
[15:03 30/6/2011 Bioinformatics-btr309.tex] Page: 1889 1889–1893

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 14 2011, pages 1889–1893
doi:10.1093/bioinformatics/btr309

Genome analysis Advance Access publication May 19, 2011

GenPlay, a multipurpose genome analyzer and browser
Julien Lajugie1,2 and Eric E. Bouhassira1,2,∗
1Department of Medicine and 2Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461,
USA
Associate Editor: John Quackenbush

ABSTRACT

Motivation: Rapidly decreasing sequencing cost due to the
emergence and improvement of massively parallel sequencing
technologies has resulted in a dramatic increase in the quantity of
data that needs to be analyzed. Therefore, software tools to process,
visualize, analyze and integrate data produced on multiple platforms
and using multiple methods are needed.
Results: GenPlay is a fast, easy to use and stable tool for rapid
analysis and data processing. It is written in Java and runs on
all major operating systems. GenPlay recognizes a wide variety of
common genomic data formats from microarray- or sequencing-
based platforms and offers a library of operations (normalization,
binning, smoothing) to process raw data into visualizable tracks.
GenPlay displays tracks adapted to summarize gene structure, gene
expression, repeat families, CPG islands, etc. as well as custom
tracks to show the results of RNA-Seq, ChIP-Seq, TimEX-Seq
and single nucleotide polymorphism (SNP) analysis. GenPlay can
generate statistics (minimum, maximum, SD, correlation, etc.). The
tools provided include Gaussian filter, peak finders, signal saturation,
island finders. The software also offers graphical features such as
scatter plots and bar charts to depict signal repartition. The library of
operations is continuously growing based on the emerging needs.
Availability: GenPlay is an open-source project available from
http://www.genplay.net. The code source of the software is available
at https://genplay.einstein.yu.edu/svn/GenPlay.
Contact: eric.bouhassira@einstein.yu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
With the advent of high-throughput sequencing technologies,
bioinformatics analysis has become a bottleneck despite the creation
of biocomputational units at major research centers. Many useful
tools are available to analyze and visualize genomic and epigenomic
data, but most are geared toward informaticians and can be difficult
to use for biologists. The problem is not that most applications are
run through a command line since commands, flags and parameters
can rapidly be learned. Rather, the main bottleneck is the absence
of tools that biologists can use to analyze and evaluate their data
by the usual trial and error process that is so important to gain a
real understanding of any phenomenon. Biologists need tools that
allow them to scrutinize genomic and epigenomic data as easily as
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they can scrutinize a microscope slide by moving the stage, varying
the light, etc. to focus on interesting details. With most existing
tools, this is not possible because data analysis involves many hours
of computing time and many decision points without any visual
feedback before the data are sufficiently processed to be loaded in
a genome browser.

In practice, most bioinformatics analyses are performed by
informaticians that understand the tools but not necessarily the
experiments, rather than by the biologists who designed the
experiments. GenPlay was developed with the aim of producing
a graphically oriented, user-friendly multipurpose tool that would
help biologists visualize, analyze and transform their raw data
into biologically relevant tracks. It was also developed to facilitate
comparison of datasets generated on multiple platforms.

Among the currently available genome browsers, we can
distinguish two categories. The first category is web-based
client/server application such as the UCSC (Kent et al., 2002) or
Ensembl (Fernandez-Suarez and Schuster, 2010) genome browsers.
They include rich databases and users do not need to have the data
on their personal computer. These browsers are mostly used for
data visualization and they generally do not offer tools to process
data. The second category of browsers are desktop oriented and
rely on local databases and can be graphically much faster. This
category is particularly adapted to processing as well as visualizing
user-generated data. Examples of desktop-oriented browsers include
the software Apollo (Lewis et al., 2002), Artemis (Rutherford
et al., 2000), BamView (Carver et al., 2010), Gambit-viewer
(http://code.google.com/p/gambit-viewer/), GBrowse (Stein et al.,
2002), IGV (Robinson et al., 2011), IGB (Nicol et al., 2009),
LookSeq (Manske and Kwiatkowski, 2009), Magic Viewer (Hou
et al., 2010), MochiView (Homann and Johnson, 2010), Savant
(Fiume et al., 2010), Tablet (Milne et al., 2010).

