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ABSTRACT

Motivation: Pseudoknots found in secondary structures of a number
of functional RNAs play various roles in biological processes. Recent
methods for predicting RNA secondary structures cover certain
classes of pseudoknotted structures, but only a few of them achieve
satisfying predictions in terms of both speed and accuracy.
Results: We propose IPknot, a novel computational method for
predicting RNA secondary structures with pseudoknots based on
maximizing expected accuracy of a predicted structure. IPknot
decomposes a pseudoknotted structure into a set of pseudoknot-
free substructures and approximates a base-pairing probability
distribution that considers pseudoknots, leading to the capability of
modeling a wide class of pseudoknots and running quite fast. In
addition, we propose a heuristic algorithm for refining base-paring
probabilities to improve the prediction accuracy of IPknot. The
problem of maximizing expected accuracy is solved by using integer
programming with threshold cut. We also extend IPknot so that
it can predict the consensus secondary structure with pseudoknots
when a multiple sequence alignment is given. IPknot is validated
through extensive experiments on various datasets, showing that
IPknot achieves better prediction accuracy and faster running time
as compared with several competitive prediction methods.
Availability: The program of IPknot is available at
http://www.ncrna.org/software/ipknot/. IPknot is also available as
a web server at http://rna.naist.jp/ipknot/.
Contact: satoken@k.u-tokyo.ac.jp; ykato@is.naist.jp
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
RNAs play various roles in biological processes, ranging from
the passive role as a messenger that carries genetic information
to the active roles as a regulator for gene expression and as a
catalyst in cellular processes. Considerable attention has been paid
to the functions of RNAs, especially those of regulatory non-coding
RNAs (Eddy, 2001). It is widely believed that there is a strong
correlation between the 3D structure of an RNA molecule and its
function. A set of base pairs formed from hydrogen bonds is called
a secondary structure, which shapes the substructure of the 3D
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structure. Since experimental determination of RNA 3D structures
is difficult and their structures are hierarchical, secondary structure
prediction provides a major key to elucidating the potential functions
of RNAs.

A good number of computational studies have so far been
presented on RNA secondary structure prediction. They can be
roughly classified into two groups, namely comparative sequence
analysis and single sequence analysis. Comparative methods based
on alignment folding include RNAalifold (Bernhart et al.,
2008; Hofacker et al., 2002) and Pfold (Knudsen and Hein,
2003). The comparative analysis has an advantage of a fair
possibility of achieving high prediction accuracy since it can take
evolutionary information into consideration. However, this approach
is not always applicable since a set of homologous sequences is
required in advance. As for single sequence analysis, a popular
approach is to find the structure with the minimum free energy
(MFE) of a single RNA sequence. We can use programs that
implement this strategy based on dynamic programming (DP)
algorithms such as mfold (Zuker, 2003; Zuker and Stiegler,
1981) and RNAfold (Hofacker, 2003; Hofacker et al., 1994).
Notice that the free energy of a secondary structure is calculated
by summing energy parameters of respective loop substructures,
which can be experimentally determined and computationally
estimated (Mathews et al., 1999). Furthermore, these DP-based
methods are applied to the calculation of the partition function
for RNA secondary structures (McCaskill, 1990), which enables us
to compute posterior base-pairing probabilities. Recently, several
sophisticated methods have been proposed for predicting the
secondary structure with the maximum expected accuracy (MEA)
over a space of possible structures. CONTRAfold (Do et al., 2006)
and CentroidFold (Hamada et al., 2009a) that adopt this idea
achieve better prediction accuracy as compared with the MFE-based
methods. It is to be noted that all of the above methods aim to
predict relatively simple RNA structures with nested base-pairing
interactions.

Pseudoknot is one of the important topologies in RNA secondary
structures. A pseudoknot is typically formed from the base pairings
between the unpaired bases of a loop and those outside the loop,
which is often called an H-type pseudoknot (see Fig. 1a). In other
words, a secondary structure includes a pseudoknot if at least two
arcs drawn above the primary sequence that represent base pairs
cross each other (see Fig. 1b). Pseudoknotted structures are observed
in many RNAs such as ribosomal RNAs, transfer messenger RNAs
and viral RNAs (van Batenburg et al., 2001). Pseudoknots are known
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(a) (b)

Fig. 1. A typical H-type pseudoknot. (a) A pseudoknot represented by three-
loop nomenclature. Note that Loop 2 typically has zero or one base (Liu et al.,
2010). (b) An arc representation of the pseudoknot.

to be involved in the regulation of translation and splicing, and
ribosomal frame shifting (Brierley et al., 2007; Staple and Butcher,
2005). Furthermore, pseudoknots assist foldings in the 3D space
in many cases (Fechter et al., 2001). It follows from these facts
that pseudoknots should not be ignored for structural and functional
analysis of RNAs.

