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ABSTRACT

Motivation: High-throughput-sequencing (HTS) technologies are the
method of choice for screening the human genome for rare sequence
variants causing susceptibility to complex diseases. Unfortunately,
preparation of samples for a large number of individuals is still very
cost- and labor intensive. Thus, recently, screens for rare sequence
variants were carried out in samples of pooled DNA, in which
equimolar amounts of DNA from multiple individuals are mixed prior
to sequencing with HTS. The resulting sequence data, however,
poses a bioinformatics challenge: the discrimination of sequencing
errors from real sequence variants present at a low frequency in the
DNA pool.
Results: Our method vipR uses data from multiple DNA pools
in order to compensate for differences in sequencing error rates
along the sequenced region. More precisely, instead of aiming
at discriminating sequence variants from sequencing errors, vipR
identifies sequence positions that exhibit significantly different minor
allele frequencies in at least two DNA pools using the Skellam
distribution. The performance of vipR was compared with three
other models on data from a targeted resequencing study of the
TMEM132D locus in 600 individuals distributed over four DNA pools.
Performance of the methods was computed on SNPs that were also
genotyped individually using a MALDI-TOF technique. On a set of
82 sequence variants, vipR achieved an average sensitivity of 0.80
at an average specificity of 0.92, thus outperforming the reference
methods by at least 0.17 in specificity at comparable sensitivity.
Availability: The code of vipR is freely available via:
http://sourceforge.net/projects/htsvipr/
Contact: altmann@mpipsykl.mpg.de

1 INTRODUCTION
Genome-wide association studies (GWASs) have been extremely
successful in identifying relevant loci under the ‘Common Disease-
Common Variant (CDCV)’ hypothesis. Studies conducted in recent
years identified hundreds of loci associated with complex traits.
For many of those traits, however, the associated variants explain
only a small fraction of the heritability of common traits (Manolio
et al., 2009). Human height, for instance, can be explained very
well by the average height of the individual’s parents and thus its
genetic heritability is estimated with around 80% (Visscher et al.,
2008). GWASs for human height indeed identified a large number
of associated loci that, however, explain only about 5% of this
heritability (Visscher et al., 2008). A reason for this discrepancy—or
the ‘case of the missing heritability’ (Maher, 2008)—is the inherent
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drawback of GWAS: the genome-wide chips focus on common
variations, i.e. rare alleles are not tested for at all. Thus, in recent
years, the efforts for finding clinically relevant genetic markers for
many common diseases began also to include the ‘Common Disease-
Rare Variant (CDRV)’ hypothesis. Here, multiple rare mutations
(ideally in the same genetic region) underly susceptibility to the
disease.

Clearly, in this quest for the missing heritability high-throughput-
sequencing (HTS) technologies play a pivotal role. These
technologies led to a dramatic drop in costs per sequenced base pair
compared to capillary-based sequencing (Shendure and Ji, 2008),
and thereby provide the necessary sequencing power required for
finding rare variants. The major obstacle with HTS is that sequencing
the genomes of thousands of people as it was carried out in GWASs
is currently beyond the scope—financially and bioinformatically—
of single research institutes. However, although initially designed
to be a tool for sequencing whole genomes, HTS also provides
the sequencing power required for investigating all exonic regions
(Yi et al., 2010) or more clearly defined genetic regions in a large
number of individuals. These targeted resequencing studies are well
within the scope of single laboratories (Stratton, 2008).

HTS platforms support multiplexing for facilitating the sequenc-
ing of multiple isolates in one physical compartment. All
multiplexing strategies are based on small DNA fragments termed
‘barcodes’ that are attached to the fragments to be sequenced,
and thereby enables the allocation of every single read to each
sample. For instance, the ABI SOLiD 4 supports 96× multiplexing.
Furthermore, the platform allows to partition its ‘slide’ into
eight equally sized compartments. Hence, theoretically allowing to
sequence (a short defined genetic region of) 768 individuals at a
time. A downside of this strategy is that sample preparation, i.e.
amplification of the target region and attaching of the barcodes,
has to be carried out separately for every sample. Thus, generating
non-negligible costs and work load.

A more labor- and cost-effective strategy is the sequencing of
DNA pools. Here, equimolar amounts of DNA are mixed into
one sample prior to the amplification and sequencing steps. The
major disadvantage of sequencing DNA pooling is the loss of the
information about which read originates from which individual.
However, once rare variants are detected using the pooling approach,
individual genotyping can be used to assign these variants to the
respective individuals.

The major obstacle when sequencing DNApools is the sequencing
error rate of the HTS platform. The sequencing error rate is the
major factor that limits the size of DNA pools (i.e. the number
of individuals in one pool) in which a single heterozygous allele
remains detectable. For instance, in a pool of 50 individuals, and a
sequencing error rate of 1%, one cannot decide whether an observed
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minor allele frequency (MAF) of 1% is due to a true variant in the
pool or simply due to sequencing errors at that position.