GenPlay is a desktop genome analyzer and visualizer that was
written in Java because of the cross-platform capability of this
language and the ease-of-development features from the JDK (Java
Development Toolkit).

One of the challenges we faced during development was to obtain
fast performance on common desktop computers. The challenge was
met by extensive use of multithreading, by paying close attention
to data structures and by preloading data to be visualized in the
computer’s main memory. One effective solution for some data
types was to divide the genome into bins of fixed size. One of
GenPlay advantages over most of the other browsers is that it places
emphasis on letting biologists take control of their own data by
providing constant visual feedback combined with extremely rapid
browsing at every decision point during an analysis. The speed of
the analyses performed in GenPlay is critical to let users experiment
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with parameters and test multiple methods to look at their data rather
than using standardized methods that are often not optimal.

Second, the structure of GenPlay is highly innovative: loading
the entire human genome in the main memory was a challenge.
The result is a seamless browsing experience and rapid complex
computations in random order that significantly improves genome-
wide data analysis.

2 RESULTS

2.1 Web site
GenPlay can be launched from a dedicated web site at the
www.genplay.net URL. The user starts the program using a Web
Start procedure that also allocates a specific amount of memory to
the software. The number of tracks and the level of resolution of the
tracks that can be loaded concurrently are limited by the amount of
memory selected at start up.

A Library link accessible from the main page of the web site
contains annotation and configuration files for the last versions of
the human and mouse genome assemblies. Configuration files must
be downloaded and installed to work with an assembly and a genome
different from the default, which is human hg19. Commonly used
annotation files can also be found in the Library or can be accessed
through the integrated DAS client.

Help files are available through the Documentation link. Detailed
information on all operations and on all formats recognized by
GenPlay is available. We strongly recommend that users read the
documentation before starting working with GenPlay.

There is also a tutorial page, showing an example of ChIP-Seq
analysis and an example of TimEX analysis. There are detailed
examples of how to use the operations of the software.

A link allows users to report bugs, ask for new functionalities and
submit ideas for future development.

The FAQ page compiles the frequent questions received from
users followed by our answers.

Older versions of GenPlay are also available for download from
the web site. This can be useful if there is a problem of compatibility
between the current version and a project file saved with an older
version.

Being open source, the source code is available from the link
specified on the about page.

2.2 Graphical user interface
One of our goals was to create a clear, user-friendly interface to
visualize complex datasets. The interface that we designed is similar
to music recording or commonly used spreadsheet software and
consists of a list of tracks composed of rows that contain independent
datasets (Fig. 1). Each row can be expanded, collapsed or moved the
same way rows move in a spreadsheet. Chromosomal location can
be changed by simply dragging the mouse while the wheel allows
the user to zoom in and out, seamlessly from a 1 base resolution to
a whole chromosome view. On top of the track list, there is a ruler
that shows the position of the displayed window on the selected
chromosome or scaffold.

All operations available for loaded tracks are initiated by a right
mouse click on the track handlers which reveals dynamic menus.

The Control Panel, located right under the track list, allows
navigation in the genome. The zoom, the position and the

Fig. 1. GUI overview with (1) ruler; (2) track list; (3) control panel; (4)
status bar.

chromosome or scaffold selection can be modified from there as
well. In addition, genomic position can be specified in a text field.

The last part of the interface is the status bar at the bottom of
the window that allows the user to monitor memory usage. The
status bar displays text messages describing the current operation,
as well as the time elapsed since the beginning of the operation and
the percentage complete. The stop button offers the opportunity to
cancel most operations while they are in progress.

