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ABSTRACT

Motivation: Next-generation sequencing techniques allow us to
generate reads from a microbial environment in order to analyze the
microbial community. However, assembling of a set of mixed reads
from different species to form contigs is a bottleneck of metagenomic
research. Although there are many assemblers for assembling reads
from a single genome, there are no assemblers for assembling
reads in metagenomic data without reference genome sequences.
Moreover, the performances of these assemblers on metagenomic
data are far from satisfactory, because of the existence of common
regions in the genomes of subspecies and species, which make the
assembly problem much more complicated.
Results: We introduce the Meta-IDBA algorithm for assembling
reads in metagenomic data, which contain multiple genomes from
different species. There are two core steps in Meta-IDBA. It first
tries to partition the de Bruijn graph into isolated components of
different species based on an important observation. Then, for
each component, it captures the slight variants of the genomes
of subspecies from the same species by multiple alignments and
represents the genome of one species, using a consensus sequence.
Comparison of the performances of Meta-IDBA and existing
assemblers, such as Velvet and Abyss for different metagenomic
datasets shows that Meta-IDBA can reconstruct longer contigs with
similar accuracy.
Availability: Meta-IDBA toolkit is available at our website
http://www.cs.hku.hk/∼alse/metaidba.
Contact: chin@cs.hku.hk

1 INTRODUCTION
Metagenomic research studies the genetic information in an entire
microbial community. It plays an important role in microbiology
because over 99% of microbes can neither be isolated nor
cultured (Wooley et al., 2010). Recent advances in next-generation
sequencing technology allow us to generate reads from genomes of
multiple species in these samples in an effective manner. The set
of reads obtained is very complicated which makes the assembling
of genomes of species that exist in the sample extremely difficult.
There are two main approaches to study reads from these samples.
One is to group (called binning) the reads according to some
biological markers or structural features (Huson et al., 2007; Krause
et al., 2008; Yang et al., 2010). Then, reads belonging to different
species are studied. The other is to deduce the potential biological
functions of the whole community by studying the reads directly
using gene prediction or function annotation (Mavromatis et al.,
2007; Qin et al., 2010; Wooley et al., 2010). Since the reads from the
next-generation sequencing technologies are still relatively short, it
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is more effective if longer contigs can be constructed from the reads
before conducting the study even though we are not able to assemble
the genome of every species. High quality assembly results of the
contigs are desirable in both approaches. If the assembled contigs
are short and erroneous, the accuracy of binning, gene prediction,
function annotation, etc. will be impaired. Thus, assemblers that can
generate longer and more accurate contigs will definitely facilitate
the study of metagenomic data.

If similar reference genomes exist in the database, one can
assemble reads by first aligning them to the reference genomes
(Gnerre et al., 2009). However, as over 90% of microbes in
metagenomic data are unknown (Wooley et al., 2010), de novo
assemblers are needed to assemble reads without any reference
genomes. To our knowledge, currently there are no de novo
metagenome-specific assemblers available. Assemblers such as
EULER (Chaisson et al., 2009; Chaisson and Pevzner, 2008;
Pevzner et al., 2001), Velvet (Zerbino and Birney, 2008; Zerbino
et al., 2009), Abyss (Simpson et al., 2009), SOAPdenovo (Li et al.,
2010) are for single genome, but are used in metagenomic study
(Wooley et al., 2010). All these assemblers are based on the de
Bruijn graph (Pevzner et al., 2001), which is a common approach to
perform de novo assembly. In the de Bruijn graph, a vertex represents
a length-k substring called k-mer and an edge connecting vertices u
and v represents u and v appearing consecutively in a read. All these
assemblers generate the de Bruijn graph from reads, and then apply
some error removal methods (Simpson et al., 2009; Zerbino and
Birney, 2008), e.g. removing tips and merging bubbles, to modify
the graph based on its topological structure. Simple paths in the
graph are outputted as contigs and paired-end information might be
applied to further merge the contigs.