In the following section, we review related work in the domain
of variant detection in HTS data from DNA pools. In Section 2, we
introduce our method vipR that makes use of data from multiple
DNA pools for achieving a higher sensitivity in detecting variants
in large DNA pools. Furthermore, we introduce the data used for
validating vipR. In Section 3, we present the results of a power
study and the performance of vipR and three reference methods on
a validation dataset. Section 4 and 5 discuss the results and conclude
the article, respectively.

1.1 Related work
The most widely used algorithms for variant calling using data from
HTS focus on the special case where the DNA of a single individual
was sequenced. Consequently, the expected allele frequencies are
either 1.0 or 0.5 representing a homozygous or heterozygous allele,
respectively [see Dalca and Brudno (2010) for a review].

In order to screen for sequence variants in DNA pools (comprising
multiple individuals), initial works have focused on modeling
sequencing errors using a Poisson distribution (Out et al., 2009;
Wang et al., 2007). More precisely, a position at which the count of
an alternative allele is unlikely to be the result of sequencing errors is
reported to be a sequence variant. While this approach is technically
sound, it tends to be error prone with a large number of individuals
in one DNA pool. This effect is due to the circumstance that in large
pools the allele frequency of a single heterozygous allele in the pool
approaches the sequencing error rate of the HTS platform and the
approach misses many true sequence variants.

Druley et al. (2009) presented a method for detecting rare SNPs
in large DNA pools. Their approach, named SNPSeeker, is based
on large deviation theory. For every run of the HTS platform, the
algorithm first generates an error model that takes into account the
position of the base in the sequencing read and the identity of the two
upstream bases. This model is derived from an internal control,
which does not carry any SNPs. Moreover, from the 31 base pair-
long reads only bases 3–12, which exhibit a low sequencing error
rate, were used for SNP calling. SNPSeeker was able to reliably
detect rare variants with a minor allele frequency of 0.5–1.2% in a
pool of 1111 individuals. The program, however, can only be applied
to sequencing data produced with an Illumina Genome Analyzer.

A more recent approach, termed CRISP, does not screen for
variants in each pool individually, but uses the distribution of the
variant SNP in all available pools (Bansal, 2010). More precisely,
in addition to computing the probability of observing multiple non-
reference base calls due to sequencing errors, CRISP compares the
distribution of allele counts across multiple pools using contingency
tables. The computation of P-values from these contingency tables,
however, is computationally demanding and may lead to unfavorable
runtime when analyzing many DNA pools and/or long genetic
regions. CRISP was shown to outperform SNPSeeker and two other
methods [VarScan (Koboldt et al., 2009) and MAQ (Li et al., 2008)]
both in sensitivity and specificity in relatively small pools of size 8
and 25, sequencing a total of 48 and 50 individuals, respectively.

2 METHODS
In the following section, we first present the approach of variant calling based
on a Poisson distribution, since the novel approach presented in this work
builds upon this earlier technique.

2.1 Variant calling using the Poisson distribution
Astraight-forward approach for calling variants in DNApools is the modeling
of sequencing errors using a Poisson distribution with parameters λ and k
representing the expected sequencing errors and the observed count of the
alternative allele, respectively, at one sequence position. The probability mass
function of the Poisson distribution is defined as follows:

pois(k;λ)= λke−λ

k! .

Using the probability mass function, one can compute the likelihood of
an observed alternative allele count having been produced by sequencing
errors. To this end we set the expected number of reads for an alternative
allele at sequence position i to λi=q ·Ni, where q and Ni are the error rate of
the sequencing platform and the coverage at position i, respectively. Now,
given the observed count of the alternative allele at that position ri, one can
compute the probability of ri being produced by sequencing errors as:

Ppois
i =1−

ri−1∑
k=0

pois(k;λi).

Only if Ppois
i stays below a certain threshold, e.g. Bonferroni corrected

threshold of 5%, then the observed count of the alternative allele at position
i is due to a true sequence variant. If one has M DNA pools, then M
independent scans using the Poisson model have to be performed.

2.2 Variant calling using the Skellam distribution
A major drawback of modeling the sequencing error rate using a Poisson
distribution is the assumption that the error rate remains conserved across
the different sequence regions. In fact, the sequence data are biased and the
error rate varies with the sequence content (Dohm et al., 2008). Thus, a
more realistic model should aim at estimating the local error rate and use
that local estimate instead of a global one for variant detection. Obtaining a
local estimate, however, is challenging, as only some factors influencing the
error rate are directly observable.

Our method, vipR, is based on the idea of using sequence data from
multiple DNA pools and thereby implicitly exploiting a local error estimate
for more accurate variant detection. More precisely, vipR, like CRISP, builds
on the assumption that the sequence-dependent error rate is conserved across
pools. Unlike CRISP, though, vipR does not make use of P-values derived
from contingency tables, but relies on the Skellam distribution for calculating
the P-values.