Unlike the case of pseudoknot-free structure prediction stated
above, predicting pseudoknotted structures is a difficult problem in
a computational aspect. In particular, it is proven that the problem
of finding the MFE structure including arbitrary pseudoknots is
NP-hard (Akutsu, 2000; Lyngsø and Pedersen, 2000b). Therefore,
several approaches have been proposed based on exact algorithms
or heuristic methods in terms of finding an optimal structure
(Akutsu, 2006; Liu et al., 2010). Examples of exact methods
are DP algorithms that predict limited classes of pseudoknots
in O(n4)∼O(n6) time (Akutsu, 2000; Dirks and Pierce, 2003;
Lyngsø and Pedersen, 2000a; Reeder and Giegerich, 2004; Rivas
and Eddy, 1999), where n is the length of an input RNA
sequence. Available programs among them are PKNOTS (Rivas
and Eddy, 1999), NUPACK (Dirks and Pierce, 2003, 2004) and
pknotsRG (Reeder and Giegerich, 2004). Besides, classification
of the pseudoknot topologies handled by the DP-based algorithms
was investigated (Condon et al., 2004). Another approach based on
integer programming was proposed to predict the MFE secondary
structure with recursive pseudoknots (Poolsap et al., 2009). All of
the above methods, however, have a possibility of being intractable
for long RNA sequences.

In contrast, several heuristic prediction methods have been
proposed to circumvent the high-time complexity resulting from
the nature of exact algorithms for finding the MFE pseudoknotted
structure.ILM (Ruan et al., 2004),HotKnots (Ren et al., 2005) and
FlexStem (Chen et al., 2008) predict secondary structures with
pseudoknots, iteratively constructing pseudoknotted structures using
algorithms for pseudoknot-free structure prediction. ProbKnot
(Bellaousov and Mathews, 2010) assembles structures composed of
the most probable base pairs from base-pairing probabilities that
do not consider pseudoknots. From the viewpoint of employing
comparative information, hxmatch (Witwer et al., 2004) as well as
ILM predicts the consensus secondary structure with pseudoknots
for aligned sequences. Although the optimality of a predicted
structure computed by these algorithms is not guaranteed, they can
deal with a wider class of pseudoknots than the DP-based exact
methods can do, and have an advantage of being executable on long
sequences.

Designing RNA energy models is also an important task to
predict secondary structures of good quality. An energy model
consists of structural features (fragments), energy parameters and
a function that assigns a free energy change to a structure of a
given sequence (Andronescu et al., 2010b). The Mathews–Turner
model (Mathews et al., 1999) is widely used to predict RNA
secondary structures without pseudoknots. The Dirks–Pierce model
(Dirks and Pierce, 2003) includes the Mathews–Turner features and
additional features for pseudoknots. The Cao–Chen model (Cao
and Chen, 2006) includes the Dirks–Pierce features along with
many new features for H-type pseudoknots. Recently, Andronescu
et al. (2007, 2010b) have presented algorithms for refining
energy parameters using a constraint generation approach and
Boltzmann likelihood estimation. Moreover, Andronescu et al.
(2010a) have reported that HotKnots employing new energy
parameters estimated by these training algorithms yields better
prediction accuracy on pseudoknotted structural data as compared
with the earlier version of HotKnots.

Although there are various approaches to predicting RNA
pseudoknotted structures, only a few of them achieve satisfying
predictions in both speed and accuracy. This is a crucial requirement
especially when applying a prediction algorithm to finding
functional non-coding RNAs in genome sequences. In this article,
we present IPknot, a novel method for Integer Programming (IP)-
based prediction of RNA pseudoKNOTs. IP, one of the optimization
techniques, is useful for modeling a wide variety of combinatorial
problems. Remember that one of the existing methods mentioned
above uses IP to predict RNA pseudoknotted structures (Poolsap
et al., 2009). Main differences between the earlier IP-based study
and our newly proposed method lie in the objective functions and
the classes of pseudoknots that they can handle. The important point
to note is that IPknot significantly outperforms the earlier IP-
based method in both prediction accuracy and running time. As in
our previous method RactIP (Kato et al., 2010) for RNA–RNA
interaction prediction, IPknot seeks to find the MEA secondary
structure using IP. To compute the expected accuracy of a secondary
structure with respect to an ensemble of all possible structures
including pseudoknots, we decompose a pseudoknotted structure
into a set of pseudoknot-free substructures and approximate a
base-pairing probability distribution that considers pseudoknots.
This decomposition enables IPknot to describe a wide class
of pseudoknotted structures and perform quite fast predictions.
In addition, we propose a heuristic algorithm for refining the
base-pairing probabilities to improve the prediction accuracy of
IPknot. The IP problem is solved partly by using the threshold
cut technique, which fits in well with the idea of maximizing
expected accuracy. We also extend IPknot so that it can
predict the common secondary structure with pseudoknots when
a multiple alignment of RNA sequences is given, employing the
methodology of CentroidAlifold (Hamada et al., 2011) for
pseudoknot-free consensus structure prediction. We validate the
prediction performance of IPknot through extensive experiments
on various datasets, making a comparison with several state-of-
the-art prediction methods. The major advantages of this work in
performance are summarized as follows:

• Prediction performance of IPknot is sufficiently good in
speed and accuracy as compared with ProbKnot (Bellaousov
and Mathews, 2010), FlexStem (Chen et al., 2008),
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HotKnots (Andronescu et al., 2010a; Ren et al., 2005),
pknotsRG (Reeder and Giegerich, 2004) and ILM (Ruan
et al., 2004), which are methods for predicting pseudoknotted
structures of a single RNA sequence in practical time.