These existing assemblers do not work well for metagenomic
datasets, except for some very small datasets containing specific
species (Pop, 2009). Two main properties of a reasonably
complicated metagenomic dataset make these assemblers fail to
produce long contigs: (i) polymorphisms among similar subspecies
and common genomic regions shared by different species; and (ii)
uneven abundance ratios of species in a sample. The polymorphism
of similar subspecies, especially subspecies of the same species,
consists of very similar sequences with few variations (single
nucleotide variation, short insertion or deletion or genomic
rearrangements, etc.) and each variation introduces a branch in
the de Bruijn graph (we call these branches sp-branches). Another
source of branches is due to the common or similar genomic regions,
say housekeeping genes, shared by different species (we call these
branches cr-branches). These two types of branches, which do
not exist when assembling single genomes, would make the de
Bruijn graph for metagenomic data very complicated. Since existing
assemblers output simple paths in the graph as contigs, these extra
branches caused by common regions in different species prevent the
construction of long contigs.
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Fig. 1. A component in de Bruijn graph of five E.coli subspecies.

Some assemblers resolve branches by merging similar sequences
as bubbles into one sequence. A bubble is defined as several similar
paths with the same start vertex and the same end vertex (Zerbino
and Birney, 2008) in the de Bruijn graph. Bubble merging helps to
merge similar regions and reduce complexity of the de Bruijn graph.
An important assumption used by assemblers to remove bubbles for
single genome assembly is that the bubble is caused by a few single
nucleotide polymorphisms (SNP) or errors in reads; thus, the simple
paths inside a bubble are very similar, except for a few nucleotides.
However, the ‘bubbles’ found in the graph for metagenomic dataset
do not follow this assumption. Different bubbles mix together
to make the start vertex and the end vertex very difficult to be
identified. Some of these bubbles are formed by a mixture of sp-
and cr-branches. Figure 1 shows an example of this phenomenon in
which every simple path is contracted into a vertex for visualization.
All branches at a vertex in this graph normally lead to some other
vertex in the same component, but it is uncertain that these are
bubbles for merging. If we look closer at these bubbles, even if
the bubble is formed only by sp-branches (because of variations
in subspecies), the multiple paths inside the bubble may differ a
lot (maybe with larger insertion/deletion). Existing approaches for
merging bubbles for single genome assembly do not work for this
case; thus, they will fail to resolve these ‘bubbles’ and are unable
to construct long contigs. Even if all bubbles can be identified, it is
not easy to merge them together to form a consensus.

To resolve branches in a de Bruijn graph, existing assemblers also
try to use paired-end information to help find paths with paired-end
reads support so as to eliminate those branches caused by erroneous
reads and to construct longer contigs. In the case of multiple
subspecies, each path will have a lot of support since they are
not caused by erroneous reads, but variations in subspecies and the
assemblers are not able to resolve these branches easily. Moreover,
since the contigs are short, applying paired-end information becomes
difficult, because usually paired-end information can only be applied
to connect long contigs.

To show the complexity of a de Bruijn graph for metagenomic
dataset, Table 1 compares graphs and assembly results of simulated
reads sampled from a single genome (Escherichia coli 536) and from
five different E.coli subspecies genomes. Table 1 shows that the five
E.coli subspecies contain about twice the number of k-mers as that
of a single E.coli subspecies, but 150 times more branches as that of
single subspecies. This makes the graph complicated and genome
assembly difficult. In fact, the performance of all the assemblers is
poor when there are a lot of subspecies. The N50 values of Velvet ,
Abyss and SOAPdenovo drop from 178 914, 32 440 and 125 404 bp
for single genome data to 875, 849 and 713 bp, respectively, for
metagenomic data with five subspecies. Uneven abundance ratios in
metagenomic data introduce another problem in assembly, because
existing assemblers cannot distinguish erroroneous reads sampled
from genomes with high abundance ratios and reads from genomes