On the top left of the software interface, there is an option button
that controls the general configuration, toggles the full screen mode
and saves the current project (all the tracks from the list except the
sequence tracks). Saved project are compressed copies of the RAM
memory. As a result, the output project files are considerably smaller
than the size of the original loaded files. This allows for efficient
reloading of a project and is a convenient means of collaboration
between investigators. There is also a link to the Help page and the
About page on the web site.

2.3 Track types
Another important goal was to allow users to visualize, summarize
and integrate any data file that can be laid onto a genome, regardless
of the acquisition method. The major data types that we wished to
visualize were the results of gene expression, epigenetic (chromatin
immunoprecipitation, DNA methylation, timing of replication, etc.)
and single nucleotide polymorphism analyses. Because of the widely
different structure of these data types, we developed several track
types. The track types currently available in GenPlay are the Variable
Window tracks, Fixed Window tracks, Gene tracks, Sequence tracks,
SNP tracks and Repeat tracks (Fig. 2).

Variable Window tracks allow the visualization of the position and
of the score of interval of variable sizes. These tracks are adapted
to the visualization of data that can be summarized on genomic
intervals of predefined size. The prototypic datasets are microarray
experiments in which each interval represents a probe or a gene.

Fixed window tracks are most useful to visualize raw sequencing
results that have not been projected to annotations. This track type
is particularly adapted to the visualization of ChIP-Seq, RNA-Seq
and Timex-Seq (Desprat et al., 2009) experiments. To create a Fixed
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Fig. 2. Examples of different track types with (1) fixed window track; (2)
DNA sequence track; (3) SNP track; (4) gene track; (5) repeat family track.

Window track, the software divides the genome into bins of fixed
size and then computes how many reads fall into each bin. The
bin size is selected by the user. Users also define the method of
computation of the scores of each bin (sum, max or average number
of the scores per bin). Bin sizes of 25–250 bases are generally used
for Chip-Seq analysis. Larger bins (1–5 kb) are sufficient to visualize
replication timing. RNA-Seq data is most demanding and require
very small bin size.

A common issue for the analysis of genomic or epigenomic data
is the treatment of overlapping intervals. Gene expression data
contain overlapping intervals because genes in the genome overlap.
Sequencing data also often contains overlapping intervals.

Both Fixed and Variable Window tracks can only display
a single value per interval. When data containing overlapping
intervals are loaded, GenPlay summarizes the interval according
to user selected parameters. In the case of Variable Window
tracks, GenPlay calculates the intersection between all overlapping
intervals, creating new intervals whenever necessary. The score of
each new interval can be the weighted average, the maximum or
the weighted sum of each overlapping interval score. In the case of
Fixed Window tracks, GenPlay computes the weighted intersection
of all overlapping intervals with the fixed sized bins and assigns
the scores as above. In the case of sequencing data, the problem of
overlapping intervals can be avoided by only considering the start
position of each read. This latter solution is the default mode in
GenPlay for loading files that are the output of sequence aligners
(Bowtie, Eland, etc.).

The summarization process described above is not optimal for
all analysis. Gene expression results often must be visualized in
tracks where a single genomic interval can have multiple values,
for instance to visualize the expression of multiple isoforms or
overlapping genes. To allow this type of analysis, we have developed
Gene tracks. Gene tracks can be used to visualize data containing
overlapping intervals without summarizing the intervals. Gene
Tracks also allow the visualization of exon and intron boundaries
and of a score, which can be associated either to the whole gene or to
each exon. Scores are visualized by color coding the exons; numeric
scores are displayed when the mouse cursor hovers on a gene or on a
gene exon. Genes (or other objects) visualized on a Gene Track can

Fig. 3. Example of a ChIP-Seq experiment with track 5: IP; track 6: summits
of IP; track 7: RefSeq annotation; track 8: promoters of RefSeq; track 9:
promoters of RefSeq genes with score from summits.

be hyperlinked to various databases allowing the software to open
a page in a browser showing details about a selected gene.

