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ABSTRACT

Motivation: It is well known that microRNAs (miRNAs) and genes
work cooperatively to form the key part of gene regulatory networks.
However, the specific functional roles of most miRNAs and their
combinatorial effects in cellular processes are still unclear. The
availability of multiple types of functional genomic data provides
unprecedented opportunities to study the miRNA–gene regulation.
A major challenge is how to integrate the diverse genomic data to
identify the regulatory modules of miRNAs and genes.
Results: Here we propose an effective data integration framework
to identify the miRNA–gene regulatory comodules. The miRNA and
gene expression profiles are jointly analyzed in a multiple non-
negative matrix factorization framework, and additional network
data are simultaneously integrated in a regularized manner.
Meanwhile, we employ the sparsity penalties to the variables to
achieve modular solutions. The mathematical formulation can be
effectively solved by an iterative multiplicative updating algorithm.
We apply the proposed method to integrate a set of heterogeneous
data sources including the expression profiles of miRNAs and
genes on 385 human ovarian cancer samples, computationally
predicted miRNA–gene interactions, and gene–gene interactions. We
demonstrate that the miRNAs and genes in 69% of the regulatory
comodules are significantly associated. Moreover, the comodules
are significantly enriched in known functional sets such as miRNA
clusters, GO biological processes and KEGG pathways, respectively.
Furthermore, many miRNAs and genes in the comodules are related
with various cancers including ovarian cancer. Finally, we show that
comodules can stratify patients (samples) into groups with significant
clinical characteristics.
Availability: The program and supplementary materials are available
at http://zhoulab.usc.edu/SNMNMF/.
Contact: xjzhou@usc.edu; zsh@amss.ac.cn
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
MicroRNAs (miRNAs) play crucial regulatory roles in repressing
mRNA translation or mediating mRNA degradation by targeting
mRNAs in a sequence-specific manner (Bartel, 2004). MiRNAs,
transcriptional factors, and mRNAs combine to form complex
regulatory systems, cooperatively determining the progression
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of many cellular behaviors and diseases (Garzon et al., 2006;
Shalgi et al., 2007; Zhou et al., 2007). Great experimental
and computational progress has been made on the problems of
identifying which genes encode miRNAs (Bentwich et al., 2005;
Lagos-Quintana et al., 2003; Lai et al., 2003; Rodriguez et al., 2004),
predicting the target genes of miRNAs within multiple genomes
(Enright et al., 2003; Lewis et al., 2003; Stark et al., 2003; Xie
et al., 2005), and characterizing miRNA expression patterns based
on microarray data (Lu et al., 2005). In addition, more and more
labs are simultaneously producing expression profiles of miRNAand
mRNA on the same set of samples, providing a global view on the
dynamics of miRNA–mRNA regulatory relationships (Huang et al.,
2007; Nunez-Iglesias et al., 2010). However, the vast majority of
miRNAs still have unknown functions, and the mechanisms driving
cooperative regulation between miRNA and genes are not yet well
understood.

Several exploratory studies have attempted to decipher how
miRNAs, genes and proteins interact on a systems level, e.g. global
miRNA regulation in cellular networks (Cui et al., 2006; Hsu et al.,
2008; Liang and Li, 2007; Yuan et al., 2009) or combinatorial
miRNA regulation in cellular pathways (Gusev et al., 2007; Xu and
Wong, 2008). Other researchers have studied coordination between
the transcriptional and miRNA layers based on their combined
regulatory networks (Shalgi et al., 2007; Zhou et al., 2007). All these
studies have provided insights into miRNA-gene regulation, for
example by showing that miRNAs tend to target highly connected
genes or proteins in cellular networks (Yuan et al., 2009). However,
we are still far from understanding the underlying mechanisms of
miRNA regulation, and full-scale studies of the regulatory networks
spanned by miRNAs are only now getting under way.

Recognizing the modular organization of biological networks
has greatly advanced our understanding of complex cellular
systems (Hartwell et al., 1999; Ihmels et al., 2002; Qi and Ge,
2006). However, little is known about the modules that exist in
miRNA-gene regulation systems, and even less is known about these
modules’ role in specific biological processes and key regulation
assemblies. Identifying functional miRNA-gene regulatory modules
is a challenging task for several reasons. (i) One gene can be
regulated by multiple miRNAs (Krek et al., 2005), and one miRNA
can regulate a large number of genes (Lim et al., 2005). Given
this multiplicity, the target of our search has to be a miRNA-gene
comodule: a set of miRNAs and their co-regulated genes. (ii)
The miRNA–mRNA target relationships differ among tissues and
conditions. (iii) Although miRNAs physically interact with mRNAs,
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ultimately miRNA regulation affects the quantities of proteins in
cells rather than the quantities of mRNAs. Thus, the expression
levels of miRNAs are not always anti-correlated with those of
their target genes. (iv) The genomic data are generally noisy and
incomplete.

The complex and subtle nature of miRNA regulation poses
unique challenges to the integration of heterogeneous data
sources. Yoon and De Micheli (2005) developed an algorithm
to reconstruct miRNA-gene regulatory modules based only on
predicted miRNA-gene target information. Improved versions of this
method have been proposed which also take into account coherent
expression patterns between miRNAs and genes, or the (anti)-
correlations measured between each pair of miRNAs and genes
(Joung et al., 2007; Peng et al., 2009; Tran et al., 2008). However,
these existing methods for discovering miRNA-gene regulatory
modules focus only on one or two resources, and suffer from several
limitations. For example, Peng et al. (2009) proposed a sequential
integrative method based on enumerating maximal bi-cliques in
a combined miRNA-gene network. Their method is sensitive to
noise in the data, and produces too many star structures (one
miRNA, many genes) which cannot be used to explore miRNA
combinatorial regulation. Furthermore, none of these methods
considers the coordination of miRNA and gene regulation, or the
topological organization of transcriptional regulation and protein–
protein interaction networks.