Table 1. Assembly results of E.coli 563 and five E.coli subspecies

Assembler E.coli 536 Five E.coli subspecies

Perfect de Bruijn graph Assembler
k 50 50

No. of k-mers 4859649 11533119
No. of branches 810 130045

Velvet
No. of contigs 226 13516
N50 178914 875
Coverage (%) 99.33 90.24

Abyss
No. of contigs 337 27428
N50 32440 849
Coverage (%) 99.77 94.15

SOAPdenovo
No. of contigs 247 21589
N50 125404 713
Coverage (%) 99.81 94.20

Meta-IDBA
No. of contigs 256 9292
N50 122317 5781
Coverage (%) 99.64 88.37

Simulated length-75 reads are sampled randomly from references with 1% error and
250 insert distance with a depth of 30. The value of k is set to 50 for all assemblers.

with low abundance ratios. Thus, it is difficult to identify species
with the low abundance ratios.

Resolving the branches (both sp- and cr-branches) in the graph
is one of the key issues for solving the problem of metagenomic
assembly. In this article, we focus on this issue. We remark that the
issue of uneven abundance ratios of subspecies is also very important
and difficult to solve and demands dedicated research effort.

Conceptually, we look at the problem from the following
perspective. The cr-branches (caused by common regions in
different species) should be removed to isolate one species from
another. For sp-branches, since they are caused by variations of
subspecies, instead of producing separate contigs for individual
subspecies, it is preferable to represent possible variations (e.g.
insertion) of similar sequences. The core of our proposed
metagenomic assembler, Meta-IDBA, has two steps. The first step is
to identify and remove cr-branches in the de Bruijn graph leaving a
set of connected components, each of which hopefully corresponds
to a set of subspecies of the same species. The second step is to
transform each component into a multiple alignment with consensus
so as to represent the contigs of different subspecies of the same
species.

To distinguish cr-branches from sp-branches, the main idea is
based on the fact that the genome sequences of subspecies in the
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Table 2. k-mer Similarity (k =50) in different taxonomic level

Species Genus Family Order Class Phylum

Similarity (%) 63.2 7.3 2.3 0.06 0.02 0.01

For each level, 1000 pairs of subspecies with lowest common ancestor of that level are
generated randomly for k-mer similarity calculation.

same species are more similar than those from different species.
Thus, more common k-mers are shared by the genome sequences
of subspecies of the same species. Table 2 summarizes the k-mer
similarity between subspecies within different taxonomic levels. The
similarity inside the same species is much higher than that of the
genus. Sixty percent similarity means that on average two k-mers
of a subspecies will share at least one with another subspecies.
Moreover, although the average similarity at the genus level is 7.3%,
the common k-mers concentrate at some common regions, shared by
different species, and is <1% at other regions. Nevertheless, reads
from species further apart in higher taxonomic levels will share
fewer k-mers.

Similar observations are also made in Fofanov et al. (2004) that
a k-mer, with k ≥20, tends to occur uniquely in the genome of
a single species. Therefore in the de Bruijn graph, sp-branches
started from a common k-mer in similar subspecies usually have
(converge to) another common k-mer within a short distance, while
cr-branches started from a common k-mer in multiple species seldom
have another common k-mer within a short distance. By removing
those branches that cannot converge to another k-mer within a short
distance, the genome of a species with several subspecies can be
represented by connected components in the de Bruijn graph, where
each component represents similar contigs in the genomes from
similar subspecies. As the contigs for each subspecies in the same
component are with slight differences, a consensus contig can be
found by multiple alignment (to capture the variations of the genome
of the subspecies) to represent the genome of the species. Thus,
instead of outputting simple paths in the de Bruijn graph to represent
contigs, connected components representing consensus contigs of
species will be output. As shown in Table 1, our assembler called
Meta-IDBA is more effective in assembling reads in metagenomic
data, where the N50 of Meta-IDBA is 5781 bp, about seven times
longer than those of Velvet, Abyss and SOAPdenovo. We agree that
the improvement in contig lengths mainly stems from the multiple
alignment with consensus representation of the components, which
seems to be a more appropriate output for contigs belonging to
different subspecies due to variations. Moreover, if the similar
regions cannot be separated, it will be too expensive to do multiple
alignment among resulting contigs. To summarize, our work has two
major contributions: to isolate components that derive from similar
subspecies of the same species in the complicated de Bruijn graph
of a metagenomic dataset; and to report the contigs of the subspecies
using multiple alignment to highlight possible variants.

