability: A ccSVM-implementation in MATLAB is available from
http://webdav.tuebingen.mpg.de/u/karsten/Forschung/ISMB11_ccSVM/.
Contact: limin.li@tuebingen.mpg.de; karsten.borgwardt@tuebingen.mpg.de

1 INTRODUCTION
Several of the most intensively studied problems in computational
biology are classification tasks: for instance, predicting the function
of a gene, the disease state of a patient, the reaction of a patient to
a therapy and the phenotype of an individual based on its genotype.
The abstract task is to predict the class y of an biological subject
based on its features x. Emerging and existing high-throughput
technologies allow us to measure the features of genes, proteins
and individuals at an unprecedented resolution and scale, and the
hope is that this rich knowledge will lead to ever more accurate data
classification.

One of the most prominent and most successful classification
algorithms are Support Vector Machines (SVMs) (Cortes and
Vapnik, 1995; Schölkopf and Smola, 2002). They are based on
the idea to separate objects from two classes by means of a
hyperplane; new test objects are then predicted to belong to one
of these two classes depending on which half-space they are
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located in. Their popularity is due to several reasons: first, SVMs
have shown excellent prediction accuracy in many studies (Noble,
2006). Second, SVMs can be directly applied to structured data,
such as strings (Leslie et al., 2002) or graphs (Borgwardt et al.,
2005), which are abundant in bioinformatics. Third, SVMs allow
for straightforward data integration of several data types (Lanckriet
et al., 2004).

However, SVMs suffer from one limitation: it is unclear how to
correct for confounding variables in SVM predictions. According
to Meinert (Meinert and Tonascia, 1986), a confounder is defined
as a variable which is related to two factors of interest, and which
falsely obscures or accentuates the relationship between them. In
this article, we present an SVM which can correct for observed
confounding variables.

The detrimental effects of confounders are observable in many
classification tasks in molecular biology, as illustrated by the
following two examples: one may want to predict the phenotypes
of plants based on their genotype, typically represented by single
nucleotide polymorphisms that represent sequence variation in an
individual. In this task, population structure, that is systematic
ancestry differences between plants with different phenotypes, may
have a confounding effect on the prediction (Price et al., 2010).
For instance, if there is a correlation between population structure
and phenotype, the classifier may rely on SNPs that correlate
with population structure, and subsequently, its predictions may
be wrong on datasets from different geographic origins where the
phenotype–population correlation is less pronounced or not present.

Another example is drug treatment response in patients from
gene expression profiles. Confounding factors may be the age, the
gender or the ethnicity of the patients, each of which may correlate
with the treatment response and the expression levels of certain
genes (Holsboer, 2008). When predicting on patients with different
age, sex or ethnic background, the learnt classifier may poorly
generalize.

Our goal in this article is to define a confounder-correcting
Support Vector Machine (ccSVM) that removes the confounding
side information to the largest extent possible. To achieve this, we
strive to make the classifier base its prediction on features that do not
correlate with the confounding variable.

The remainder of this article is structured as follows. In Section 2,
we present the ccSVM (Section 2.3), and the classifier (Section 2.1)
and the statistical dependence measure (Section 2.2) it is based upon.
We prove that the ccSVM can be computed highly efficiently with
existing software packages in Section 2.4. In Section 3, we show
that our method improves upon several state-of-the-art classifiers in
tumor diagnosis (Section 3.3), tuberculosis diagnosis (Section 3.4)

© The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/13/i342/177303 by guest on 23 April 2024



[20:21 6/6/2011 Bioinformatics-btr204.tex] Page: i343 i342–i348

ccSVM

and plant phenotype prediction (Section 3.5). In Section 4, we
summarize our findings and give an outlook to future work.

2 ccSVM APPROACH
We first introduce the SVM (Section 2.1) and the Hilbert-Schmidt
Independence Criterion (HSIC) (Section 2.2), that is the measure of
statistical dependence that we use to then define our confounder-
correcting SVM (Section 2.3). In Section 2.4, we show how to
efficiently solve the ccSVM optimization problem.