• IPknot yields robust predictions even when an alignment
quality deteriorates. In fact, experimental results show
that IPknot is more accurate than ILM and hxmatch
(Witwer et al., 2004) on a dataset comprising sequence-based
alignments rather than structural alignments.

In the remainder of this article, we present the algorithmic
framework of the proposed method in Section 2. Section 3 provides
experimental results using IPknot and other prediction methods.
After discussing the results in Section 4, we conclude this article in
Section 5.

2 METHODS
We present a new method IPknot for predicting pseudoknotted RNA
secondary structures using integer programming (IP). IPknot executes the
following two steps when an RNA sequence is given:

(i) compute the base-pairing probabilities used in the IP objective
function (Section 2.1);

(ii) solve the IP problem to predict the optimal pseudoknotted RNA
secondary structure (Section 2.2).

In Section 2.3, we propose a heuristic algorithm for refining the base-
pairing probabilities that compose the IP objective function in the first
step. Furthermore, we extend our algorithm to common secondary structure
prediction including pseudoknots in Section 2.4.

2.1 MEA-based scoring function for predicting
pseudoknotted RNA secondary structures

Let �={A,C,G,U} and �∗ denote the set of all finite RNA sequences
consisting of bases in �. For a sequence x=x1x2 ···xn ∈�∗, let |x| denote
the number of symbols appearing in x, which is called the length of x.
Let S(x) be a set of secondary structures of an RNA sequence x including
pseudoknots. An element y∈S(x) is represented as a |x|×|x| binary-valued
triangular matrix y= (yij)i<j , where yij =1 means that bases xi and xj form a
base pair.

We assume that a secondary structure y∈S(x) can be decomposed into
a set of pseudoknot-free substructures (y(1),y(2),...,y(m)) that satisfies the
following conditions: (i) y∈S(x) should be decomposed into a mutually-
exclusive set, that is, for all 1≤ i< j≤|x|, ∑

1≤p≤m y(p)
ij ≤1; and (ii) every

base pair in y(p) should be pseudoknotted to at least one base pair in
y(q) for ∀q<p. Each pseudoknot-free substructure y(p) is said to belong
to the level p (see Fig. 2). For any RNA secondary structure y∈S(x),
there exists a positive integer m such that y can be decomposed into m
pseudoknot-free substructures [see Supplementary Section S6 and Jiang et al.
(2010) for further details]. From this viewpoint, we can say that the above
decomposition enables our method to model arbitrary pseudoknots.

One of the most promising techniques to predict RNAsecondary structures
is the MEA-based approach including centroid estimation (Carvalho and
Lawrence, 2008; Hamada et al., 2009a).

First, we define a gain function of ŷ∈S(x) with regard to the correct
secondary structure y∈S(x) as follows:

Gγ (y,ŷ)= γTP(y,ŷ)+TN(y,ŷ) (1)

=
∑
i<j

[
γI(yij =1)I(ŷij =1)+I(yij =0)I(ŷij =0)

]
,

where γ>0 is a weight parameter for base pairs, TP and TN denote the
numbers of true positives (base pairs) and true negatives (non-base pairs),

Fig. 2. An illustration of the decomposition of a pseudoknotted secondary
structure y∈S(x) into pseudoknot-free substructures (y(1),y(2),y(3)).

respectively, and I(condition) is the indicator function that takes a value of
1 or 0 depending on whether the condition is true or false.

Our objective is to find a secondary structure ŷ that maximizes the
expectation of the gain function (1) under a given probability distribution
over the space S(x) of pseudoknotted secondary structures:

Ey|x[Gγ (y,ŷ)]=
∑

y∈S(x)

Gγ (y,ŷ)P(y |x), (2)

where P(y |x) is a probability distribution of RNA secondary structures
including pseudoknots. It has been proven that the γ-centroid estimator (2)
enables us to decode accurate secondary structures from a given probability
distribution (Hamada et al., 2009a).

Unfortunately, the calculation of Equation (2) is intractable for arbitrary
pseudoknots (Akutsu, 2000; Lyngsø and Pedersen, 2000b). Instead, we
can employ several models for limited classes of pseudoknots such as the
Rivas–Eddy model (Rivas and Eddy, 1999), the Akutsu model (Akutsu,
2000), the Dirks–Pierce model (Dirks and Pierce, 2003, 2004) and the
Reeder–Giegerich model (Reeder and Giegerich, 2004). However, even for
relatively simple pseudoknotted structures, computationally expensive costs
of O(|x|4)∼O(|x|6) time and O(|x|2)∼O(|x|4) space are required.