2 METHODS
In this section, we will describe our algorithm, Meta-IDBA, for assembling
reads from multiple genomes of subspecies in different species. There are
two main steps in Meta-IDBA as shown in Figure 2. Initially (Step 1)
sequencing reads are used to construct a de Bruijn graph using any de

Fig. 2. Workflow of Meta-IDBA algorithm.

Bruijn graph-based assembler (Chaisson and Pevzner, 2008; Peng et al.,
2010; Simpson et al., 2009; Zerbino and Birney, 2008). Each simple path in
the de Bruijn graph might represent a contig of the genome of some species
or subspecies. As there are some sequences appearing in multiple species,
the de Bruijn graph of reads from different species are interconnected by
cr-branches. In the second step (Step 2), based on the assumption that the
genomes of subspecies from the same species share more similar regions
than the genomes of subspecies from different species, Meta-IDBA divides
the de Bruijn graph into many small connected components by removing cr-
branches.As the genome sequences of subspecies even from the same species
are not exactly the same, the consensus contig may not be represented by a
simple path in the de Bruijn graph, but may be represented by a component
with multiple paths (due to sp-branches) from a source vertex to a single
sink vertex, so as to confine the variations of the similar regions in each
genome. These small components are then merged into bigger components,
which represent longer consensus contigs using paired-end reads (Step 3).
In the last step of Meta-IDBA (Step 4), each component is transformed to a
multiple alignment of similar contigs of different subspecies from the same
species. The consensus contig, which represents the similar contigs of the
subspecies in a species, is found. The steps of Meta-IDBA will be described
in detail in the following sections.
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2.1 Construct de Bruijn graph
Any genome assembler based on the de Bruijn graph approach (Chaisson
et al., 2009; Peng et al., 2010; Pevzner et al., 2001; Simpson et al., 2009;
Zerbino and Birney, 2008) can be used to assemble reads to form contigs as
if the reads were from a single genome. The de Bruijn graph-based algorithm
first divides each reads into length-k substrings called k-mers. Each k-mer
is represented by a vertex in the de Bruijn graph. There is an edge from u to
v if the length k−1 suffix of k-mer u is the same as the length k−1 prefix
of k-mer v and k-mers u and v occur adjacently in at least one read. In the
single genome assembly problem, each simple path in the de Bruijn graph
represents a contig of the genome and each branch represents a repeat region
in the genome or an error in the read. The IDBA genome assembler (Peng
et al., 2010) is used in our implementation as IDBA iteratively increases
the value of k and removes k-mers with few supports from reads, more
branches can be resolved and longer contigs of the genome can be obtained.
However, metagenomic data contains read from genomes of multiple species,
and the sp- and cr-branches in the de Bruijn graph represent common regions
occurring in genomes of different species or subspecies. These kinds of
branches cannot be removed by the single genome assembler and thus very
short contigs will be produced especially for samples with many subspecies
of the same species. Thus, additional steps are required for resolving these
branches.

2.2 Divide graph into connected components
Based on the well-accepted idea (Pop, 2009) that genomes of subspecies in
the same species are more similar than genomes of subspecies from different
species, Meta-IDBA divides the de Bruijn graph into connected components
such that each component represents a consensus contig of a species. With
the assumption that genomes of subspecies from the same species are very
similar, there are many similar regions along the genome, where common
k-mers (e.g. k =50) do not appear too distinct and at least one common k-
mer exists within a relative short region of length w (e.g. w=300 bp). On the
other hand, the genomes of subspecies from different species seldom contain
a common k-mer so frequently. Based on this assumption, we divide the de
Bruijn graph into components by solving the following graph partitioning
algorithm.