Briefly, the Skellam distribution is a discrete probability distribution that
models the difference of two independent variables following a Poisson
distribution with different expected values (µ1 and µ2). The probability mass
function of the Skellam distribution is defined as follows (Skellam, 1946):

skel(k;µ1;µ2)=e−(µ1+µ2)
(

µ1

µ2

)k/2

I|k|(2
√

µ1µ2),

with k and Ik(x) being the observed difference of the alternative allele in
the DNA pools and the modified Bessel function of the first kind (Watson,
1995), respectively.

The probability mass function can now be used to compute the probability
that an observed difference of alternative allele counts is produced by
sequencing errors. Again, let q be the error rate of the sequencing platform,
furthermore, let Na

i and Nb
i be the coverage at sequence position i in

pool a and b, respectively. Hence, the expected values of the two Poisson
distributions are µa

i =q ·Na
i and µb

i =q ·Nb
i . Now, given the observed

alternative allele counts ra
i and rb

i at position i in pools a and b, respectively,
we define the difference as di=ra

i −rb
i .Analogous to the Poisson distribution,

the probability of di being solely produced by sequencing errors in both pools
is computed by:

Pskel
i;a,b=1−

di−1∑
k=−∞

skel(k;µa
i ;µb

i ). (1)

In the R-package (http://cran.r-project.org/web/packages/skellam/),
however, Equation (1) is computed using the χ2 distribution. Only if Pskel

i;a,b
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is sufficiently small, then the observed difference is due to a different allele
count at position i in the pools a and b.

In contrast to the previous Poisson-based setting, one cannot analyze the
DNA pools individually, but is forced to make pairwise comparisons. Thus,
if one has M pools to analyze, M(M−1) scans have to be performed as we
concentrate on one-sided tests. Intuitively, instead of looking for an allele
frequency that exceeds the error rate, vipR is looking for a pair of DNA
pools, where in one pool the allele frequency is significantly higher than
in the other pool, and where this difference is unlikely to be produced by
sequencing errors.

2.3 Algorithm
The underlying distribution is clearly the core of a variant calling algorithm.
However, starting from the output of HTS alignments, filters for base quality,
alignment quality and coverage must be applied prior to variant calling.
Thus, vipR is split into two parts: a filter that is applied to each pileup file
individually implemented in Java, and the variant calling part implemented
in R (R Development Core Team, 2008) using the skellam R-package (http://
cran.r-project.org/web/packages/skellam/).

The pseudocode of the algorithm is given in Algorithm 1. Briefly,
the first step is the computation of the alternative allele frequency.
Next, the sequencing error rate is estimated as the q-th percent quantile
of the alternative allele frequencies. This estimation is done separately for
the reads aligned in forward and reverse direction. In the following, for
simplicity, vipR utilizes only the frequency of the most frequent allele
of all minor alleles. Using the error rate estimates, a one-sided P-value
is computed based on the Skellam distribution for all possible pairs of
pools. A position is considered a putative variant if the P-value for both
directions of one pool-pair reaches below the Bonferroni corrected threshold
of α=0.05/(2×I), where I is the number of sequence positions. In case the
coverage of one strand is below a pre-defined threshold, a P-value below
the threshold obtained on the other strand is sufficient (not displayed in the
pseudo code). Finally, the set of putative variant positions is returned.

In a post-processing step, all putative variants are filtered with respect
to the maximal observed frequency of the minor allele. More precisely, the
filter removes positions at which the maximal MAF does not reach a specific
threshold (default: 1/(1.5×h), with h being the number of haplotypes in the
DNA pool). This criterion has to be met by the allele frequencies from both
directions.

Error rates between base exchanges and small insertions and deletions
may vary substantially within the same HTS platform. Thus, the screening
for small deletions is carried out in a separate execution of the algorithm
where a deletion is treated as a ‘fifth base’. The screening for small insertions,
however, is currently not supported by vipR.

2.4 Sequence data
The sequencing data originates from a resequencing study of a total of 600
individuals. In all individuals, regions within TMEM132D on chromosome
12, which was found to be associated with panic disorder in a GWAS (Erhardt
et al., 2010), were sequenced. The four DNA pools comprising 150
individuals each were generated using equimolar amounts of DNA from
each individual. Two pools are control pools of healthy individuals, while
the remaining two pools comprise only affected individuals (i.e. patients with
panic disorder).

Eight target amplicons comprising the exonic regions of TMEM132D and
covering a total 35.8 kb were amplified using specific primers and long-range
PCR. The amplified DNA was prepared using the standard protocol for an
ABI SOLiD fragment library with read length 50. One slide of the ABI
SOLiD 3+ was partitioned into four equally sized compartments, and each
pool was sequenced on such a single quad-slide resulting in ∼82 million
short reads per DNA pool.