Therefore, we approximate the expected gain function (2) by the
sum of the expected gain functions for each level of pseudoknot-free
substructures (ŷ(1),...,ŷ(m)) in the decomposed set of a pseudoknotted
structure ŷ∈S(x), and thus simultaneously find a pseudoknotted structure
ŷ and its decomposition (ŷ(1),...,ŷ(m)) that maximize:∑

1≤p≤m

α(p)
∑

y∈S ′(x)

Gγ(p) (y,ŷ(p))P′(y |x)

=
∑

1≤p≤m

α(p)
∑
i<j

[
(γ (p) +1)pij −1

]
ŷ(p)

ij +C, (3)

where α(p) >0 (
∑

pα(p) =1) is a weight parameter for each gain function at

the level p (in our experiments, we fixed α(p) =1/m), γ (p) >0 is a weight
parameter for base pairs at the level p, and C is a constant independent of ŷ
[see the Supplementary Material of Hamada et al. (2009a) for the derivation].
The base-pairing probability pij is a probability that the base xi is paired with
xj , which is defined as:

pij =
∑

y∈S ′(x)

I(yij =1)P′(y |x).

We can select P′(y |x), a probability distribution over a set S ′(x) of secondary
structures with or without pseudoknots, from several approaches. A naïve
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(a) (b) (c)

Fig. 3. An illustration of the constraints of the IP formulation. The diagrams
(a) and (b) correspond to the constraints (5) and (6), respectively. Note that
at most one variable shown by a broken curved line can take a value 1. The
diagram (c) corresponds to the constraint (7).

approach is use of the probability distribution with pseudoknots as well
as Equation (2) in spite of high computational costs. Alternatively, we can
employ a probability distribution without pseudoknots such as the McCaskill
model (McCaskill, 1990), whose computational complexity is O(|x|3) for
time and O(|x|2) for space. Furthermore, a novel approach that refines the
base-pairing probability matrix from the distribution without pseudoknots
will be proposed in Section 2.3. Note that we implemented all the three
approaches.

It is worth mentioning that IPknot can be regarded as an extension
of CentroidFold (Hamada et al., 2009a). If we let the number of
decomposed levels m=1, the approximate expected gain function (3) is
identical to the γ-centroid estimator used in CentroidFold.

We should notice that the maximization of the approximate gain (3) is
equivalent to the maximization of the weighted sum of the base-pairing
probabilities pij larger than θ(p) =1/(γ (p) +1). Consequently, it is no longer
necessary to consider the base pairs whose pairing probabilities are at most
the thresholds θ(p), which we call threshold cut.

2.2 IP model
Maximization of the approximate expected gain (3) can be solved by the IP
problem as follows:

maximize
∑

1≤p≤m

α(p)
∑

i<j s.t. pij>θ(p)

pijy
(p)
ij (4)

subject to
∑

1≤p≤m

{
i−1∑
h=1

y(p)
hi +

n∑
h=i+1

y(p)
ih

}
≤ 1 (1 ≤ ∀i ≤ n), (5)

y(p)
ij +y(p)

kl ≤ 1

(1 ≤ ∀p ≤ m,1 ≤ ∀i<∀k <∀j<∀l ≤ n), (6)∑
i<k<j<l

y(q)
ij +

∑
k<i′<l<j′

y(q)
i′j′ ≥y(p)

kl

(1 ≤ ∀q<∀p ≤ m,1 ≤ ∀k <∀l ≤ n). (7)

Since Equation (4) is an instantiation of the approximate estimator (3) and
the threshold cut technique is applicable to Equation (3), we need to consider
only base pairs y(p)

ij whose base-pairing probabilities pij are larger than

θ(p) =1/(γ (p) +1). The constraint (5) means that each base xi can be paired
with at most one base. (Fig. 3a). The constraint (6) disallows pseudoknots
within the same level p (Fig. 3b). The constraint (7) ensures that each base
pair at the level p is pseudoknotted to at least one base pair at every lower
level q<p (Fig. 3c).

It is widely accepted that base pairs in stable RNA structures are likely
to appear in a stacked form rather than an isolated one. Following the IP
formulation proposed by Poolsap et al. (2009), we can avoid isolated base
pairs by incorporating the stacked pairing constraints as follows:

�
(p)
i−1 +(1−�

(p)
i )+�

(p)
i+1 ≥1 (1<∀i<n), (8)

r(p)
i−1 +(1−r(p)

i )+r(p)
i+1 ≥1 (1<∀i<n), (9)

Fig. 4. A schematic diagram of the iterative refinement algorithm for the
base-pairing probability matrix. A constraint on secondary structure for each
level is denoted by a variant of the dot-parenthesis format: a matching
parenthesis ‘()’ denotes an allowed base pair, a character ‘x’ indicates an
unpaired base, and a dot ‘.’ is used for an unconstrained base.

where

�
(p)
i =

n∑
j=i+1

y(p)
ij , r(p)

i =
i−1∑
j=1

y(p)
ij (1<∀i ≤ n).