2.1 SVMs
SVMs are supervised learning methods (Schölkopf and Smola,
2002; Vapnik and Chervonenkis, 1974) that are widely used in
molecular biology (Schölkopf et al., 2004). The SVM takes a
set of input data with corresponding class labels, and predicts to
which class a new input belongs. Suppose we are given the data
(x1,y1),··· ,(xm,ym), where xi is an observation and yi is its class
label (+1 or −1). The original SVM assumes the data are separable
by a hyperplane and obtains this hyperplane by maximizing the
margin, that is the minimum distance between the hyperplane and
points from each class. Once the hyperplane is learnt from the
training data, it can be used to predict the class label of new test
points. Suppose the hyperplane is in the form of f (x)=wT x+b,
then the model is as follows:

min
w∈Rn,b∈R

||w||2 (1)

subject to

yi(〈w,xi〉+b)≥1 (2)

By considering the case when data are non-separable, a soft
margin SVM was proposed to punish the training errors as follows
(Cortes and Vapnik, 1995):

min
w∈Rn,b∈R,ξ∈Rm

||w||2 +C
m∑

i=1
ξi (3)

subject to

yi(〈w,xi〉+b)≥1−ξi
ξi ≥0,

(4)

where C determines the trade-off between margin maximization
and training errors minimization, and ξi is the term by which the
object xi violates the inequality (2). Once w and b are obtained, one
can predict the class label for a new observation x by the decision
function: sgn(wT x+b).

The dual problem of (3) is

max
α

⎧⎨
⎩−1

2

m∑
i=1

m∑
j=1

yiyjαiαjx
T
i xj +

m∑
i=1

αi

⎫⎬
⎭ (5)

under the constraints of∑m
i=0yiαi =0,

0≤αi ≤C, for i=1,...,m
(6)

The Karush–Kuhn–Tucker conditions (Kuhn and Tucker, 1951)

imply that w=
n∑

i=1
yiαixi. Thus, after we obtain αi by solving (5),

the decision function will be

sgn

( m∑
i=1

yiαix
T
i x+b

)
.

The kernel trick is to replace xT
i xj by k(xi,xj)=φ(xi)T φ(xj) in

(5), where k(x,x′) is a kernel function such that its discretization
Kij =k(xi,xj) is a positive definite matrix. The decision function
can then be represented as

sgn

( m∑
i=1

yiαik(xi,x)+b

)
.

2.2 HSIC
The HSIC is a measure of statistical independence (Gretton et al.,
2005). Intuitively, HSIC can be thought of as a squared correlation
coefficient between two random variables x and z computed in
feature spaces F and G.

In more detail, let x be a random variable from the domain X and
z a random variable from the domain Z . Let F and G be feature
spaces on X and Z with associated kernels k :X ×X →R and l :
Z×Z →R. If we draw pairs of samples (x,z) and (x′,z′) from x
and z according to a joint probability distribution p(x,z), then the
HSIC can be computed in terms of kernel functions via:

HSIC(p(x,z),F ,G)=Ex,x′,z,z′ [k(x,x′)l(z,z′)] (7)

+Ex,x′ [k(x,x′)]Ez,z′ [l(z,z′)]
−2Ex,z[Ex′ [k(x,x′)]Ez′ [l(z,z′)]], (8)

where E is the expectation operator. The empirical estimator of HSIC
for a finite sample of points X and Z from x and z with p(x,z) was
shown in Gretton et al. (2005) to be

HSIC((X,Z),F ,G)∝ tr(KHLH), (9)

where tr is the trace of the products of the matrices, H is a
centering matrix Hij =δ(i,j) − 1

m (where δ(i,j) =1 if i= j and δ(i,j) =0
otherwise), K and L are the kernel matrices on the two random
variables of size m×m and m is the number of observations. The
larger HSIC, the more likely it is that X and Z are not independent
from each other.

2.3 The ccSVM
Via HSIC we can now define an SVM that can use side information
to avoid confounding. Suppose m samples with their feature
vectors (x1,...,xm), class labels (y1,...,ym) and side information
(z1,...,zm) are given. xi is a n-dimensional column vector
representing the features of sample i, yi ∈{−1,+1} is the class label
for xi and zi is the some kind of side information on object i, e.g.
region, country, age, gender, lab membership or population structure.

L∈R
m×m is a predefined kernel matrix which is generated based

on a kernel l on the side information, that is Lij = l(zi,zj). We call
L the side information kernel matrix.