Graph partition problem: given a directed graph G, the graph partition
problem is to partition the graph into maximal connected components that
satisfy the following property. For each vertex u in a component C, there is
another vertex v in C such that: (i) starting from each out-going edge e of
u, there is at least a path from u to v in C with length at most w; or (ii) for
every in-coming edge e of u, there is at least a path from v to u in C with
length at most w.

The idea behind the formulation of the graph partition problem is as
follows. If a k-mer u can reach another k-mer v in a de Bruijn graph through
a path of length at most w starting from each of its out-going edges (or vice
versa), k-mers u and v are likely to occur in the genomes of subspecies from
the same species, which represent high similarity among the genomes of the
subspecies. Otherwise, k-mers u and v may occur in genomes of different
species and they should be separated.

The graph partition problem can be solved by a greedy algorithm, which
repeatedly checks all out-going (in-coming) edges of each vertex. If there
are no paths of length at most w starting from (ending with) the out-going
(in-coming) edges of a vertex u that ends with (start from) another vertex
v, all the out-going (in-coming) edges of vertex u are removed from the de
Bruijn graph. The removing process will be repeated until all components
satisfy our requirements. The correctness of this greedy algorithm is proved
in Theorem 1. The process will remove the cr-branches as well as some of
the sp-branches, resulting in many small connected components with close
common regions (k-mers) representing consensus contigs of a single species.

Theorem 1. The greedy algorithm solves the graph partition problem.

Proof. By induction of the number of removing edges. When the first
edge e1 = (u1,u′

1) is removed by the greedy algorithm, edge e1 should not be

in any component, because either there is no vertex v such that all out-going
edges of u1 can access v in a path in G with length at most w or there is no
vertex u such that u can access u′

1 by paths in G with length at most w that
end with each in-coming edges of u′

1. Consider the k-th edge ek = (uk,u′
k)

removed by the greedy algorithm. Either there is no vertex v such that all
out-going edges of uk can access v in a path in G/{e1,...,ek−1} with length
at most w or there is no vertex u such that u can access u′

1 by paths in
G/{e1,...,ek−1} with length at most w that end with each in-coming edges
of u′

k . Since the edges e1,...,ek−1 are not in any component, edge ek should
not be in any component. �

2.3 Connect components by paired-end reads
After solving the graph partition problem, larger components may be broken
down into smaller components, because of the erroneous reads and common
regions among different species and each component will represent a
consensus contig of subspecies from a single species. Meta-IDBA merges
the components into larger components using paired-end reads. A paired-end
read represents two reads appearing in the same genome with known order
and distance (insert distance). One end of a paired-end read is considered
to appear in a component if a k-mer of the read appears in the component.
If the two ends of a paired-end read appear in different components, the
paired-end read is considered as a support that the two components should
be merged into a larger component. Meta-IDBA merges the components if
there are at least α (e.g. α=10) supports from paired-end reads and the
two components are connected by the shortest path, which matches with
the insert distance of the pair-end reads only if the merging is unambiguous
(i.e. the merging will not be performed if a component has enough supports
to connect to more than one component). Moreover, only the components
with consensus contig longer than insert distance are considered in this
procedure, because otherwise a component caused by a repeat region shorter
than insert distance will be connected to multiple components with enough
supports.

2.4 Construct multiple alignment and consensus
contigs

Since the genomes of the subspecies from the same species are similar
with small variants, it is very difficult to determine long contigs (simple
path) from each subspecies, because these contigs are interconnected in
the de Bruijn graph. Instead of representing a contig of a species by a
simple path, a consensus contig of the species (which has many subspecies)
is represented by a component, which is usually a direct acyclic graph
(with exception when there is repeat region in the contig) to capture the
small variants among the genomes of different subspecies in the same
species. Each simple path in the component represents a short contig of
a subspecies and the relative positions of these short contigs can be obtained
from the structure of the directed acyclic graph. In order to obtain a
contig of a single species from the component, multiple alignment of the
short contigs represented by simple paths is performed. Meta-IDBA starts
with an alignment of some short simple subpaths at the source vertex
of the component and progressively constructs the alignments of longer
contigs with reference to the longest subpath, because it provides more
information of the genomes of the subspecies than the short subpaths with
deletions. As the relative position of each simple path can be determined, the
alignment between each simple subpath can be found locally. Finally, each
component is represented by a consensus contig obtained through multiple
alignment.