These constraints guarantee that if a base xi is paired with another one, the
base(s) adjacent to xi must also form a base pair.

2.3 An iterative refinement algorithm for the
base-pairing probability matrix

We propose an iterative algorithm that refines the base-pairing probabilities
used in the objective function of our method. The basic idea is that the base-
pairing probabilities are improved by the secondary structures predicted at
the first stage, and then a new prediction is performed by the improved
base-pairing probabilities (see also Fig. 4).

More specifically, for a given sequence x∈�∗, we first predict a
secondary structure ŷ= (ŷ(1),...,ŷ(m)) by solving the IP problem described
as Equations (4)–(9). Then, for each level p, a constraint c(p) on secondary
structure is constructed as follows: (i) for i,j such that ŷ(p)

ij =1, only the
base pair between xi and xj is allowed, but other base pairs that involve

xi or xj are disallowed; and (ii) for i,j such that ŷ(q)
ij =1 (q �=p), xi and xj

cannot form base pairs at the level p. The base-pairing probabilities with the
constraint c(p) can be defined as p(p)

ij =∑
y∈S ′

c(p) (x) I(yij =1)P′(y |x), where

S ′
c(p) (x)⊂S ′(x) is a set of secondary structures that satisfies the constraint

c(p). This calculation is performed by a variant of the McCaskill algorithm
in O(|x|3) time and O(|x|2) space. Finally, using the updated base-pairing
probabilities pij =∑

p p(p)
ij , we re-predict a secondary structure ŷ by solving

the IP problem. These steps are iterated until an eligible condition (e.g. the
number of iterations, the convergence of the prediction) is satisfied.

The probability distribution produced by the iterative refinement algorithm
can be regarded as a mixture of the probability distribution for each level p of
the preceding prediction of pseudoknot-free structures, which can represent a
wider space of the distribution than the individual distribution of pseudoknot-
free structures. This enables the iterative refinement algorithm to improve
the base-pairing probability matrix.

2.4 Common secondary structure prediction including
pseudoknots

It is well known that use of multiple alignments of homologous sequences
improves the accuracy of predicting RNA secondary structures due to the
alignment information such as covariation (Bernhart et al., 2008; Hamada
et al., 2011). In order to implement the prediction of common secondary
structures including pseudoknots for aligned sequences, we can apply the
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same methodology as CentroidAlifold (Hamada et al., 2011), which
employs the mixture of the RNAalifold model (Bernhart et al., 2008) and
the McCaskill model (McCaskill, 1990).

Let A be an alignment of RNA sequences that contains k sequences and
|A| denote the number of columns of A. We can calculate the base-pairing
probabilities of an individual sequence x∈A and those of the alignment A
under the McCaskill model P′(y |x) and the RNAalifold model P′(y |A):

p(x)
ij =

∑
y∈S ′(x)

I(yij =1)P′(y |x),

p(A)
ij =

∑
y∈S ′(A)

I(yij =1)P′(y |A),

each of which can be computed by the dynamic programming technique
in O(|A|3) time and O(|A|2) space. The base-pairing probabilities under the
mixed distribution can be defined as:

p∗
ij =

w

k

∑
x∈A

p(x)
ij +(1−w)p(A)

ij , (10)

where w∈[0,1] is a weight parameter (in our experiments, we fixed w=1/2).
The first term of Equation (10) contributes to the robustness against the
alignment errors, and the second term improves the probability distribution
by the covariance information on each column of the alignment.

We can predict the optimal common secondary structure including
pseudoknots for aligned RNA sequences by solving the IP problem
introduced in Section 2.2 with p∗

ij instead of pij . Note that the iterative
refinement algorithm described in Section 2.3 can work as well as the case
of individual sequences.

3 RESULTS

3.1 Implementation
Our method was implemented as a program called IPknot.
We utilized the McCaskill model (McCaskill, 1990) and the
RNAalifold model (Bernhart et al., 2008) in the Vienna
RNA package (Hofacker, 2003) to calculate base-pairing
probabilities, employing the free energy parameters estimated by
the Boltzmann likelihood method (Andronescu et al., 2010b).
We also implemented the Dirks–Pierce (D&P) model (Dirks and
Pierce, 2003, 2004) that calculates the base-pairing probabilities
including a limited class of pseudoknots in O(n5) time and
O(n4) space, where n is the length of a given sequence.
To solve the IP problem, IPknot can use the GNU
Linear Programming Kit (GLPK; http://www.gnu.org/software/
glpk/), Gurobi optimizer (http://gurobi.com/) or IBM ILOG
CPLEX optimizer (http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/). The source code of IPknot is
freely available at http://www.ncrna.org/software/ipknot/. IPknot
is also available as a web server at http://rna.naist.jp/ipknot/.