As part of the quality control step, the reads were trimmed right before
the fifth color of insufficient quality (quality value≤ 10). If the read

Algorithm 1 vipR(X1,...,XM ,I,q)
for all a∈{1,...,M},i∈{1,...,I} do

fMAFa
i ←computeForwardMAF(Xa

i )
bMAFa

i ←computeBackwardMAF(Xa
i )

end for
5. qnull,f←computeQuantile(fMAF,q)

qnull,b←computeQuantile(bMAF,q)
S←{}
for all a,b∈{1,...,M}∧b 	=a,i∈{1,...,I} do

for all x∈{a,b} do
10. µx

i,f←qnull,f ∗getForwardCoverage(Xx
i )

µx
i,b←qnull,b∗getBackwardCoverage(Xx

i )
rx
i,f←getForwardAlternativeAlleleCount(Xx

i )
rx
i,b←getBackwardAlternativeAlleleCount(Xx

i )
end for

15. di,f←ra
i,f −rb

i,f ;di,b←ra
i,b−rb

i,b

Pa,b
i,f ←1−∑di,f−1

k=−∞skel(k;µa
i,f ;µb

i,f )

Pa,b
i,b ←1−∑di,b−1

k=−∞skel(k;µa
i,b;µb

i,b)

if Pa,b
i,f ≤ 0.05

2I ∧Pa,b
i,b ≤ 0.05

2I then
S←S∪{i}

20. end if
end for
return S

I is the number of sequence positions, X1,...,XM are allele counts for the M
different pools, and q is the parameter for the quantile that estimates the error
rate (default: 0.9). The return variable S corresponds to the set of putative
variant positions. ‘Forward’ and ‘Backward’ in the function names refer to
reads aligned in forward and reverse direction, respectively.

Table 1. Number of HTS reads along the analysis pipeline

Pool name Raw After QC For analysis

Cases 1 82.2 48.9 45.1
Cases 2 77.5 48.6 45.4
Controls 1 86.5 53.3 50.1
Controls 2 81.7 49.2 45.8

Numbers are given in millions. QC, quality control.

comprised less than 30 colors after trimming, then it was discarded from
further analysis. The remaining color reads were aligned in color space
using BWA version 0.5.7 (Li and Durbin, 2009) to chromosome 12 of
the human genome (NCBI Build 36.1) allowing a maximum of four color
mismatches.

The numbers of short reads along the processing pipeline are summarized
in Table 1. An average of 46.6 million reads per DNA pool could be used for
variant detection. This amount corresponds to an approximate 50 000-fold
coverage per base of the amplified region per DNA pool; hence a 160-fold
coverage for each haplotype in the pool.

2.5 Statistical power calculation
As a first step, we compare the statistical power of the variant calling
method based on the Skellam distribution with one based on the Poisson
model. The power is studied in dependence of the coverage and other factors
like sequencing error rate and allele frequency to be detected. The power
calculation is based on the analysis presented by Out et al. (2009), which
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makes use of two different error rate estimates: the conservative estimate
for the null hypothesis (i.e. no variant, just sequencing errors) is based on
the 97.5th quantile of all MAFs (qnull=3.1×10−3). The second error rate
estimate is based on the median (b=3×10−4), and is used together with the
allele frequency to be detected f for modeling the fact that some erroneous
reads of the major allele can contribute to a true sequence variant. Thus,
the ratio for the alternative hypothesis is qalt= f +b. The two ratios qnull

and qalt are multiplied with the coverage to yield λnull and λalt , respectively.
The use of two different error rate estimates prevents according to Out et al.
(2009) false-positive detection of sequence variants in positions with high
local error rate (by using a high qnull) and inflated power estimates (by using
a moderate estimate of b).

Hence, in our analysis we first estimate the sequencing error rate from
the data as the 90th percentile of all MAFs: qnull=2.7×10−3. Second,
in concordance with Out et al. (2009), the error rate for the alternative
hypothesis (i.e. presence of a sequence variant) is estimated from the data
as the median of the observed MAFs, hence: b=1.6×10−4. Again, the rate
qalt under the alternative hypothesis is the sum of the frequency of the minor
allele to be detected f and the error rate b: qalt= f +b.

In the power calculation, we keep b fixed, but study the behavior under
different values of f and qnull. More precisely, we focus on values of f that
represent rare variants in a pool of 150 diploid individuals.

2.6 Validation
For the validation of vipR, we focused on sequence positions that had
been confirmed to carry variants with two different techniques. The
first set (set1) comprised 22 putative variant positions, which had been
identified using high resolution melting curve analysis (Wittwer et al.,
2003) and then veryfied by genotyping in every individual using a MALDI
(Matrix-Assisted-Laser-Desorption/Ionization) TOF (time of flight) mass
spectrometer (MassArray® system, Sequenom Inc., San Diego, USA) for
SNP detection. However, of these 22 positions, one position exhibited an
extremely low coverage by HTS (below 500) and was therefore excluded
from the analysis. Of the remaining 21 positions, 18 displayed an SNP in at
least one of the four DNA pools.

The second set (set2) of SNPs was selected based on the variant calling
results by earlier versions of vipR and the Poisson model on the HTS data.
Those SNPs were validated using the MALDI-TOF mass spectrography
technology. This second set comprised a total of 82 positions, with 47
carrying a SNP in at least one DNA pool.