3 RESULTS

3.1 Simulated data
To compare the performance of Meta-IDBA with the other
assemblers, we constructed three datasets with different
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Table 3. The compositions and experiment results of simulated datasets

Features Low-complexity Medium-complexity High-complexity

Taxonomic level ≤ Genus ≤ Family ≤ Class
No. of species 2 5 10
No. of cases 10 10 5
Expression level Uniform Log normal Uniform Log normal Uniform Log normal

Meta-IDBA
Component accuracy (%) 98.82 98.80 98.32 98.16 99.35 99.1
N50 18 729 20 689 11 111 14 610 8246 9553
Coverage (%) 91.76 89.20 87.39 81.62 91.47 84.16
No. of contigs 2674 2180 13 627 7716 55 249 38 500
No. of bases 5 418 695 5 223 474 20 615 422 17 644 012 68 465 188 58 088 054
No. of error contigs 9 9 26 21 90 223
No. of error bases 57 645 44 427 115 050 82 159 336 429 371 334
Time (min) 12.5 12.1 54.1 55.2 120.1 115.7

Velvet
N50 11 437 9771 3356 3433 1983 1997
Coverage (%) 87.29 83.70 86.83 84.88 92.39 75.77
No. of contigs 2309 2230 12 839 11 208 106 917 37 567
No. of bases 4 876 110 4 674 621 15 824 798 16 017 085 70 072 915 44 948 173
No. of error contigs 9 7 16 14 196 59
No. of error bases 54 364 34 796 62 470 70 148 401 434 230 525
Time (min) 16.8 15.2 44.7 45.0 96.4 95.8

Abyss
N50 2395 3608 1188 1570 1484 2511
Coverage (%) 95.06 93.40 93.80 88.97 94.56 86.53
No. of contigs 10 724 8448 48 409 35 796 123 583 85 837
No. of bases 8 199 665 8 151 930 31 072 592 26 252 905 94 857 363 81 759 539
No. of error contigs 15 20 45 42 426 389
No. of error bases 24 035 22 733 43 112 39 118 173 856 163 246
Time (min) 38.3 37.5 147.7 145.7 319.0 323.1

SOAPdenovo
N50 7457 8233 2502 2171 1806 1351
Coverage (%) 93.57 93.91 94.97 93.77 97.27 87.37
No. of contigs 7742 7566 42 158 41 446 124 756 116 723
No. of bases 6 253 699 6 210 923 25 421 067 24 160 482 80 261 153 63 438 459
No. of error contigs 6 7 20 26 94 159
No. of error bases 16 337 28 987 57 283 60 601 185 439 160 779
Time (min) 11.3 10.2 39.8 37.6 84.7 85.1

complexities. The NCBI RefSeq (Pruitt et al., 2009) database
was used for generating the simulated sequencing reads. Table 3
summarizes the composition and experiment result of each dataset.

For low-complexity datasets, two species, each having at least
two subspecies within a genus, were selected. Length-75 sequencing
reads were sampled from the selected reference genome at 30×
depth. In all datasets, the error rate and insert distance were set to
1% and 250, respectively. Medium-complexity and high-complexity
datasets were generated similarly according to the properties shown
in Table 3. Two distributions of abundance ratios were used to
generate simulated sequencing reads. The first one was uniform
distribution, for a situation without uneven abundance ratios. The
other one was log normal distribution, since some research on
species richness estimation in metagenomic data shows that log
normal distribution fits the data well (Hong et al., 2006; Youssef
and Elshahed, 2008).