3.2 Data
We validated IPknot using three datasets of RNA sequences with
pseudoknotted secondary structures.

The first dataset was obtained from the RNA STRAND
database (Andronescu et al., 2008), which contains only carefully
curated sequences and structures. We selected the RNA sequences
with at least one pseudoknot whose length is between 140 nt and
500 nt. To reduce redundant sequences, we filtered out the sequences
that have more than 85 % identity to the other sequences. As a
result, 388 non-redundant sequences were obtained. We call this
‘RS-pk388’ dataset.

The second dataset is called ‘pk168’dataset, originally established
by Huang and Ali (2007). The pk168 dataset is compiled from
PseudoBase (van Batenburg et al., 2001), which includes 16
categories of pseudoknots. After excluding the redundant sequences
(>85% identity), the test set includes 168 sequences whose lengths
are <140 nt. This dataset was also used by recent studies (Chen et al.,
2008; Huang and Ali, 2007).

For the benchmark of prediction of common secondary structures
including pseudoknots for aligned RNA sequences, we created the
third dataset from Rfam 10.0 (Gardner et al., 2011). Only manually
curated seed alignments with consensus structures published in
literature were used. We produced 67 alignments containing five
sequences from the Rfam families that satisfy the following
conditions: (i) at least one pseudoknot is included; (ii) the length
is at most 500 nt; and (iii) at least five sequences are contained.
We call this ‘Rfam-PK’ dataset. In order to evaluate the robustness
against the alignment errors, we realigned every alignment by
ClustalW (Thompson et al., 1994), which considers no structural
information such as covariation.

3.3 Prediction of secondary structures including
pseudoknots

The experiment on the RS-pk388 dataset was conducted, comparing
our algorithm with several state-of-the-art methods that can predict
pseudoknots including ProbKnot (Bellaousov and Mathews,
2010), FlexStem (Chen et al., 2008), HotKnots (Andronescu
et al., 2010a; Ren et al., 2005), pknotsRG (Reeder and Giegerich,
2004) and ILM (Ruan et al., 2004), and those that can predict only
pseudoknot-free structures including CentroidFold (Hamada
et al., 2009a) and RNAfold (Hofacker, 2003).

For IPknot, we fixed the number of decomposed sets of
secondary substructures m=2, and varied the weight parameters for
the expected number of true positive base pairs in such a way that
γ(p) ∈{2k |k =0,1,2,3,4}. Since CentroidFold has the weight
parameters for the expected number of true positive base pairs as
well as IPknot, the same range of parameters was applied to
these two methods. For HotKnots, DP09 parameters estimated by
Andronescu et al. (2010a) were employed. For the other competitive
methods, the default settings were used.

We evaluated prediction accuracy through positive predictive
value (PPV) and sensitivity (Sen) with respect to base pairs defined
as follows:

PPV= TP

TP+FP
, Sen= TP

TP+FN
,

where TP is the number of correctly predicted base pairs, FP is the
number of incorrectly predicted base pairs, and FN is the number
of base pairs in the true structure that were not predicted.

Figure 5 shows the PPV–Sensitivity plots for respective
algorithms. Note that the sets of points with the same shape
plotted for IPknot and CentroidFold correspond to the results
obtained by changing values of the weight parameters γ(p). The
results clearly indicate that IPknot is more accurate than the
existing methods on the RS-pk388 dataset. It can also be seen that
the iterative refinement algorithm improves the prediction accuracy
of IPknot.

Since the pk168 dataset contains shorter sequences than the
RS-pk388 dataset, more accurate but computationally expensive
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Fig. 5. The PPV–Sensitivity plots of the experiment on the RS-pk388
dataset.
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Fig. 6. The PPV–Sensitivity plots of the experiment on the pk168 dataset.

prediction algorithms can be applied to this dataset. For the
pk168 dataset, we evaluated IPknot with the D&P model (Dirks
and Pierce, 2003, 2004) that calculates the exact base-pairing
probabilities including a limited class of pseudoknots. Furthermore,
our method was compared with the DP-based algorithms including
NUPACK (Dirks and Pierce, 2003, 2004) and PKNOTS (Rivas and
Eddy, 1999), as well as the competitive methods used in the previous
experiment. Figure 6 shows the accuracy on the pk168 dataset,
indicating that IPknot with the D&P model is comparable to
pknotsRG, which achieves the best accuracy.

We evaluated the time efficiency of IPknot using GLPK as
the IP solver and the competitive methods on Linux OS with
Intel Quad Core Xeon E5450 (3.0 GHz) and 32 GB memory.

Five sequences PKB229, PKB134 (from the pk168 dataset),
ASE_00193, CRW_00614 (from the RS-pk388 dataset) and
CRW_00774 (from the RNA STRAND database) were used to
measure the elapsed time to predict secondary structures. Table 1
indicates that IPknot is significantly faster than the existing
algorithms for predicting pseudoknotted secondary structures. It
should be noted that the reason why IPknot with the D&P model
takes long running time is not due to solving the IP problem but
due to computing the exact base-pairing probabilities that consider
pseudoknots.