We propose to obtain a classifier by minimizing the following
objective function:

min
w∈Rn,b∈R

||w||2 +λtr(KHLH) (10)

i343

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/13/i342/177303 by guest on 23 April 2024



[20:21 6/6/2011 Bioinformatics-btr204.tex] Page: i344 i342–i348

L.Li et al.

subject to

yi(〈w,xi〉+b)≥1
Kij =〈w
xi,w
xj〉, (11)

where 
 represents the element-wise product of two vectors.
The objective function includes two terms. To minimize the first

term is to maximize the classifier margin, as in a standard SVM.
The second term tr(KHLH) is the HSIC, which measures the
independence between two kernels, the reweighted kernel matrix
K and side information kernel matrix L. Here the reweighted kernel
K is the kernel after reweighting each feature by its weight in w.

To minimize HSIC is to make the dependence between the
reweighted kernel matrix and the side information kernel matrix
as small as possible. In other words, besides maximizing the
margin, the ccSVM also tries to weaken the effect of the side
information on the weight vector w of the classifier. It rewards
solutions in which the input data—after being reweighted by
weight vector w—are as independent as possible from the side
information, thereby favoring a solution that does not rely on the
side information. A constant λ>0 determines the trade-off between
margin maximization and dependence minimization.

Note that in practice, a separating hyperplane may not exist. A
possible soft margin classifier can be obtained by minimizing the
following objective function:

min
w∈Rn,b∈R,ξ∈Rm

||w||2 +λtr(KHLH)+C
m∑

i=1
ξi (12)

subject to

yi(〈w,xi〉+b)≥1−ξi
Kij =〈w
xi,w
xj〉
ξi ≥0.

(13)

Two constants C and λ determine the trade-off among
margin maximization, dependence minimization and training error
minimization.

2.4 Transformation into SVM problem with rescaled
input

Next, we show how to solve the ccSVM optimization problem (12)
by rescaling the input of a standard SVM. For this purpose, we
denote HLH by L̃, and we define w= (w1,...,wn)T and xi =
(x1i,...,xni)T . Then HSIC in (12) can be written as

tr(KHLH)= tr(KL̃)

=
m∑

i,j=1
L̃ij〈w
xi,w
xj〉

=
m∑

i,j=1
L̃ij

n∑
k=1

w2
kxkixkj

=
n∑

k=1
w2

k

m∑
i,j=1

L̃ijxkixkj

(14)

Let lk =∑
i,j

L̃ijxkixkj , then (14) is equal to:

n∑
k=1

w2
k lk

Thus, the objective function in (12) becomes

n∑
k=1

w2
k +λ

n∑
k=1

w2
k lk +C

m∑
i=1

ξi

=
n∑

k=1
w2

k (1+λlk)+C
m∑

i=1
ξi

Let
w̃k =wk

√
1+λlk (15)

and
x̃ki = xki√

1+λlk
(16)

for k =1,...,n. Denote w̃= (w̃1,...,w̃n)T and x̃i = (x̃1i,...,x̃ni)T .
Then the optimization problem (12) becomes:

min
w̃∈Rn,b∈R,ξ∈Rm

||w̃||2 +C
m∑

i=1
ξi (17)

subject to
yi(〈w̃,x̃i〉+b)≥1−ξi
ξi ≥0.

(18)

Interestingly, the optimization problem (17) with the constraints in
(18) is the standard SVM, which can be solved using libsvm (Chang
and Lin, 2001) or other SVM software. Thus, in order to solve the
ccSVM problem (12), one only needs to first rescale each feature
according to the formula (16) and then solve a standard SVM
problem (17). Note that Equation (17) uses a linear kernel X̃T X̃,
where X̃= (x̃1,...,x̃m)∈R

n×m. While the rescaling step (16) does
not lend itself to kernelization, one can kernelize (17) and (18) by
replacing x̃T

i x̃j by φ(x̃i)T φ(x̃j) in its dual problem.

3 EXPERIMENTS
In our experiments, we examine three different applications of the
ccSVM in bioinformatics: microarray cross-platform comparability
on a simulated dataset, disease outcome prediction with correction
for various kinds of side information and phenotype prediction with
population structure correction.