In this article, we propose a computational framework for
reconstructing miRNA regulatory modules based on the integration
of multiple genomic data sources. We use three types of data:
predicted miRNA–gene interactions, the expression profiles of
miRNAs and genes, and the gene–gene interaction network
constructed based on protein–protein interaction and DNA–protein
interaction networks. The predicted miRNA-gene targets serve
as a static superset, while the dynamic expression profiles of
miRNAs and genes are used to identify target relationships that are
concurrently active. This signal is enhanced by the coordination
of gene/protein interactions, since the ultimate effect of miRNA
regulation is to regulate gene/protein activities. In order to integrate
the three information sources, we propose a novel and efficient
machine learning technique. The method integrates miRNA and
gene expression profiles in a framework of multiple non-negative
matrix factorization, and simultaneously integrates networked data
in a regularized manner. To enhance the signal-noise separation
and improve the interpretability of the modules, we look for
sparse solutions of the membership functions by applying sparsity
penalties. We prove with a theoretical derivation that the learning
and optimization model can be effectively solved by an iterative
algorithm.

We test the proposed method on a dataset of human miRNA and
gene expression profiles [from the Cancer Genome Atlas (TCGA)
ovarian cancer samples], a miRNA–gene interaction network, and
a gene interaction network. We identified 49 human miRNA-gene
regulatory comodules, each one composed of multiple miRNAs (the
miRNA module) and multiple genes (the gene module). We show
that the miRNA modules are significantly enriched with miRNAs
clustered in their chromosomal locations, and that the gene modules
are enriched with known functional gene sets (GO biological
process terms and KEGG pathways). These properties confirm
the biological relevance of the comodules. The overrepresented
functional terms of gene modules can potentially be transferred

to their corresponding miRNA modules, resulting in a functional
prediction for miRNAs. Moreover, through a literature survey we
find that the identified comodules include a significant number of
cancer-related genes and miRNAs. Among these, many are involved
with ovarian cancer as expected. The regulatory modules detected by
our method can be used to reconstruct gene regulatory networks, and
can provide candidates for the experimental validation of miRNA
targets. Finally, we show that the common basis vectors of miRNA-
gene comodules provide clues about the clinical characteristics of
ovarian cancer.

2 MATERIALS AND METHODS
In this section, we describe our framework for the simultaneous integration
of multiple data types to identify miRNA-gene comodules (Figure 1). We
will begin by introducing the data, and then present our mathematical
formulation of the problem. Next we describe our iterative multiplicative
updating algorithm. Finally, we describe various validation experiments.

Fig. 1. Overview of the proposed method for identifying miRNA-gene
regulatory comodules. A miRNA-gene comodule is defined as the union
of a set of miRNAs (a miRNA module) and a set of genes (a gene module).
The inputs are (i) two sets of expression profiles (represented by the matrices
X1 and X2) for miRNAs and genes, measured on the same set of samples;
(ii) a gene–gene interaction network (represented by the matrix A), including
protein–protein interactions and DNA–protein interactions; and (iii) a list of
predicted miRNA–gene regulatory interactions (represented by the matrix
B) based on sequence data. We simultaneously factor the miRNA and gene
expression matrices into a common basis W and two coefficient matrices
H1 and H2. At the same time, additional knowledge is incorporated into
this framework with network-regularized constraints. Sparsity constraints
are also imposed on this framework so as to obtain easily interpretable
solutions. The decomposed matrix components provide information about
miRNA-gene regulatory comodules. Then the comodules are identified based
on shared components (a column in W ) with significant association values
in the corresponding rows of H1 and H2.
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2.1 Data sources and preprocessing
Due to its large number of samples and rich clinical information, we tested
our method on the ovarian cancer expression data from TCGA Project
(McLendon et al., 2008). We downloaded miRNA and gene expression
data for 385 ovarian cancer samples from the TCGA data portal (http://
cancergenome.nih.gov/). We then filtered out miRNAs and genes with small
absolute values and little variation across samples (see Supplementary
Material), obtaining a dataset with the expression profiles of 559 miRNAs
and 12 456 genes.

We constructed a gene–gene interaction network by combining the
protein–protein interaction data obtained from Bossi and Lehner (2009) and
the DNA–protein interaction data downloaded from TRANSFAC (Matys
et al., 2006). We filtered these data for self-interactions and genes (proteins)
that were not represented in our TCGA expression data. This process resulted
in a network with 31 949 gene–gene interactions.

We obtained predicted miRNA–gene interactions from the MicroCosm
website (http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/).
We removed interactions involving miRNAs or genes that were not present
in the expression data. The resulting miRNA-gene bipartite network has a
total of 243 331 interactions.