The performance of vipR in identifying SNPs was compared with a
Poisson-based variant as presented in Out et al. (2009), and two other
algorithms: CRISP and VarScan (Koboldt et al., 2009). Of note, the Poisson
model used the same thresholds and filters as vipR: the error rate was
estimated using the 90th percent quantile, and for the required maximal MAF
the default setting was used (resulting in 1

450 ). Hence, the only difference
between these two approaches was the underlying probability distribution.
During this step of the validation, we focused on available algorithms that
were compatible with the SAM-format (Li et al., 2009), a standard HTS
output format. This ensured the compatibility of the algorithms to different
HTS platforms.

For vipR, Poisson and CRISP only reads with a mapping quality of at
least 20 were eligible for inclusion into the analysis. Furthermore, only
nucleotides with a minimum quality of 10 were used for SNP calling. VarScan
did not allow to set these quality thresholds on read and nucleotide basis, but
facilitated filtering of sequence positions regarding their average mapping
and base quality, respectively. Thus, we set those parameters to the default
values, 20 for average mapping quality and 15 for average base quality.
The minimum coverage required for variant calling was set to 5000 for all
algorithms. Furthermore, the minimum variant allele frequency threshold for
VarScan was set to 1

300 , likewise for CRISP the number of haplotypes in each
pool was set to 300. The remaining settings for VarScan and CRISP were
left on default. The pileup files that were used as input to vipR, Poisson and
VarScan were generated with SAMtools (Li et al., 2009), while the pileup

file for CRISP was produced using CRISP’s own tool. VarScan and Poisson
were applied to each pool separately, while CRISP and vipR were applied to
all four pools in parallel.

3 RESULTS

3.1 Statistical power calculation
Figure 1a depicts the statistical power of the Skellam and Poisson
distributions given the fixed qnull of 2.7×10−3 but varying coverage
and three different allele frequencies to be detected. The sawtooth
pattern of the power functions for both distributions is a direct
consequence of their discrete nature: for many coverage values,
the significance level simply happens to be strictly smaller than
α and therefore leading to a small loss of power. The three
frequencies correspond to one, two and four heterozygous alleles
in a pool of 150 individuals, respectively. For all examined allele
frequencies, the Skellam model showed a higher power than the
Poisson model. This effect was most pronounced when detecting a
single heterozygous allele: the Skellam model reached of a power
1.0 around a coverage of 7000; at this point, the Poisson model
exhibited only a power of around 0.25. The difference in power
between the two models decreased with the allele frequency to be
detected.

Figure 1b illustrates the power of the two models with a
fixed allele frequency corresponding to one heterozygous allele
and three different sequencing error rates (noise) ranging from
one to five sequencing errors in 1000 bases. Again, the Skellam
model outperformed the Poisson model. The difference was most
prominent in the setting modeling the highest noise, where the
Skellam model reached a power of 1.0 at a coverage of 10 000 and
the Poisson model still showed a power very close to 0.0. At a
noise level of 0.3%, the Poisson model showed a slow increase in
power with increasing coverage, while the Skellam model reached
full power at a coverage of 6000. For the lowest noise level, both
models perform similarly well.

The power of the two models on real sequence data is shown
in Figure 1c. The noise rates qnull and b were estimated from the
data and set to the values described above. The frequency of the
alternative allele to be detected was set to a single heterozygous
allele, i.e. 1

300 . The figure depicts only the first three of all eight
amplified regions of TMEM132D. The power computation for the
Skellam model was based on one cases pool and one controls pool,
while the computations for the Poisson model were done separately
for the two pools. For most sequence positions, the power of the
Skellam model exceeded the value of the Poisson model, thereby
suggesting a greater sensitivity for detecting a single heterozygous
allele in a pool of 150 individuals.

3.2 Real data
In order to assess the quality of the HTS data, we compared
the minor allele frequency (MAF) measured by MALDI-TOF and
by HTS. Figure 2 depicts the scatter plots between the MAF
determined by HTS and the validation technique only at the sites
where actual variations were detected using the reference method
(18 from set1 and 47 from set2). Correlations are shown for each
DNA pool individually. In general, correlations on set1 were higher
(r=0.97 to r=0.99) than correlations on set2 (r=0.81 to r=0.94).
Moreover, in set2 the correlation between HTS and MALDI-TOF is
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Fig. 1. Statistical power of the Skellam and the Poisson distribution. (a) Statistical power of both models depending on the coverage with varying allele
frequency and fixed error rate of 2.7×10−3. (b) Statistical power of both models depending on the coverage with varying error rate (noise) and fixed allele
frequency of 1

300 . (c) Statistical power on real data for the Skellam model (black solid line) using one controls and one cases pool and for the Poisson model
separately on one cases (blue solid line) and one controls (orange dashed line) pool.
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Fig. 2. Scatter plot between MAFs obtained by HTS and MALDI-TOF. (a) SNPs from different validation sets are represented by different symbols, and
allele frequencies in the different DNA pools are color coded. (b) Like (a) but zoomed in on allele frequencies below 0.05.

comparable in both rare (MAF < 5%; r=0.45) and common variants
(MAF≥ 5%; r=0.42). In set1, the correlation observed in common
variants (r=0.92) is higher than in rare variants (r=0.43). Here,
however, the correlation value for the common variants is only based
on three different position. Noteworthy, the figure suggests that HTS

may deviate from the MAF estimated by the validation method. For
instance, in DNA pool Cases 1, MALDI-TOF observed a MAF of
3% while HTS reported a MAF close to 0%.