Sequence tracks display the nucleotide sequence of the selected
genome assembly. This is the only track where the data are not
completely loaded in memory. The software reads a file in random
access only when there is enough room on the screen to print all the
nucleotides.

Repeat tracks display repeat windows organized by family or
class.

SNP tracks display the frequency at which each base has been
found in a particular sample.

2.4 Operations
Another objective during GenPlay development was to create an
interactive multipurpose tool for data mining that would allow
biologists to rapidly transform and compare their raw data with
data obtained from other sources. To achieve this goal, we created
a number of operations that can be applied to one or more tracks.
These operations are greatly sped-up and facilitated by the software
architecture since all data loaded in GenPlay (except for sequence
data) are kept in the main memory at all times. The fixed window
track format is also well adapted to data transformation and to
statistical analysis because of its regularity. The library of operations
is still growing and the Report Bugs link of the web site can be used
by any user to request new features.

Each track type has different operations available: in the
case of Fixed Windows tracks, GenPlay offers normalization,
standard score, indexation, Gaussian smoothing, moving window
average, Loess regression, correlation calculation, various filters,
peak finding, as well as many arithmetic, statistical and masking
operations.

Figure 3 illustrates how ChIP-Seq sequencing data can be
transformed by GenPlay to visualize enriched regions in gene
promoters. In order to remove artifactual peaks, we compared our
Immuno-Precipitated (IP) to a control sample after normalization of
the data. We also developed and used an algorithm inspired by the
work of Chongzhi Zang on the identification of enriched domains
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(Zang et al., 2009). This allowed us to isolate peak summits. After
that, we extracted gene promoters of the RefSeq genes. A promoter
was defined as a region that starts 500 bp before a gene start position
and ends 500 bp after. Finally, if a summit fell within a promoter, we
attributed the summit score to the promoter. This study is available
in the Tutorial section of the web site.

It is also possible to transform tiling array or RNA-Seq data into
Transfrag and to annotate the Transfrag using a gene annotation
track.

Finally, GenPlay includes powerful export functions that allow
users to create concatenated files containing analyses results and
chromosome position for each interval genome wide for any number
of the loaded tracks. These files can be used for downstream analyses
in other software.

2.5 Files supported
GenPlay can recognize the following formats: SAM (Li et al., 2009),
Bed, BedGraph, GFF, GTF, pair, PSL, SOAPsnp, WIG, .2bit, Eland
Extended. Care was taken to create a flexible file import architecture
in order to facilitate the creation of additional file import functions
in the future.

2.6 Memory requirement
High memory usage is the major trade-off that we had to make in
order to obtain higher performance. GenPlay can be started with very
little memory, whereas most genome-wide analysis for mammalian
datasets requires a minimum of 4 GB and preferably 8 GB of RAM.
Working on multiple tracks at the base pair level can be done in
GenPlay if a workstation is available. We routinely perform such
analysis using an 8 processor work station with 24 GB of RAM.

Details on the data structure used for the various tracks
and memory usage calculations are provided as Supplementary
Materials. Keeping annotation tracks (such as gene track) in memory
requires little resources. For instance, <10 MB are required to keep
all the refSeq genes in memory. The most memory intensive tracks
are the Fixed Window tracks, especially when small bin sizes are
specified by the user. A typical ChiP-Seq track loaded as 1000 bases
bin require 15 MB of RAM, at 100 bases bins 150 MB, at 10 bases
bins 1.5 GB and at 1 base bins 15 GB.

To maximize memory usage, GenPlay provides two additional
functions. Fixed Windows track can be compressed after loading
in memory and users can specify data precision (either at loading
time or on the fly). Data stored with 64 bit precision data are stored
in double arrays, 32 bit data in float arrays, 16 bit data in short
arrays, 8 bit data in byte arrays and 1 bit in byte arrays where each
element of the array contains eight windows. Supplementary Table
S1 describes the memory requirements for tracks at various bin
sizes and various data precisions. Supplementary Table S2 shows
the ranges and precisions associated to each data type.