We transform the two expression matrices into non-negative matrices
following the approach proposed by Kim and Tidor (2003). Specifically,
for an input matrix M of size s by l, we create a matrix M ′ of size s by 2l.
For each element of the original matrix M(i,j)>=0, we set M ′(i,j)=M(i,j)
and M ′(i,l+j)=0. For each element M(i,j)<0, we set M ′(i,j)=0 and
M ′(i,l+j)=−M(i,j). In other words, each variable (miRNA or gene) is
represented by two columns in the new matrix. One column contains the
positive values of that variable, and the other contains the absolute values
of its negative values. In this new representation, each network adjacency
matrix is four times the original. The transformed non-negative expression
matrices are our input matrices X1 and X2.

2.2 Problem formulation
To identify miRNA-gene comodules, we designed an objective function
with three components. The first is based on the non-negative miRNA
and gene expression matrices X1 and X2. The second considers the effects
of gene–gene interactions. The last considers the effects of predicted
miRNA–gene interactions. By optimizing this objective function, we obtain
a joint decomposition of X1 and X2 that together reveals miRNA–gene
regulatory modules inherent in the expression data and satisfies constraints
based on prior information.

2.2.1 Objective function for modeling miRNA and gene expression profiles
The non-negative matrix factorization (NMF) technique divides a matrix into
two non-negative matrices: a basis matrix of lower rank and a coefficient
matrix (Lee and Seung, 1999; Paatero and Tapper, 1994). The squared error
version of this factorization model can be defined as

minW ,H≥0‖X−WH‖2F ,

where W and H are the basis matrix and coefficient matrix with dimensions
s×k and k×n, respectively. The notation ‖•‖F means the Frobenius norm
of a matrix. The fact that W and H are non-negative guarantees that parts
of the matrix can be combined additively to form a whole; hence, NMF is
a useful technique for obtaining a part-based representation of the data. In
other words, the factorization allows us to easily identify sub-structures in
the data. Several approaches to solving NMF by iteratively updating W and
H have been discussed in Berry et al. (2007), and additional bioinformatics
applications of NMF are described in a recent review paper (Devarajan,
2008). Several variants of NMF have been proposed by incorporating various
kinds of constraints: discriminative constraints (Zafeiriou et al., 2006),
locality-preserving or network-regularized constraints (Cai et al., 2008; Gu
and Zhou, 2009), sparsity constraints (Hoyer, 2004; Kim and Park, 2007),
and others (Zhi et al., 2010).

However, the NMF method in its present form can only be applied
to a matrix containing just one type of variable. It cannot be used to
integrate multiple matrices for multiple types of variables together with prior
knowledge such as networks that represent relationships among variables of
the same type and/or between different types.

As our goal is to identify coordinated miRNA–gene comodules, we
assume that there is a common basis matrix W for the miRNA and gene
expression matrices X1 and X2. The two expression matrices have dimensions
s×m and s×n, respectively, and will be factored into W and two coefficient
matrices H1 and H2. This representation of the expression data can be derived
by optimizing the following objective function:

F1(W ,H1,H2)=
∑

I=1,2

‖XI−WHI‖2F . (1)

where H1 and H2 have dimensions k×m and k×n, respectively. The
parameter k is chosen prior to optimization.

The solution to Equation (1) is often not unique, and may be sensitive
to noise in the expression data. Both of these limitations may confound
the module discovery process. For these reasons, we will guide the
optimization process toward reasonable biological solutions by incorporating
prior knowledge into the objective function.

2.2.2 Network-regularized constraints In this demonstration of our
method, the prior knowledge consists of predicted miRNA–gene interactions
and gene–gene interactions. The essence of our semi-supervised learning
method is to define constraints for the comodule identification framework
such that any variables linked in these two datasets are more likely to be
placed into the same comodule. In addition to improving the biological
relevance of the results, such constraints can greatly facilitate the discovery
of comodules by narrowing down the large search space.

Let A denote the adjacency matrix of a gene interaction network, and B
denote the adjacency matrix of a bipartite miRNA–gene network. We enforce
‘must-link’ constraints by maximizing the following objective function:

O1=
∑

ij

aij(h
2
i )T h2

j =Tr(H2AHT
2 ).

This term ensures that genes with known interactions have similar coefficient
profiles.

Similarly, the interactions between genes and miRNAs can be encoded
by the following objective function:

O2=
∑

ij

bij(h
1
i )T h2

j =Tr(H1BHT
2 ).

2.2.3 Network-regularized multiple NMF Our inputs are the miRNA and
gene expression matrices X1 and X2 with dimensions s×m and s×n,
respectively, an m×n matrix B of predicted miRNA-target interactions,
and an n×n gene–gene interaction network A. To discover miRNA-gene
regulatory comodules, we combine the three objectives defined in the
previous sections into a single optimization function:

F1(W ,H1,H2)=
∑

I=1,2

‖XI−WHI‖2F

−λ1Tr(H2AHT
2 )−λ2Tr(H1BHT

2 )

(2)

The parameters λ1 and λ2 are weights for the must-link constraints defined
in A and B. The first term favors modules with miRNA and gene expression
profiles that are correlated in the common basis matrix W . The second
term, Tr(H2AHT

2 ), summarizes all the must-link constraints in the gene–
gene network. The third term, Tr(H1B12HT

2 ), summarizes all the must-link
constraints in the miRNA–gene network.

2.3 Sparse NMNMF
An important characteristic of the NMF method is that it often generates
sparse representations of the data, allowing us to discover part-based
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patterns (Lee and Seung, 1999). However, studies have shown that the NMF
representation is sensitive to the quality of the data and the researcher’s
choice of algorithm (Hoyer, 2004). Several approaches have been proposed
to control the degree of sparseness in the W and/or H factors (Gao and
Church, 2005; Hoyer, 2004; Kim and Park, 2007). For example, the idea
of imposing L1-norm constraints has been successfully applied to various
problems (Tibshirani, 1996).