Table 2 lists the numbers of variants found in all four pools. Since
the VarScan algorithm and the Poisson model were applied to each
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Table 2. Number of variant positions found in each pool

Cases 1 Cases 2 Controls 1 Controls 2 Total

vipR – 371
CRISP – 9425
Poisson 656 644 701 606 1223
VarScan 6711 6993 7582 6715 9856

vipR – 56
CRISP – 29
Poisson 31 31 33 28 42
VarScan 63 54 75 64 100

The upper part of the table lists the number of SNPs found in the resequenced region.
The lower part lists the number of small deletions identified in the same region.

no. of pools

1 2 3 4
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Fig. 3. Runtime of variant calling algorithms on the TMEM132D dataset
in dependence of the number of pools. Time was measured in seconds and
assessed on a single Intel core at 2.67 GHz (and 6 GB memory).

pool individually, precise figures for each pool are provided. Both
VarScan and CRISP identified in the 35 800 base pair region well
above 9400 SNPs, i.e. almost one SNP every four base pairs among
600 individuals. The Poisson model and vipR detected much fewer
variants in the same region with 1223 and 371 SNPs, respectively.
Furthermore, the pool-wise listing reveals that the Poisson model
detected one order of magnitude with fewer SNPs per pool than
VarScan.

All algorithms detected by far fewer deletions than SNPs. The
detected deletions had at most a length of four nucleotides (which
was the maximum given the used alignment settings). CRISP
detected the fewest number of deletions while VarScan detected
the highest number. The relation of amount of deletions detected
per pool and the amount of overall detected deletion for the Poisson
model and VarScan, suggest a large overlap of deletions found in all
four pools.

Figure 3 depicts the runtime behavior of all four tested algorithms
on a single Intel core at 2.67 GHz (and 6 GB memory). The reported
times comprise the computational time required for producing the
output file starting from a pileup file, i.e. the generation of the

pileup file was not part of the performance assessment. As expected,
for the two programs that analyze DNA pools independently the
runtime grows linearly with the increasing number of pools. The
more interesting case concerns the tools that analyze the DNA pools
in parallel. Here, vipR clearly outperforms CRISP: where CRISP
ranges from 1.5 days for two pools to 9.5 days for all four pools, vipR
requires only ≈20 min for all four pools. Remarkably, vipR was
even quicker than Poisson. This fact, however, was mainly caused
by longer output files generated by the Poisson model (comprising on
average 650 SNPs versus 371 SNPs with vipR; Table 2). Moreover,
the majority of time for vipR and Poisson was required during the
pre-processing step (indicated by the difference between dashed and
solid lines in Fig. 3).

Of the 18 SNPs initially identified by melting curve analysis
(set1), the Poisson model missed five, and falsely predicted one
sequence position to be an SNP. On the same set, vipR showed a
slightly better performance, and missed only three SNPs (of which
two were also missed by the Poisson model), and also wrongly
predicted the same sequence position as the Poisson model to be
variant. CRISP missed only two SNPs and falsely predicted the same
position as vipR and the Poisson model to be variant. The highest
accuracy was achieved by VarScan, which missed only one SNP
and falsely predicted the very same position as the other methods
to be a variant. Summarizing, on this small set VarScan reached an
accuracy of 90%, CRISP 86%, vipR showed an accuracy of 81%
while the Poisson model yields an accuracy of 71%.

Of the 82 putative variant positions that were individually
genotyped using MALDI-TOF mass spectrography (set2), 47 turned
out to carry an alternative allele in at least one of the four DNA
pools. Table 3 shows the performance of all four tools with respect
to these 82 positions. Among the four tools, vipR showed the
highest accuracy in classifying positions as variant or non-variant.
CRISP performed slightly worse than vipR. The Poisson model and
VarScan performed equally bad with respect to accuracy. The further
performance measures sensitivity, specificity and precision afforded
a more fine-grained evaluation of the four tools. As can be seen from
Table 2, VarScan predicted many positions to be variant. Thus, in
this set of 82 positions only 11 were predicted not to carry a variant.
Consequently, VarScan achieved a high sensitivity but a very low
specificity. CRISP and vipR showed a very similar sensitivity, but
vipR outperformed CRISP clearly in both, specificity and precision.
The Poisson model showed the lowest sensitivity. Interestingly, vipR
and CRISP shared five positions predicted falsely to not carry a
variant.