3.4 Prediction of common secondary structures
including pseudoknots

A few number of algorithms for common secondary structure
prediction with pseudoknots have been available. In this experiment,
we compared IPknot with hxmatch (Witwer et al., 2004) and
ILM (Ruan et al., 2004) for pseudoknotted common secondary
structure prediction in addition to CentroidAlifold (Hamada
et al., 2011) and RNAalifold (Bernhart et al., 2008) for
pseudoknot-free common secondary structure prediction. We
evaluated the accuracy through PPV and sensitivity for common
secondary structures by mapping them to the individual sequences
in the multiple alignments. The experimental results are shown in
Figure 7. For the hand-curated reference alignments, hxmatch and
IPknot with the iterative refinement algorithm achieve almost the
same level of accuracy (see Fig. 7a). However, the alignments of low
quality produced by ClustalW cause significantly worse accuracy
of hxmatch compared with IPknot (Fig. 7b). Furthermore,
in the Supplementary paper, the results of the experiments on
multiple alignments produced by ProbCons (Do et al, 2005)
optimized for non-coding RNAs (called ProbConsRNA) and
CentroidAlign (Hamada et al., 2009b) for RNA structural
alignments are shown in Supplementary Figure S3. These results
suggest that IPknot has the robustness against the alignment errors
compared with the existing methods such as hxmatch and ILM.

4 DISCUSSION
IPknot predicts a pseudoknotted secondary structure that
maximizes the approximate expected gain function (3), which
represents the expectation of the (weighted) number of true
predictions of base pairs under a given probability distribution. We
can regard this approach as maximizing expected accuracy, which
has been successfully applied into various problems (Carvalho and
Lawrence, 2008; Do et al, 2005; Do et al., 2006, 2008; Hamada
et al., 2009a, b, 2010, 2011; Kato et al., 2010; Knudsen and Hein,
2003). Recent studies have revealed that MEA-based methods can
achieve more accurate predictions than other methods such as the
maximum a posterior (MAP)-based and MFE-based methods, even
from the same probability distribution. In fact, as shown in Figure 6,
IPknot with the D&P model is much superior to NUPACK, both of
which employ the same probability distribution (the D&P model)
but different in decoding algorithms (based on MEA and MFE,
respectively).

The threshold cut technique that enables IPknot to run fast
is derived from Equation (3), which suggests that too large
γ(p) is not suitable for the balanced accuracy measures such as
Matthews Correlation Coefficient (MCC) and F-measure. It should
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Table 1. Comparison of time performance between different algorithms

ID PKB229 PKB134 ASE_00193 CRW_00614 CRW_00774
length (nt) 67 137 301 494 989

IPknot
(without refinement) 0.01 s 0.04 s 0.19 s 0.63 s 6.40 s
(with refinement) 0.01 s 0.05 s 0.28 s 0.94 s 18.0 s
(with D&P model) 8.63 s 8 m 26 s N/A N/A N/A

ProbKnot 0.06 s 0.32 s 4.52 s 23.5 s 1 m 58 s
FlexStem 0.49 s 0.68 s 5.24 s 1 m 5 s 15 m 28 s
HotKnots 4.24 s 44.0 s 32 m 12 s 125 m 5 s 133 m 10 s
pknotsRG 0.02 s 0.28 s 3.29 s 24.1 s 6 m 50 s
ILM 0.02 s 0.12 s 0.21 s 1.32 s 23.9 s
NUPACK 1.91 s 24.1 s N/A N/A N/A
CentroidFold 0.01 s 0.04 s 0.19 s 0.59 s 6.36 s
RNAfold <0.01 s 0.01 s 0.07 s 0.21 s 0.85 s

N/A means that we were unable to complete calculation on our machine.
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Fig. 7. The PPV–Sensitivity plots of the experiment on the Rfam-PK dataset. (a) The results for reference alignments. (b) The results for sequence-based
alignments produced by Clustal W.

be emphasized that base pairs whose probability is less than the
threshold will make the accuracy degenerate in expectation. Using
the threshold cut technique, IPknot as well as RactIP (Kato
et al., 2010) makes the IP problem so sparse that practical problems
such as RNA pseudoknotted secondary structure prediction and
RNA–RNA joint secondary structure prediction can be solved
even by the IP solver that is freely available but inferior in
performance.

Comparative experiments with the existing methods on single
RNA sequences show that IPknot produces better predictions
in accuracy on long RNA sequences, whereas its relative
accuracy drops on short sequences, especially for IPknot without
refinement. One possible explanation for these results is that for short
sequences, many base pairs with high probabilities are likely to be

predicted at the level 1, resulting in scarcity of base pairs predicted at
the level 2. Nevertheless, the iterative refinement algorithm enhances
the base-pairing probabilities at the level 2 by masking the base pairs
predicted at the level 1, leading to improve prediction accuracy on
short sequences.