In our Network-Regularized Multiple NMF (NMNMF) framework,
we adopt a strategy suggested by Kim and Park (2007) to make the
coefficient matrices H1 and H2 sparse. This method, denoted Sparse NMNMF
(SNMNMF), is formulated as follows:

F (W ,H1,H2)=
∑

I=1,2

‖XI−WHI‖2F

−λ1Tr(H2AHT
2 )−λ2Tr(H1BHT

2 )

+γ1‖W‖2F+γ2(
∑

j

‖hj‖21+
∑

j′
‖hj′ ‖21)

(3)

where hj and hj′ are the j-th and j′-th columns of H1 and H2, respectively.
The term γ1‖W‖2F limits the growth of W , while γ2(

∑
j‖hj‖21+

∑
j′ ‖hj′ ‖21)

encourages sparsity.

2.4 The SNMNMF algorithm
In the basic NMF problem, the objective function (Equation 3) is not
convex in W , H1 and H2. Therefore, it is unrealistic to expect a standard
optimization algorithm to find the global minimum. We have developed
an algorithm that efficiently converges to a local minimum by iteratively
updating the matrix decomposition. Under the rules laid out below, the
objective function F is guaranteed not to increase when the decomposition
is updated. Furthermore, the objective function remains invariant if and only
if W , H1 and H2 are at a stationary point. This behavior can be proved in
the same way as for the classical NMF algorithm (Lee and Seung, 2001).
Derivations of the multiplicative updating rules and proof are provided in the
Supplementary Material. We note that H1 and H2 are updated at the same
time based on their current values at each iteration. The time complexity
of the proposed algorithm is O(tk(s+m+n)2), where t is the number of
iterations. We implemented our method in the Matlab language.

Algorithmic Framework for SNMNMF:

• Step 1: Initialize W , H1 and H2 with non-negative values, and set the
iteration index t=0.

• Step 2: Fix H1 and H2, solve the constrained problem
minW≥0

∑

I=1,2

‖XI−WHI‖2F+γ1‖W‖2F
That is, update W with

wij←wij
(X1HT

1 +X2HT
2 )ij

(WH1HT
1 +WH2HT

2 + γ1
2 W )ij

,

to find Wt+1 such that F (Wt+1,Ht
1,H

t
2)≤F (Wt,Ht

1,H
t
2).

• Step 3: Fix W , solve the constrained problem
minH1,H2≥0

∑

I=1,2

‖XI−WHI‖2F−λ1Tr(H2AHT
2 )

−λ2Tr(H1BHT
2 )+γ2(

∑

j

‖hj‖21+
∑

j′
‖hj′ ‖21)

(4)

That is, update H1 and H2 with

h1
ij←h1

ij

(WT X1+ λ2
2 H2BT )ij

[(WT W+γ2ek×k)H1]ij ,

h2
ij←h2

ij

(WT X2+λ1H2A+ λ2
2 H1B)ij

[(WT W+γ2ek×k)H2]ij ,

(5)

to find Ht+1
1 and Ht+1

2 such that F (Wt+1,Ht+1
1 ,Ht+1

2 )≤
F (Wt+1,Ht

1,H
t
2).

• Step 4: Let t← t+1, repeat Steps 2–3 until convergence criteria are
satisfied.

2.5 MicroRNA-gene comodule assignment
The coefficient matrices H1 and H2 produced by the above algorithm will be
used to identify comodules. In other NMF applications (Brunet et al., 2004;
Kim and Tidor, 2003), people have used the maximum coefficient in each
column of H (or row of W ) to discover patterns and determine memberships.
However, this method presumes that each gene or sample can belong to one
and only one pattern. In our application, some genes may be active in multiple
modules and others might not participate in any module. In the former case,
the gene could exert multiple functions under different conditions.

In this work we calculate a z-score for each element of the factorization
based on the rows of H1 and H2:

zij= xij−µi

σi
,

where µi is the average value of miRNA j (or gene j′) in H1 (or H2), and
σi is the standard deviation. We assign miRNA j (gene j′) to comodule i
if zij (zij′ ) is greater than a given threshold T . Note that in our approach,
each miRNA/gene may be assigned to multiple comodules, permitting the
identification of multiple functionalities.

2.6 Assessing the statistical significance of
(anti)-correlations between miRNAs and genes
within a comodule

A miRNA–gene comodule is a pair of submatrices (sX1 and sX2) extracted
from the matrices X1 and X2. The dimensions of the submatrices are s×ms

1
and s×ns

1, respectively. We expect that within a comodule, miRNAs and
genes are highly (anti-)correlated. In order to determine whether such
relations are statistically significant, we performed the following assessment.
First, we define the correlation S between two matrices with the same row
dimensions as the sum of the correlations between any two columns, one
from each matrix, i.e. S=∑

si,j , where si,j=|corr(x1
i ,x2

j )|, ‘corr’ represents
the Pearson’s correlation coefficients. We derive the statistical significance
(P-value) of the correlation between sX1 and sX2 by comparing it to the
distribution of correlations between 1000 random matrix pairs. Each pair is
composed of two matrices with dimensions identical to sX1 and sX2, whose
elements are extracted from randomly permuted gene and miRNA expression
matrices based on X1 and X2. Regulatory comodules with P-values smaller
than 0.05/k were considered significant, where k is the number of columns
in the basis matrix W .