3.1 Parameter selection
There are two parameters in the ccSVM model (12): λ and C. We
choose the parameters based on cross-validation on the training
dataset only. We split all the training data into several (for example,
5) folds, and each time we take 1-fold as test set and the others
as training set. We first set λ=0 and select the C by which we
can get the best average area under curve (AUC) using a standard
SVM. C can take one of the values in {2−8,2−4,2−2,1,22,24,28}.
Then we fix C in the ccSVM, and select the λ such that it gives
the best average AUC in the ccSVM. λ is chosen from the values
{10−8,10−4,10−2,1,102,104,108}. This parameter selection is
performed on the training dataset only.

3.2 Comparison partners
We compare the ccSVM to the following comparison partners:

• Standard SVM: we use linear kernel KSVM =XT X in the
standard SVM, where X= (x1,...,xm)∈R

n×m.

• (K+L)SVM: we integrate the side information with the original
features by simply concatenating X and L. Thus, the number of
features are n+m, where n is the number of original features,
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and m is the number of side features. The linear kernel will be
K(K+L)SVM =KSVM +LT L. (K+L)SVM means that we use a
standard SVM with kernel matrix K(K+L)SVM.

• pcaSVM: we consider the first component from principle
component analysis (PCA) to be most related to the side
information, and then weaken the side-effect by removing
it from the kernel matrix. Price et al. (2006) used a
similar approach to correct for stratification in genome-wide
association studies. Suppose the largest eigenvalue of KSVM =
XT X is σ and its corresponding eigenvector is v, then define the
PCA correction kernel KPCA=KSVM −σvvT . pcaSVM means
that we use a standard SVM with kernel matrix KPCA.

• Confounder correcting logistic regression (ccLR): we consider
the following logistic model

ln

(
p

1−p

)
=β0 +β1x1 +···+βnxn +u1l1 +···+umlm,

where p is the probability of a sample being in one class
(e.g. the positive class), βi and ui are parameters, xi are the
original features and li are the side features included in L.
Kang et al. (2010) applied a related mixed-model approach to
correct for population structure in genome-wide association
studies. In contrast to our approach, they are interested in
quantitative phenotypes. In our experiments, besides standard
logistic regression with maximum likelihood, a sparse Bayesian
logistic regression model BLogReg (Cawley and Talbot, 2006)
is also used to estimate the parameters βi and ui. ccLR
with these two parameter estimation methods are denoted as
ccLR(ML) and ccLR(BR), respectively.

3.3 Microarray cross-platform comparability
In this experiment, we compared the sensitivity of the ccSVM to a
standard SVM on a microarray dataset which consists of samples
from two different labs. A synthetic dataset was also generated to
compare the ccSVM and standard SVM.

Data: P.Warnat et al. (2005) compared two studies on acute
myeloid leukemia (AML): Bullinger et al. (2004) and Valk et al.
(2004). The dataset Bullinger consists of 52 patients, and the dataset
Valk of 97 patients. Both datasets share gene expression levels
for n=7102 genes. The prediction task is to differentiate between
cancerous and normal tissue. The experiments of Bullinger et al.
were carried out on a cDNA platform while Valk et al. used
oligonucleotide microarrays.

Besides the real data, we also generated a synthetic dataset based
on Bullinger and Valk: we picked randomly half of the genes
and centered them to zero mean for each gene and each dataset
separately, and kept the other half genes uncentered. The centered
genes have no correlation with the lab membership while many of
the uncentered genes have a strong correlation. Hence, difference
in mean expression level seems to distinguish the expression values
from these two labs.

We defined the side information matrix L∈R
m×m by the lab

membership. Lij =1 if patient i and patient j belong to the same
lab, and Lij =0 if the two patients belong to different labs.

Experimental setting: we first did 50 times 5-fold random cross-
validation on the real data using the ccSVM and SVM, and report
their average AUCs, standard errors and t-test P-values. For the
ccSVM, we split the data randomly into 5-folds. We used 4-folds
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Fig. 1. Genes are sorted according to the weight vector of the ccSVM (blue
dashed line) and according to the weight vector of the standard SVM (green
line). The correlation coefficient between each gene expression level and lab
membership is calculated. The averaged absolute correlation coefficient of
the top i genes is plotted for gene i.

for training and 1-fold for testing. Then we fixed the parameters λ

and C as explained in Section 3.1 with 4-fold cross-validation. With
the obtained parameters, we trained the ccSVM on the training set
and predicted on the test objects. The experiment was repeated five
times until each fold served as test dataset once. For standard SVM
and pcaSVM, we used the same experimental protocol, but we only
needed to train C from the training data.