As shown in Section 3.4, IPknot can perform robust predictions
of consensus structures when a multiple alignment of RNA
sequences is given. This is mainly due to use of Equation (10)
that represents the mixture distribution of sequence-based and
alignment-based probabilities. Unlike the competitive methods
based only on covariance information, the averaged base-pairing
probabilities described in the first term of Equation (10) play
an important role in keeping the quality of prediction when the
alignment quality gets worse.
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IPknot has several parameters that users should select, including
the weights for true positive base pairs at the level p (γ(p) in
Equation (3)), the number of decomposed levels of pseudoknots,
and the number of iterations of the iterative refinement algorithm. As
well as CentroidFold and CentroidAlifold, the weights
γ(p) for true positive base pairs control the balance of PPV and
sensitivity. Since a set of larger γ(p) predicts more base pairs,
sensitivity will increase. However, false positive base pairs will
also increase and thus will make PPV decrease. Furthermore, the
threshold values of the base-pairing probabilities to consider in the
object function (4) depend on γ(p). This means that if we select too
large γ(p), the performance of IPknot will degenerate since the IP
problem to solve enlarges. Therefore, it is a crucial issue to determine
appropriate parameters γ(p), although we showed the results on
several sets of γ(p) in this article. To this end, we can take two
approaches. First, use of the best pseudo-expected MCC (Hamada
et al., 2010) among several sets of γ(p) can be mentioned. The
pseudo-expected MCC is a good approximation of expected MCC,
which can be calculated from the base-pairing probabilities. As the
second approach, we can use machine learning techniques such as
the max-margin method (Do et al., 2008), which will adopt the
parameters to given training datasets.

As shown in Section 3, the improved base-pairing probability
matrices by the iterative refinement algorithm made the prediction
accuracy much elevated, especially for short sequences. In these
experiments, relatively small γ(p) such as a pair of γ(1) =1 and
γ(2) =1 achieved favorable performance, suggesting that use of
only probable base pairs predicted by large thresholds at the
first step would produce reliable base-pairing probabilities for
the second step. Another important factor in the performance of
IPknot is the number of iterations of the iterative refinement
algorithm. Significant improvement was observed when applying
the refinement algorithm once as compared with no refinement. On
the other hand, we could not find meaningful difference between
running the algorithm once and twice as shown in Supplementary
Figure S4. Since each iteration is a time-consuming procedure, it
seems reasonable to suppose that performing the iteration algorithm
once is sufficient.

The maximum complexity of a secondary structure predicted
by IPknot is restricted by the number m of decomposed levels
of pseudoknots, which is also called an m-partite RNA secondary
structure (Jiang et al., 2010), defined as the union of m pseudoknot-
free substructures. A recent study has implied that most known RNA
secondary structures are either bipartite or tripartite, i.e. m-partite
for m=2 or 3 (Rødland, 2006). Supplementary Figure S5 in the
supplementary paper shows the experiments on the RS-pkfree141
(pseudoknot-free) dataset and the RS-pk388 (pseudoknotted) dataset
for the maximum decomposed level m=1,2,3. Note again that
CentroidFold is equivalent to IPknot with the maximum
decomposed level m=1. It can be observed that the selection
of a conflicting level between predicted structures and correct
structures causes the degradation of the accuracy compared with
the best results. For example, for the pseudoknot-free dataset,
IPknot with the maximum decomposed level m=3 and the
iterative refinement algorithm cut down the accuracy compared
with CentroidFold because of increasing false positive base
pairs. These results indicate that the appropriate number of
decomposed levels should be selected, although correct structures
might be unknown. Rødland (2006) has revealed that among the

hundreds of known RNA secondary structures with pseudoknots
in PseudoBase (van Batenburg et al., 2001), only one structure is
tripartite and others are all bipartite. This fact suggests that IPknot
will work satisfactorily on average if we select the number of
decomposed levels m=2.

5 CONCLUSION
We proposed a new computational method IPknot for predicting
RNA secondary structures with a wide class of pseudoknots, which
can take either a single sequence or aligned sequences as input. We
demonstrated using a variety of structural datasets that IPknot is
sufficiently fast and accurate as a computational prediction tool for
both single sequence analysis and comparative sequence analysis.

Prediction accuracy of IPknot depends mainly on its scoring
functions even though the method uses the approximate probability
distribution for pseudoknotted structures. In fact, experimental
results revealed that IPknot with the base-pairing probabilities
computed by heuristic refinement produces much better predictions
than that without refinement. Moreover, when we adopted the exact
probabilities for pseudoknots, a significant improvement in accuracy
was confirmed, though much computation time was spent on the
predictions. Considering these results, there is room for further
investigation into refinement of the scoring functions that make
prediction accuracy compatible with running time.

Another important fact to stress is that IPknot can run quite fast
even on a relatively long sequence less than one thousand bases. This
is attributed to use of both approximation of a probability distribution
for pseudoknots and integer programming with threshold cut based
on maximizing expected accuracy. As described in Section 1,
prediction methods with satisfying speed and accuracy are useful for
finding functional non-coding RNA genes from genome sequences.
Making skillful use of the speed and accuracy of our method,
exhaustive search for genes of non-coding RNAs that may form
pseudoknots is a worthwhile task as another future work.
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