For comparison, Velvet, Abyss, SOAPdenovo and Meta-IDBA
were executed on the above three datasets. In all experiments, the k-
value of the de Bruijn graph was set to 50. Default values were
used for all assemblers, except option ‘-M 3 -F’ is activated to
merge similar regions for SOAPdenovo. The quality of assembler
output was measured in three aspects on resultant contigs: N50
for contiguity, coverage for completeness and number of erroneous
bases for accuracy. If the assembler generates scaffolds with
wildcard nucleotide symbol ‘N’ inside, the ‘N’ will be removed
to split the scaffolds into contigs. Correctness was checked by
alignment, and a contig is considered as correct if it can be aligned
to a reference with 95% similarity by BLAT (Kent, 2002). The
95% similarity means that the sum of mismatch bases and the
in-del length should not be >5% of a contig. In the calculation
of N50 and coverage, only correct contigs are considered. For
Meta-IDBA, one more measure, is considered. The component
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Fig. 3. Experiment results of low-complexity datasets.

Fig. 4. Experiment results of medium-complexity datasets.

accuracy indicates how accurate graph separation method works.
A component is considered as correct only if 95% of the bases,
inside one component, are actually from the same species. The
experimental results for datasets of different complexities are shown
in Figures 3–5, and the average values of all measurements are
summarized in Table 3.

For the low-complexity dataset, Meta-IDBA had the longest N50
in most cases, i.e. about ≥1.5 times that of Velvet, Abyss and
SOAPdenovo. In a few cases, Velvet had similar or better N50
than Meta-IDBA, because the graph separation algorithm in Meta-
IDBA partitioned some parts of the graph into components which
could be better handled by bubble merging for low-complexity
datasets. When considering coverage, all the assemblers had similar
performances. In general, Abyss and SOAPdenovo had slightly
better coverage and produced more contigs. Velvet and Meta-
IDBA had similar numbers of erroneous contigs, which are a little
more than Abyss and SOAPdenovo generated. Component accuracy
showed that Meta-IDBA can separate contigs from different
species accurately. When considering log normal distribution, it
is interesting to note that N50 of the assembly results increased
in some cases. This is because some subspecies, having low

coverage after introducing different abundance ratios, can be
considered removed from the dataset, reducing the complexity
of the dataset. Consequently, the resultant contigs from the other
similar species did not form complicated components. Overall, the
N50 of Meta-IDBA for the log normal distribution was always
better than that of the uniform distribution, because we applied
the de Bruijn graph based assembler IDBA (Peng et al., 2010),
which does not rely on the read coverage of the genome very
much.

For medium-complexity datasets, Meta-IDBA always gave the
best N50 among all assemblers. This means Meta-IDBA is able to
group similar regions from different subspecies of the same species
together effectively when the complexity of graph increases, while
the bubble merging method failed in this situation. The performances
of all assemblers in coverage and accuracy were similar to those of
low-complexity data.

The performance of the high-complexity datasets further
confirmed that Meta-IDBA can handle complicated graphs. The N50
of the other assemblers is much shorter, while that of Meta-IDBA
only decreased slightly. The other measures remained similar as
before.
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Fig. 5. Experiment results of high-complexity datasets.

Table 4. Experimental results of real data

Assembler No. of contigs Total bases N50 Maximum

Meta-IDBA 121 924 74 493 748 2380 371 462
Velvet 199 310 80 297 709 738 207 709
Abyss 203 983 102 106 241 956 121 166
SOAPdenovo 271 500 110 655 983 591 367 374

All the experiments were executed in an eight-core machine with
144 GB memory. The runtime of Meta-IDBA and Velvet shown in
Table 3 is more or less the same, but shorter than that of Abyss.

3.2 Real data
A real metagenomic sequencing dataset (SRX024329) from
NCBI (http://www.ncbi.nlm.nih.gov/) was used to evaluate the
performance of all assemblers in practice. It is a human metagenome
sample from the G_DNA_Tongue dorsum of a female participant
in the dbGaP study ‘HMP Core Microbiome Sampling Protocol
A (HMP-A)’. Meta-IDBA provided the longest contigs among the
assemblers (Table 4). It is difficult to access the accuracy of these
results, since there are no references for most of the species in the real
dataset. However, based on the results of simulated experiments, we
have high confidence that Meta-IDBA can produce correct contigs
and components.