2.7 Biological significance of the comodules
Studies have shown that miRNAs clustered on the genome are likely to
be functionally related. Accordingly, we tested each comodule for miRNA
cluster enrichment. We downloaded miRNA cluster data from the miRBase
website (http://www.mirbase.org/), with a genomic cutoff distance of 50kb.
This criterion resulted in a sample of 57 clusters containing from 2 to 49
miRNAs. The average number of members per cluster is 4.5. Most of the
miRNA clusters (37 out of 57) contain only two miRNAs.

We also performed a functional enrichment analysis for genes
in the identified comodules. Specifically, we looked for enrichment
in Gene Ontology (GO) biological process (BP) terms and KEGG
pathways. The annotations of GO (BP) terms were downloaded from
http://www.geneontology.org/, and the KEGG pathways were downloaded
from http://www.genome.jp/kegg/. We mapped the GO terms to NCBI gene
IDs using the index file from ftp://ftp.ncbi.nlm.nih.gov/gene/. We filtered
out functional sets with more than 300 genes or fewer than 5 genes, as the
former are too general to be informative and the latter are too specific to be
relevant. The statistical significance (P-value) of a module’s enrichment in
a functional set was calculated using Fisher’s exact test. This statistic was
transformed into a q-value using a false discovery rate correction (Storey
and Tibshirani, 2003) with respect to the number of annotation groups.
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2.8 Ingenuity Pathway Analysis
We also analyzed the genes in each comodule using Ingenuity Pathway
Analysis (IPA, version 8.5, Ingenuity� Systems, http://www.ingenuity.com
Core 8.5, Ingenuity Analysis), a commercial application that calculates the
association between a particular gene set and known functions and pathways.
We used the default settings, where ‘Ingenuity Knowledge Base (Genes
Only)’ is the reference set, and both direct and indirect relationships were
considered in the network analysis.

2.9 Clinical characterization based on the basis matrix
We downloaded clinical data for the samples from the TCGA portal website.
Based on the signals for all samples in each column of the common basis
matrix W , we can characterize their level of associations with the discovered
comodules. For each comodule, we divide the set of samples into three
degrees of association (high, median or low). We then employed Kaplan–
Meier method to compare the survival characteristics of the three groups,
with significance determined using the log-rank test.

3 RESULTS
We applied the SNMNMF method to identify miRNA-gene
comodules by integrating multiple independent data sources (the
four matrices described in the Section 2). We set the reduced
dimension of the matrix factorization k to 50, approximately equal to
the number of miRNA clusters represented in our data (see Section
2.7). We set the weight parameters λ1, λ2, γ1, and γ2 to 0.0001, 0.01,
20 and 10, respectively (see Supplementary Material). The threshold
T was set to 7 after conducting a series of tests, which are also
described in the Supplementary Material. Among the 50 modules
identified by the algorithm, one was empty and therefore deleted,
and two contained only genes.

The 49 miRNA-gene comodules identified in this study have
an average of 3.8 miRNAs and 78 genes per module. The size
distributions are shown in the Supplementary Material, and each
module is described in detail on our website. Based on a distribution
of correlations derived from randomized miRNA-gene comodules
(see Section 2), the (anti-)correlations between miRNAs and genes
are statistically significant in 69.4% of the modules (permutation test
with P-value <0.05/50) (see Table 2 and Supplementary Figure S3
for examples), indicating that the probability of finding similarly
(anti-)correlated comodules by chance is close to zero.

3.1 The comodules are enriched in genomic miRNA
clusters

Previous studies have provided significant evidence that miRNAs
often participate in combinatorial regulation (Krek et al., 2005;
Zhang et al., 2010). The miRNA-gene comodules discovered in
this article may shed light on these cooperative roles. Eleven of
the identified modules are significantly enriched in at least one
miRNA cluster, defined as a set of miRNAs that are located within
50kb of each other in the genome (q-value <0.05 after multiple
testing correction; see Table 1). For example, comodule 48 contains
nine miRNAs (mir-506, mir-507, mir-508-3p, mir-509-3p, mir-509-
3-5p, mir-509-5p, mir-513b, mir-513c, mir-514), all of which belong
to a miRNA cluster on chromosome Xq27.3.

Based on a literature survey, we found that spatially clustered
miRNAs often have similar functions or play a cooperative role.
An abundant literature supports the biological significance of the
comodules identified in this study (the functional roles of miRNA

Table 1. Summary of miRNA modules that are enriched in miRNA clusters

No. q-value Overlap miRNAs Loci FS

10 0.002 mir-449b, mir-449a 5q11.2 Yes
0.001 mir-34b*, mir-34c-5p 11q23.1 Yes

14 0.002 mir-143, mir-145 5q32 Yes
16 3.94e-05 mir-182*, mir-96, mir-183 7q32.2 Yes
17 0.001 mir-144, mir-451 17q11.2 Yes
18 0.001 mir-452, mir-224 Xq28 No
19 0.005 mir-30b*, mir-30d*, mir-30d, 8q24.22 Yes

mir-30b
20 1.97e-5 mir-96, mir-183, mir-182 7q32.2 Yes
42 0.005 mir-199a-5p, mir-214 1q24.3 Yes
46 0.001 mir-144, mir-451, mir-144* 17q11.2 Yes
48 6.78e-12 mir-513b, mir-513c, mir-508-3p, Xq27.3 No

mir-506, mir-507, mir-509-3-5p,
mir-514, mir-509-3p, mir-509-5p

50 0.008 mir-502-3p, mir-500* Xp11.23 No

No.: the index of the comodule. q-value: the corrected P-value of enrichment. Loci:
the chromosome locations of the enriched miRNA clusters. FS: indicates whether the
enriched miRNA cluster has literature support on its functional roles.