We then explored how the ccSVM corrects the normalized weight
vector based on the synthetic data. We trained on a subset of the
pooled Bullinger and Valk dataset. We determined the parameter C
according to the experimental protocol outlined in Section 3.1 and
fixed λ=1. Therefore, we split the training set into 3-folds. With
these optimized parameters, we trained our ccSVM jointly over all
training objects and predicted on the test dataset. For training the
standard SVM, we used the same experimental protocol.

Results: for the real data, we obtain an average AUC value of
0.911 ± 0.002 for the ccSVM and an AUC value of 0.822±0.003
for the standard SVM. The P-value of the t-test is 4.8e-40. This
result shows that our method is superior to the standard SVM.

For the synthetic data, we can see from Figure 1 that the ccSVM
assigns large weights to genes that weakly correlate with the lab
membership while the standard SVM assigns the weights without
paying attention to the correlation to the lab membership.

3.4 Disease outcome prediction with various
confounding factors

In this experiment, we analyzed the ability of the ccSVM to predict
active tuberculosis based on blood transcriptional profiles. We used
ethnicity, age and gender as confounding information.

Data: we obtained the dataset from Berry et al. (2010). It
includes 103 blood samples from patients with active tuberculosis
and 40 blood samples from healthy controls. The transcriptional
signature of the blood samples were measured in a subsequent
microarray experiment with n=48803 gene expression levels.

We used three different confounding factors: ethnicity, gender
and age. For ethnicity, we defined the information matrix as
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Table 1. AUC and P-values for ccSVM, standard SVM, pcaSVM, (K+L)SVM and ccLR for the three different confounding variables on the Tuberculosis
dataset

Side information AUCccSVM AUCSVM pSVM AUCpcaSVM ppcaSVM AUC(K+L)SVM p(K+L)SVM AUCccLR(ML)

Ethnicity 0.955 ± 0.002
0.939 ± 0.003

6.3e-05
0.933± 0.003

3.6e-09 0.942± 0.003 1.2e-04 0.499
Age 0.967 ± 0.002 3.8e-12 1.5e-18 0.943 ± 0.002 4.0e-16 0.499
Gender 0.938 ± 0.003 2.8e-01 6.2e-01 0.941 ± 0.003 1.7e-01 0.499

follows: Lij =1 if the patient i and j belong to the same ethnic group,
Lij =0 if they do not. For gender, we defined L similarly: Lij =1
if the patient i and j have the same gender, Lij =0 if the patients
have different gender. We used a Gaussian kernel for age as side
information.

Experimental setting: for the ccSVM, standard SVM, pcaSVM
and (K+L)SVM, we used the same experimental setting as described
in Section 3.3. We again utilized the same experimental design for
ccLR, but instead of setting the parameters (λ,C), we determined
the parameters β0,...,βn and u1,...,um.

We ran 50 times random 5-fold cross-validation for standard
SVM, pcaSVM,(K+L)SVM and ccSVM, and reported their
corresponding average AUCs and standard errors. We also
performed a t-test between the 50 AUCs of competing partners
and 50 AUCs of ccSVM, and recorded the P-values. As ccLR and
BLogReg did not work well, we performed logistic regression with
maximum likelihood estimation in 10 times 5-fold cross-validation
and reported the averaged AUC.

Results: Table 1 shows the prediction results for random
cross-validation. Regarding the AUC values, ccSVMs with side
information of ethnicity and age are slightly better than the other
SVM approaches, while ccSVM with gender as side information
works similar with the other SVMs. The logistic regression approach
is not able to classify the data correctly regardless of which side
information is used.

Weight vector analysis: we examined the weight vector of the
ccSVM to get a further understanding for its improved performance.
Specifically, we trained on four ethnic groups and then used it
to predict on a fifth. In Figure 2, we plot the averaged absolute
correlation coefficients between membership in one ethnicity
(African) and the expression levels of the 10000 top ranked genes.
We can observe that the ccSVM assigns the largest weights to genes
that do not correlate with the confounder, while the standard SVM
is unaware of the confounder and puts large weight on the features
that correlate with the confounding variable.