As many of the validated positions were actual rare variants with
at most two heterozygous alleles (31 of 47 SNPs), it was unlikely
that an SNP appeared in all four pools. Hence, a false-positive signal
from one pool was likely to decrease the estimated specificity of
the method when assessed in a position-wise setting. Moreover, for
follow-up experiments it is often crucial to identify the DNA pool
that is carrying the variant allele. Thus, in addition to analyzing the
performance of the variant identification methods on the validated
sequence positions across all pools, the performance was also
assessed poolwise. For Poisson and VarScan, which analyzed the
data for each pool independently, this could be carried out directly
from the generated data. For CRISP and vipR the information of
which pools contain the variant had to be manually inferred based
on the observed MAFs and the information on the number of pools in
which the variant was detected (CRISP) or the pools with significant
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Table 3. Performance on 82 validated variant positions of set2

TP FP TN FN Accuracy Sensitivity Specificity Precision

vipR 39 11 24 8 0.77 0.83 0.69 0.78
CRISP 40 15 20 7 0.73 0.85 0.57 0.73
Poisson 30 14 21 17 0.62 0.64 0.60 0.68
VarScan 43 28 7 4 0.61 0.91 0.20 0.61

P, positives; N, negatives; TP, true positives; FP, false positives; TN, true negatives; FN, false negatives. accuracy, TP+TN
P+N ; sensitivity, TP

P ; specificity, TN
N ; precision, TP

TP+FP .

Table 4. DNA pool-wise performance on validated variant positions of set2

Sensitivity Specificity Precision

vipR CRISP Poisson VarScan vipR CRISP Poisson VarScan vipR CRISP Poisson VarScan

Cases 1 0.77 0.77 0.72 0.81 0.89 0.79 0.89 0.59 0.77 0.63 0.75 0.48
Cases 2 0.76 0.76 0.52 0.72 0.91 0.75 0.79 0.53 0.81 0.63 0.58 0.46
Controls 1 0.81 0.81 0.56 0.85 0.95 0.75 0.89 0.55 0.88 0.61 0.71 0.48
Controls 2 0.88 0.88 0.72 0.92 0.95 0.72 0.88 0.54 0.88 0.58 0.72 0.47

Total 0.80 0.80 0.60 0.82 0.92 0.75 0.86 0.55 0.83 0.61 0.68 0.47

See description of Table 3.

P-values (vipR). Table 4 lists all three performance measures for
each DNA pool separately. The values in row entitled ‘total’ are
based on the sum of the confusion matrices of all four pools, i.e.
these values are based on 328(=4·82) events as opposed to just 82.

As may be expected from the large number of identified SNPs
by VarScan, its sensitivity was highest among the tested methods,
but at the lowest observed specificity and precision. The Poisson
model improved slightly in precision and substantially in specificity
over VarScan, at a cost of a substantially decreased sensitivity. The
sensitivity of CRISP and vipR was similar to the one obtained
by VarScan, both methods, however, achieved far better specificity
and precision values. Moreover, vipR clearly outperformed CRISP
in specificity (0.92 versus 0.75) and precision (0.83 versus 0.61).
Compared with the analysis by putative variant position, the
individual analysis for every pool greatly improved the estimated
specificity of all methods.

4 DISCUSSION
The power calculation for the Poisson distribution and the Skellam
distribution demonstrated a clear advantage in favor of the Skellam
distribution. For the given task, the Skellam distribution appeared
to be much less susceptible to changes in the sequencing error rate
(i.e. noise) than the Poisson distribution. Hence, it appears to be a
suitable candidate for detecting differences in allele frequencies in
multiple DNA pools and thereby identify sequence variants.

The advantage in statistical power on simulated data was
confirmed on sequence data and based on real coverage values,
an error rate estimated from that data, and the aim to detect
a single heterozygous allele in 150 individuals. In most of the
sequenced regions, the Skellam distribution exhibited a clearly
higher power than the Poisson distribution, thus again suggesting
a greater sensitivity in discovering real sequence variants.

The observed theoretical increase of sensitivity of the Skellam
distribution over the Poisson distribution was substantiated on
SNPs validated with two different techniques. More precisely,
vipR yielded a 0.20 [0.19] increase in sensitivity over the Poisson
model (at even slightly improved specificity) when SNPs in a
single pool [sequence positions over all four pools] were used
for performance calculation (Tables 3 and 4). Of note, since all
remaining parameters were unchanged, the observed improvement
in performance was only due to the exchange of the distribution
function (and consequently the consideration of multiple DNA pools
in parallel).