3.3 Multiple alignment of component
In the last step of Meta-IDBA, multiple alignments are performed
among contigs in each component. Because of the restrictive
properties of the components, all contigs in one component represent
similar subsequences in some subspecies of the same species.
Figure 6 presents part of the multiple alignment of a component from
five E.coli subspecies, which shows similar contigs with a small
number of variants. We can confirm confidently that the multiple

alignment, as shown in Figure 6, represents contigs from similar
subspecies.

4 DISCUSSION AND CONCLUSION
We tackled the assembly difficulty caused by the polymorphism in
similar species in the metagenomic environment. Similar regions
between species make the de Bruijn graph more complicated.
Based on the observation that the genomes of subspecies from the
same species share much more common k-mers than the genomes
of subspecies from different species, we define the component
to present the similar regions among subspecies from the same
species. The assembly problem can then be modeled as a graph
partition problem. After that, we designed an algorithm to identify
the components from de Bruijn graph. Finally, paired-end reads are
used to further connect components together.

Experiments on datasets of different complexities showed that
Meta-IDBA can usually produce the longest contigs with similar
accuracy and coverage when compared with other assemblers,
especially for high-complexity datasets which contain more
branches since there are more genomes in the dataset. Besides
reconstructing longer contig, Meta-IDBA provides a multiple
alignment of similar contigs from different subspecies in the
same species, which represents the variants among genomes of
these subspecies. The multiple alignment may be used to study
the structural variations of genomes of different subspecies or
determine conserved regions, which have biological functions for
the subspecies. As the multiple alignments are constructed by a
greedy algorithm, further study on finding the optimal multiple
alignment may improve the accuracy and the usage of Meta-IDBA
in analyzing metagenomic data. At present, Meta-IDBA cannot
reconstruct the contigs of each single subspecies, because their
genomes have a lot of common regions. Further study on using pair-
end information and read coverage for reconstructing these contigs
will be carried out.

There are cases in which Meta-IDBA fails to separate reads
from different species into components. One case is in low-
complexity dataset, which consists of Streptococcus pyogenes and
S.dysgalactiae. The k-mer similarity of these two species is 17.69%,
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Fig. 6. Multiple alignment of a component in five E.coli subspecies. Consensus is shown in the first row. Contigs are separated by spaces. The conserved
nucleotides are represented by dots. The difference between contigs and consensus is highlighted.

which is relatively higher than the other pair of genomes (∼1%).
On the other hand, the component accuracy of this dataset is 93%,
which means many reads in the components are shared by these two
species and some components represent similar regions of these two
species. Therefore, it might not be necessary to separate the reads
in these components, since these components may represent regions
with the significant biological functions necessary for both species.

For metagenomic dataset with uneven abundance ratios, because
the IDBA genome assembler does not depend much on coverage
to create the de Bruijn graph, the change in abundance ratios will
not affect its performance too much. If each species is sampled
with high enough coverage (the required coverage depends on the
error rate and read length), they can be assembled by Meta-IDBA.
However, uneven abundance ratios will affect the sampling rates
of reads of different species, but the difference in sampling rates
can also provide information to separate the reads sampled from
species with low abundance ratios and those from species with
high abundance ratios (Wu and Ye, 2010). More research should
be performed for studying how to make use of this information to
improve the accuracy of Meta-IDBA.

Since our graph partition algorithm cannot distinguish erroneous
edges and correct edges inside the graph, it relies very much on
the quality of the de Bruijn graph generated by the assembler. If
there are many false positive edges, the graph may be partitioned
into many small components. Similarly, if there are many species
(in practice, there are many more species (>1000) than those
used in our simulation), there would be more edges in the graph,
which also leads to many small components. As shown in Table 1,
there is a big gap between the assembly results of single species
and metagenomic. Much can be done to improve the quality of
metagenomic assembly.
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