3.5 Phenotype prediction with population structure
correction

In this experiment, we assessed the performance of the ccSVM in
comparison to the standard SVM, (K+L)SVM, pcaSVM and ccLR
on phenotype prediction from SNP data in Arabidopsis thaliana.

Data : we used data from the genome-wide association study
in A.thaliana conducted by Atwell et al. (2010). The dataset
consists of m=177 samples and n=216130 single nucleotide
polymorphisms (SNPs). An SNP is a fixed position in the genome
which exists in two different variations between individuals. We
examined five binary phenotypes, namely the presence and absence
of chlorosis at 22◦C (PID:169), of anthocyanin at 16◦C (PID:171)
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Fig. 2. Gene expression levels are sorted according to the weight vector of
ccSVM (blue dashed line) and according to the weight vector of standard
SVM (green line). The correlation coefficient between each gene expression
level and ethnic origin (African) is calculated. The averaged absolute
correlation coefficient of the top i genes is plotted for gene i.

and at 22◦C (PID:172) and of leaf roll at 10◦C (PID:176) and at
22◦C (PID:178).

We used population structure as side information and computed
a side information kernel matrix L∈R

m×m. Population structure is
defined by the different allele frequencies between subpopulations. If
the phenotype prevalence also differs between these subpopulations,
it can lead to spurious associations between the phenotype and SNPs
that are associated with a subpopulation in which one phenotype is
prevalent (Marchini et al., 2004). Each entry Lij is here defined as
the number of common SNPs between sample i and sample j.

Experimental setting: for this experiment, we used the same
experimental setting as described in Subsection 3.4.

Results: prediction results are reported in Table 2. For all the
phenotypes except leaf roll at 22◦C (PID:178), ccSVM yields better
AUC values than the state-of-the-art competitors. Regarding the
P-values, we see that the improvement of our method against
standard SVM, pcaSVM and (K+L)SVM is significant for the
phenotypes chlorosis at 22◦C (PID:169), anthocyanin at 16◦C
(PID:171), anthocyanin at 22◦C (PID:172) and leaf roll at 10◦C
(PID:176).

Weight vector analysis: in Figure 3, we compare the normalized
weight vectors obtained by ccSVM and standard SVM for two
phenotypes by looking at one representative each. We first pick
up the top 100 features selected by standard SVM, and then see
how the ccSVM corrects the weights of these features. When the
ccSVM curve is lower than the standard SVM curve (negative peak),
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Table 2. AUC and P-values for ccSVM, standard SVM, pcaSVM, (K+L)SVM and ccLR for the five different Arabidopsis phenotypes

PID Phenotype AUCccSVM AUCSVM pSVM AUCpcaSVM ppcaSVM AUC(K+L)SVM p(K+L)SVM AUCccLR(ML) AUCccLR(BR)

169 Chlorosis at 22◦C 0.658 ± 0.004 0.623± 0.004 8.3e-10 0.625± 0.004 6.4e-09 0.574± 0.004 2.2e-28 0.632± 0.006 0.523± 0.004
171 Anthocyanin at 16◦C 0.590 ± 0.005 0.568± 0.005 1.2e-03 0.570± 0.004 2.1e-03 0.560± 0.004 2.1e-06 0.571± 0.012 0.571± 0.003
172 Anthocyanin at 22◦C 0.628 ± 0.003 0.610± 0.003 2.7e-05 0.610± 0.004 1.2e-04 0.576± 0.003 1.8e-21 0.613± 0.004 0.552± 0.004
176 Leaf Roll at 10◦C 0.720 ± 0.002 0.695 ± 0.003 2.6e-09 0.697 ± 0.003 3.8e-08 0.653 ± 0.003 3.3e-31 0.691 ± 0.010 0.550± 0.003
178 Leaf Roll at 22◦C 0.587 ± 0.007 0.575± 0.006 1.8e-01 0.591 ± 0.005 6.0e-01 0.580 ± 0.006 4.1e-01 0.573± 0.006 0.476± 0.008
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Fig. 3. SNPs are sorted by their absolute weight of the standard SVM. The green line shows the weights of the standard SVM, the blue dashed line shows
the weights of ccSVM. Both weight vectors are normalized. The Arabidopsis phenotypes are shown in the following order (from top to bottom): anthocyanin
at 16◦C (PID:171, λ=10−2), chlorosis at 22◦C (PID:169, λ=108).

it means that the corresponding SNPs are likely to be correlated with
the confounder and ccSVM weights them down for classification.
The SNPs whose weights are scaled up (positive peaks) are less
correlated with the confounding side information.