clusters in our modules are described in Supplementary Table S1 of
the Supplementary Material). For example, in comodule 10, two
of the four member miRNAs (mir-449a and 449b) belong to a
miRNA cluster on chromosome 5q11.2, while the other two (miR-
34b* and 34c-5p) belong to a cluster on chromosome 11q23.11. In
a recent study, miR-449a and 449b have been reported to have a
tumor suppressing function by regulating Rb/E2F1 activity (Yang
et al., 2009). In addition, miR-34b* and 34c-5p were reported to be
targeted by p53 and they cooperatively control cell proliferation in
ovarian cancer (Corney et al., 2007).

To take another example, three of the seven miRNAs in module
16 (miR-96, miR-182*, miR-183) are clustered on chromosome
7q32.2 and are reported to be dysregulated in various cancers.
These miRNAs (along with others) cooperatively repress FOXO1,
affecting cell cycle controls and apoptotic responses in endometrial
cancer (Myatt et al., 2010). The differential expressions of these
miRNAs appear to depend on the mismatch repair status, a behavior
characteristic of undifferentiated proliferative states in colon cancer
(Sarver et al., 2009). In addition, these miRNAs were identified
as important biomarkers in the detection and prognosis of prostate
cancer (Schaefer et al., 2010). All this evidence shows that our
comodules can indeed group miRNAs with cooperative roles and
provide insights into their functional mechanisms.

3.2 The comodules are enriched in known
functional sets

To evaluate the biological relevance of the 49 comodules, we
calculated their enrichment in GO biological process terms and
KEGG pathways using the hypergeometric test. (This test applies
only to the genes in the comodules.) Twenty-six (53.1%) of the
gene modules have at least one overrepresented GO biological
process term with an FDR-corrected q-value <0.05. Taken
together, the modules are enriched in 367 different GO biological
processes and 57 KEGG pathways. The most frequently enriched
biological processes are nuclear division, immune system process,
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Table 2. Functional analysis of selected miRNA-gene comodules

No. GO biological process terms CG PT Cancer miRNAs Num OC miRNAs

7 Immune system process; Yes 4.4e-165 mir-142-5p, mir-142-3p, mir-21* 3/3 mir-21*
regulation of cell activation;
regulation of cell proliferation

15 Immune response; immune system process; Yes 8.6e-254 mir-142-5p, mir-142-3p, mir-150, 4/4
defense response; inflammatory response; mir-146a
response to external stimulus; cell activation

23 Negative regulation of immune system; Yes 1.9e-151 mir-22, mir-199a-5p, mir-145, 4/5 mir-22, mir-199a-5p,
response to external stimulus; mir-10b mir-145, mir-10b
regulation of cell division; cell adhesion;
regulation of cell migration; cell communication;

25 Calcium-dependent cell–cell adhesion; 4.2e-4 mir-10b*, mir-135b, mir-10b 3/4 mir-10b*, mir-10b
synaptic transmission; cell adhesion;
extracellular structure organization

32 Cell cycle process; organelle organization; Yes 2.0-44 mir-133b, mir-145 2/2 mir-145
nuclear division; cell cycle; cell division;

37 Inflammatory response; defense response; Yes 3.1e-47 mir-223, mir-146a 2/2 mir-223
immune response; regulation of apoptosis;
cell chemotaxis; regulation of DNA binding;
cellular response to stimulus;
regulation of cell death; anti-apoptosis;

40 Cell cycle; cell division; Yes 2.7e-12 mir-99a, mir-135b, mir-222, 4/4 mir-99a
nuclear division; mitosis; mir-205
organelle fission; microtubule-based process;

42 Reproductive developmental process; Yes 7.5e-136 mir-214,mir-376a, mir-199b-3p, 5/7 mir-214, mir-199b-3p,
BMP signaling pathway; cell differentiation; mir-127-3p, mir-199a-5p mir-199a-5p, mir-127-3p
regulation of cell development

No.: the index of the comodule. CG: cancer genes. PT: permutation test with P-value×50<0.05. Num: the number of cancer-related miRNAs within this module, as well as the total
number of miRNAs. OC miRNAs: those miRNAs in the module that are specifically related to ovarian cancer.

microtubule-based processes, inflammatory response, response to
external stimulus, cell cycle and cell adhesion.

Table 2 provides a list of enriched GO biological processes for
selected comodules. When we performed the same test on a set
of random modules, only 3.0% (2.4%) were enriched in any GO
biological process. These observations demonstrate the power of
our method in grouping genes that participate in the same processes
or pathways.

3.3 The miRNA-gene comodules are strongly
implicated in cancer

Since our input data included the miRNA and gene expression
profiles of ovarian cancer samples, we expect the identified
comodules to be related to cancer. To verify this, we used a cancer
miRNA benchmark dataset of 147 miRNAs from a review article
(Koturbash et al., 2010). Each of these miRNAs was reported in the
literature to be dysregulated in one or more cancers. Among these,
41 are relevant to ovarian cancer. Note that this dataset does not
include any information from the TCGA ovarian cancer data. Our
comodules involve 117 different miRNAs, 52 of which belong to
the benchmark set of cancer miRNAs. This ratio is highly significant
(P=1.1×10−6) (Figure 2). Even more importantly, 21 of the 52
miRNAs shared by our results and the benchmark are related to
ovarian cancer, with an enrichment significance of P=7.2×10−6.