When comparing the MAF obtained from the results of HTS
and the two reference methods, it appeared that while the
overall correlation was good (r >0.80), the MAFs of specific
positions may show large discrepancies and HTS sometimes seemed
to grossly deviate from the allele frequency estimated by the
validation techniques; sometimes overestimating and on other cases
underestimating the MAF. On the other hand, the MAF estimated
by individual genotyping might have also deviated from the true
MAF as sometimes the genotyping was not successful in all 150
individuals. Unsuccessful genotyping is more likely to affect the
performance assessment for variants with a very low MAF: if the
validation technique fails to genotype the single individual with
one heterozygous allele in the pool of 150 individuals, then one
might consider a sequence variant called from the HTS data of that
DNA pool as a false positive. On the other hand, the estimated
MAF for SNPs with higher MAFs are less likely to be affected
by failed genotyping, and here the observed discrepancy is due to
shortcomings of HTS alone. A potential confounder of estimated
MAF by HTS might also be extreme variations in coverage at these
sequence positions. Thus, we examined the coverage at positions that
exhibited more than 10% difference in MAF (corresponding to eight
different sequence positions), but could not detect any correlations of

i83

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/13/i77/177568 by guest on 10 April 2024



[19:51 6/6/2011 Bioinformatics-btr205.tex] Page: i84 i77–i84

A.Altmann et al.

MAF discrepancies and coverage. Interestingly, sequence positions
with a large discrepancy in estimated MAF were often shared
between pools.

Regarding the amount of sequence variants found by the
algorithms, both VarScan and CRISP found well above 9400
variants, corresponding to roughly one variant every four bases.
This value exceeds the expected number of one variant in 150
bases [roughly 15 million SNPs on 2.3 GB of accessed human
genome; see Durbin et al. (2010)] by almost two orders of
magnitude. This high number of putative variants was surprising,
especially, as the sequenced regions covered the exonic regions
of TMEM132D. The Poisson model retrieved almost one order of
magnitude fewer variants from the same region, still corresponding
to about one variant every 30 bases. Replacing the Poisson
distribution with the Skellam distribution yielded 371 variants
(roughly 1 variant every 95 bases). Despite the much smaller
number of detected variants, vipR achieved a good sensitivity and
specificity in identifying SNPs in the small test set of 82 putative
SNPs. The remaining three methods demonstrated a considerably
higher false-positive rate. However, a limitation of the performance
assessment on set2 is the selection process of the putative variants:
variants validated with MALDI-TOF were not randomly sampled
over the sequenced region but chosen based on the results of earlier
versions of vipR and the Poisson model. In particular, the selection
was focused on variants showing low MAF (i.e. rare variants),
appearing in interesting regions (exons and transcription factor
binding sites) or showing a large difference in the allele count
between cases and controls. Hence, the selection process was likely
to introduce a bias in the measured performance. For instance,
based on the raw numbers of identified SNPs, one can assume that
the actual specificity of CRISP and VarScan is lower than the one
estimated from the data. Moreover, methods that mark one-fourth
of the sequenced region as sequence variants are not valuable for
follow-up studies.

In contrast to the sequence variants of set2, the variants in set1
were selected prior to sequencing using HTS and therefore represent
a set of SNPs that is not biased toward any of the four methods.
The downside of set1 is that only 5 of the 18 validated SNPs
were rare SNPs. Moreover, there were only three invalidated SNPs.
Consequently, this set affords only a limited assessment of the
algorithms’ specificity and capability of detecting rare variants. The
variants from set2 are by far better suited for this task.

A clear drawback of vipR over the Poisson model and VarScan
is the requirement for more than one DNA pool in order
to facilitate screening for sequence variants. However, when
performing studies comprising a large number of individuals,
distributing the individuals over multiple DNA pools is a necessity
for generating sequence data of sufficient quality for detecting rare
mutations. Altering the problem from discriminating real variants
from sequencing errors to finding differences in allele frequencies
across all pools is unlikely to affect the results negatively. In general
there are two possibilities: (i) a sequence variant is frequent, then
deviations of the allele count across the available pools are very
likely; (ii) a sequence variant is rare, then it is unlikely, that the
variant appears in all tested pools. Clearly, in the second scenario,
using more pools decreases the risk of missing a real rare sequence
variant.

Since the current implementation of vipR makes comparisons for
each pair of DNA pools, a further drawback might occur when
working with a large number of pools: the runtime will quickly

increase. In this case, one could limit the number of comparisons by
randomly selecting for each pool a fixed number of reference pools.
It is unclear, however, how this heuristic would affect the results.

Last but not least vipR was the fastest tool to examine all four
DNA pools for variants and clearly outperforming CRISP, which
follows a similar strategy in identifying SNPs.

5 CONCLUSION
We presented vipR, a tool for variant detection in DNA pools that
uses sequence information from multiple sequenced DNA pools
in parallel for improving the sensitivity of variant detection. In
our evaluation, vipR performed with the highest specificity and
precision at a sensitivity superior to a Poisson-based model and
comparable to two more methods. Moreover, vipR was the fastest
tool among the evaluated methods; just requiring ≈20 min for
all four DNA pools, opposed to ≈9.5 days required by CRISP
the slowest tool. The source code of vipR can be obtained via
http://sourceforge.net/projects/htsvipr/.

Conflict of Interest: none declared.
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