We can see from the figure that both parameter λ and the number
of negative peaks increases from the top to the bottom. This implies
the confounding information increases from top to bottom. For the
phenotype anthocyanin at 16◦C (PID:171), the top figure shows
that there are almost no large negative peaks in the ccSVM curve.
This implies there are few spurious associations for the ccSVM to
correct. For the phenotype chlorosis at 22◦C (PID:169), we can see
that ccSVM scales all SNPs down which the standard SVM assigns
large weights to. It is likely that they are all correlated with the
confounding variable.

Functional investigation: we did further analysis for the
phenotype chlorosis at 22◦C (PID:169). In order to do this, we used
the complete dataset as training set and determined λ and C via
cross-validation as described in Section 3.1.

First, we selected the top 500 SNPs from the weight vector of
ccSVM; these are the SNPs that correspond to the 500 largest
absolute entries in the weight vector. After normalizing these entries
in both weight vectors, we selected all SNPs which were upscaled

Table 3. Summary of ccSVM results for the presence or absence of chlorosis
at 22◦C (PID:169)

Rank Chrom Pos Gene Gene ID dist(Gene)

109 1 22050068
PDR8/PEN3 AT1G59870

6365
110 1 22056970 13267
111 1 22057369 13666

208 4 949836 MOS6 AT4G02150 775

224 1 20910400 AHG2 AT1G55870 8313

267 1 20737467 CPN60B AT1G55490 14605

363 5 25795239
AT5G64510 AT5G64510

6391
464 5 25795805 5825

489 5 12625100 CDR1 AT5G33340 11918

In the table, Chrom,Pos and dist(Gene) represent chromosome, position and the distance
from the SNP to the specified gene, respectively.

by the ccSVM by at least a factor of two. For these 217 SNPs,
we searched for nearby genes (±15 kb) which are known to be
associated with chlorosis by using a candidate gene list from Atwell
et al. (2010).
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The results are shown in Table 3. pen-3-1 mutants show a chlorosis
response after being attacked by Erysiphe cichoracearum. It is
assumed that the gene PEN3 contributes to defense at the cell wall
and intracellularly (Stein et al., 2006). The mos6 mutants suppress
snc1 resistance and hence exhibit enhanced disease susceptibility
to virulent pathogens (Palma et al., 2005). The gene CDR1 is
known to be involved in disease resistance signaling (Xia et al.,
2004), and ahg2-1 mutants have an elevated resistance to bacterial
pathogens (Nishimura et al., 2009).

In total, 9 of the 217 upscaled SNPs are close to candidate genes.
Out of 216130 genome-wide SNPs, 3959 are in close proximity to
candidate genes. Hence, SNPs near candidate genes are significantly
enriched among the SNPs upscaled by the ccSVM (P=0.020, α=
0.05, Binomial n=217,p= 3959

216130 ).

4 DISCUSSION
In this article, we have defined the ccSVM, an SVM with
correction for confounding side information. In our experiments,
it outperforms several state-of-the-art classifiers with confounder
correcting schemes for disease diagnosis in humans and for
phenotype prediction in A.thaliana.

Our work extends the advantages of SVMs in data integration:
while there is lot of work on SVMs for optimally combining several
informative sources of data for a joint prediction (Lanckriet et al.,
2004), there was no approach for correcting SVMs for observed
confounding factors so far. The ccSVM closes this gap. This is
of particular importance for bioinformatics, as side information on
confounders is abundant in most classification tasks on biological
data.

It remains to be discovered if SVMs can be corrected for
hidden, unobserved confounders as well, as these tend to frequently
occur in gene expression phenotypes. Correcting for these hidden
confounders may be one way to further improve the accuracy of our
predictions.

On the biological level, our work will focus on applications of
the ccSVM to binary phenotype prediction in plant genetics and
in personalized medicine. The latter includes improved disease
diagnosis, prognosis and therapy outcome prediction for human
patients. One challenge we will tackle here is how to optimally
account for several confounding factors, that is learning their
weights relative to each other to further improve phenotype
prediction.
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