Furthermore, 69.4% of the modules contain at least two miRNAs
that are known to be cancer related (see Table 2). For example,

module 42 has seven miRNAs, five of which belong to the
benchmark. Four of them (mir-199a-5p, mir-199b-3p, mir-127-3p,
mir-214) are also reported to play roles in ovarian cancer (Koturbash
et al., 2010). Further supporting this interpretation, the genes of this
comodule are enriched in numerous cancer-related pathways such
as hedgehog signaling pathway, cell differentiation, TGFβ signaling
pathway and Wnt signaling pathway.

We explored cancer gene enrichment in the gene modules using
the large-scale, human-curated knowledge database of the IPA
system. Most of the modules (63.3%) are highly enriched in
cancer genes (multiple test corrected P-value <0.05, as reported
by the IPA system). Moreover, 10 of the modules are significantly
enriched in ovarian cancer genes (see Supplementary Table S2
in the Supplementary Material). For example, the 129 genes in
module 23 include 64 cancer genes and 13 ovarian cancer genes.
This module is overrepresented in several cancer-related pathways,
including cell communication, TGFβ signaling pathway and PPAR
signaling pathway. These observations confirm that the miRNA-
gene comodules discovered in this study play important roles in
various cancers, especially ovarian cancers.

3.4 Network analysis of the comodules shed light on
regulatory circuits

Based on the principle of our method, the genes in a comodule are
likely to function together as a network, and miRNAs in a comodule
are likely to cooperatively target groups of networked genes.
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Fig. 2. About 44.4% of the miRNAs in identified comodules have
previously been reported to be cancer related (hypergeometric test, P=
1.1×10−6). Of these, 21 miRNAs were specifically related to ovarian
cancers (hypergeometric test, P=7.2×10−6).

We found that in many of the comodules identified by our method,
the genes can be organized into highly connected networks
using the IPA system and its database of molecular interactions
(Calvano et al., 2005). Specifically, based on the IPA system, we
found 67.4% of the comodules are significantly connected to form at
least one highly significant scored network with cutoff larger than 30.

For example, from comodule 40 we constructed a dense
network of 35 genes (based on the default settings of the
software) (Figure 3). According to the IPA system, this network
is significantly enriched with genes participating in cell death, the
cell cycle, tumor morphology, cellular growth and proliferation
and tissue development. Strikingly, miR-222 and miRNA-99a are
anti-correlated with 19 genes in this network (Pearson’s correlation
coefficients <−0.21, P-values <5.0×10−5). This widespread anti-
correlation strongly implies that the two miRNAs participate in
regulating the overrepresented biological processes in the comodule.
In other words, we can transfer those functions to these two miRNAs,
especially to miR-222 which is anti-correlated with 17 genes.
Moreover, the literature reports that both miR-222 and miR-99a are
dysregulated in various cancers (Koturbash et al., 2010). In a recent
study, miR-222 has been implicated in the survival rate of patients
with sporadic ovarian cancer (Wurz et al., 2010).

Finally, we note that based on our input knowledge (the
miRNA-gene interaction data), miR-222 is linked to this
network through just two genes: KIF20B and STMN1. However,
the complementary information on gene–gene connections and
miRNA–gene expression (anti-)correlations permits us to place
miR-222 in a comodule with many other genes that could be direct
or indirect targets. These results, including the comodule’s high
level of enrichment in known cancer miRNAs, cancer genes, and
cancer-related processes and interactions, shed light on a miRNA-
gene regulatory circuit that plays an important functional role in
ovarian cancer and possibly other cancers.

3.5 The comodules can stratify patients into groups
with distinct clinical characteristics

As described in the Section 2, for each miRNA-gene comodule
we divided the patients into three groups by looking at their basis
vectors in the matrix W . Specifically, patients with signals close
to zero (less than 0.01) in the basis vector corresponding to the
comodule are placed in the ‘low-association group’ (Group 1).
The remaining patients are divided into two equal groups on the
basis of this signal: the high-association group (Group 3) and the

A

B

Fig. 3. Network analysis of comodule 40. (A) The highly connected
network consists mainly of genes in comodule 40 (orange nodes), but
also includes 6 genes identified using the IPA system (white nodes). Two
miRNAs (miR-222, miR-99a, green nodes) are also shown. Based on the
MicroCosm Targets V5.0 dataset, miR-222 targets two genes (solid line).
Significant anti-correlations between miRNAs and genes are shown with
dashed lines. (B) Anti-correlations between miR-222 and gene expression
profiles (Pearson’s correlation coefficients <−0.21, P-value <5.0×10−5).

medium-association group (Group 2). We expected that for at least
some of the comodules, the three groups would exhibit significant
differences in their clinical parameters.

We tested this hypothesis by calculating Kaplan–Meier curves
for the three groups. These curves plot the fraction of surviving
patients against the time elapsed since their initial diagnoses. We
found that the three groups often have significantly different survival
characteristics (log-rank test P<0.05/50). For comodule 39, the
log-rank test gives P=0.00016 and the median survival durations
of the low-association (Group 1) and high-association (Group 3)
groups are 52.3 months and 35.0 months, respectively (Fig. 4A).
The patients in the high-association group faced greater risks.

For comodule 40, on the other hand, the median survival durations
of the low- and high-association groups are 35.5 and 47.6 months
(Fig. 4B). In this case the low-association group was at greater risk
(log-rank test P=6.4×10−5). Further studies of the mechanisms
underlying such clinical segregation could point the way to patient-
oriented therapeutic designs.

3.6 Comparison with other methods
The SNMNMF method discovers miRNA-gene comodules by
integrating diverse data sources. To achieve this goal, we iteratively
define a common basis matrix for the matrices representing datasets
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Fig. 4. Kaplan–Meier survival analysis for three patient groups defined using
their signals in a column vector of W . The curves are plotted for comodules
39 (A) and 40 (B).

of miRNA and gene expression profiles, while incorporating terms
representing the solution’s sparsity and conformity with independent
network data into the objective function. The sparsity penalties to the
objective function help us to obtain easily interpretable solutions.

Compared with other recent methods for miRNA-gene regulatory
comodule identification (Joung et al., 2007; Peng et al., 2009; Yoon
and De Micheli, 2005), SNMNMF has several advantages: (i) it can
incorporate prior knowledge such as a gene interaction network as
a constraint on the solution space. To the best of our knowledge,
this form of data has not been considered by any other algorithm
for this task; (ii) it simultaneously integrates several different types
of data; (iii) it provides sparse solutions that are more easily be
interpreted in biological contexts; and (iv) it can be solved in a
reasonable amount of computing time. Our general framework is
applicable to many other problems involving heterogeneous data
sources. In addition, our general framework is applicable to many
other problems involving heterogeneous data sources.

Due to the diversity of our data sources, it is difficult to make a
fair comparison between our results and those of other methods.
Nevertheless, we implemented the EBC method developed by
Peng et al. (2009) for comparative analysis. EBC is a sequential,
integrative method with several preprocessing and post-processing
steps. It constructs a miRNA-gene regulatory network by combining
the miRNA-gene correlation network (based on our X1 and X2)
with the miRNA-target interaction network (B). It enumerates all
maximal bi-cliques in the data, then selects the most significant
ones (see Supplementary Figure S6 for details). We applied EBC
to our dataset, leaving out the protein interaction network (A).
EBC identifies 126 miRNA-gene comodules, with on average 1.2
miRNAs and 24.4 genes per comodule. Most of the comodules
(108/126) have one miRNA, and the others have only two
(15/126) or three (3/126) miRNAs. One should note that star-
shaped ‘one miRNA regulates multiple genes’ networks are the
most basic structure in the bipartite network that can be extracted
directly. The EBC method is not powerful when it comes to
recognizing ‘combinatorial’ regulations among miRNAs, although
such mechanisms are abundant.

Our method identified many miRNA modules that were enriched
with miRNA clusters. Only 19.1% of the EBC gene modules are
enriched in GO biological process terms (versus 1.2% for the random
test), compared to more than 50% of our modules. Moreover, the
EBC method’s criterion for maximal bi-cliques to be comodules
is very stringent and vulnerable to noisy data (e.g. predicted

miRNA–gene interactions). Finally, the maximal bi-cliques contain
a high level of redundancy (an example is shown in Supplementary
Figure S7). All of these comparisons demonstrate that our procedure
is more effective at identifying miRNA-gene comodules.

4 CONCLUSION
MiRNAs play crucial roles in gene regulation. However, little
is known about the combinatorial regulations and cooperative
mechanisms that occur between miRNAs and genes. The availability
of miRNA and gene expression profiles from the same patients,
miRNA-gene networks, and gene interaction networks provides an
unprecedented opportunity to discover and accurately characterize
miRNA-gene regulatory comodules. In this study, we developed
a flexible and effective framework that integrates these three data
sources to identify miRNA-gene regulatory comodules.

We tested the method on human data, specifically ovarian
cancer samples from the TCGA database. The comodules reveal
cooperation between miRNAs and genes in several functions and
phenotypes of cellular systems, and provide new insights into the
transcript and post-transcript regulatory organization of ovarian
cancer. As genomic data sources increase in volume and diversity,
our framework could provide new avenues for the systematic
interpretation of combinatorial regulatory mechanisms.

In this article, we applied our SNMNMF method to the specific
problem of miRNA-gene comodule identification. However, the
method is equally useful for many biological problems requiring
the integration of several types of inputs. In particular, it is suitable
for problems involving multi-dimensional genomic data (profiling
multiple variables on the same set of samples) and independent
priors identifying known relationships between the variables (e.g.
miRNA-gene and gene–gene relationships).

For example, Kutalik et al. (2008) explored gene-drug comodules
based on gene expression and drug response data from 60 cancer
samples. However, the quality of the modules obtained in that study
suffered from the small number of samples and noisy input data.
Using our framework, one could incorporate known gene–gene
interactions, known gene–drug relationships and even drug–drug
similarities to improve the module discovery.

Currently, we observe an increasing trend toward generating
multi-dimensional genomic data including copy number variation,
DNA methylation, histone modification, miRNA expression and
gene expression data, all profiled on the same set of samples. At the
same time, we are gaining more and more knowledge regarding the
associations between different genomic variables. The new method
described in this article can serve as a powerful framework for
the simultaneous integration of diverse data to discover complex
regulatory patterns.
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