2.7 Limitations and future development
In the future, we will add a function to simultaneously display
multiple reference genomes and to display annotations or tracks
based on one genome on the coordinates of any other genome. We
believe this will prove useful to exploit the large number of human
genomes currently being sequenced. We will also add features to
perform and record groups of operations on multiple tracks at the
same time. Finally, we will improve the data structure to minimize

memory usage. We expect that after these modifications, GenPlay
users will be able to enjoy the seamless visualization of their data
while working genome wide at 1 bp resolution with less powerful
machines.

3 METHODS
A big challenge was to create a browser that allows users to seamlessly
navigate an entire genome. Several optimizations were introduced in order
to achieve this goal.

The first optimization was to dispatch all calculations to different threads.
This allows GenPlay to fully exploit the power of modern multicore
computers. The software determines the number of cores available using the
JDK static method ‘availableProcessors() of the RunTime class and starts
new threads from a fixed thread pool on each available core.

The second optimization relates to memory usage. As discussed above, in
order to accelerate the display and the operations, all data are kept in RAM
memory at all times. This results in relatively slow track loading time but
provides seamless browsing and tremendously accelerates the operation.

To minimize memory usage, we developed several data structures
implementing the java.util.List interface that store data in arrays of
primitives. The main advantage of this technique is that arrays of primitive
occupy less memory than array of objects. In the last Sun implementations
of the JVM (Java Virtual Machine) for Windows XP, the memory allocation
works as follows:

(1) Non-array objects requires 8 bytes of ‘housekeeping’ space and arrays
require 12 bytes (four additional bytes for the array length).

(2) Each Boolean or byte field takes up 1 byte, each char and short field
takes up 2 bytes, each int and float field takes up 4 bytes and each
long and double take up 8 byte. Each reference field takes up 4 bytes.

(3) The amount of memory used is increased in 8 byte blocks.

Hence, an array of 1000 int primitives (int[1000]) will require 4×1000 bytes
(for the elements of the array) +12 bytes (for the array housekeeping) = 4012
+ 4 (because the memory is always increased in 8 byte blocks) = 4016 bytes.

In contrast, a java.util.ArrayList of 1000 Integer objects will require
8 bytes (for the class) +4 bytes (for the pointer to elementData) +4
bytes (for elementCount). The elementData array will take 16 bytes (for
the elementData class and the length) plus 4× elementData.length bytes.
The list also contains the variable int modCount from the superclass
java.util.AbstractList, which will take up the minimum 8 bytes. An ArrayList
of 1000 elements will therefore require: 8+4+4+16+4×1000+8=4040
bytes. Each Integer object of the list will require 8 (for the class) +4 (for
the int) +4 (because of the 8 byte blocks) = 16 bytes. Therefore, the list of
objects takes up 20 040 bytes as compared with 4016 bytes for the array of
int primitives.

We also created different structures for the Fixed Windows tracks and
Variable Windows tracks. At the memory level, Fixed Windows tracks are
optimized for data spread within the genome such as replication data and
ChIP-Seq data. They are represented by arrays containing the scores of each
window and the chromosomal position is deducted from the index position
in the array. On the other hand, the Variable Windows tracks are optimized
for data concentrated in specific regions such as RNA-Seq data. They are
represented by list of windows with non-null scores.

The third optimization was the systematic creation of pre-computed
displays for different levels of zooming on the chromosome currently
displayed. Resolution of the pre-computed display is adapted to each zoom
level by averaging the scores of the genomic intervals to fit the number of
pixels available.

As a result of these optimizations, changing the position and the zoom
level on a chromosome is almost instantaneous on most desktop computers
even with many tracks loaded at the same time.
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Track loading is relatively fast and range from a few seconds to a few
minutes depending on the size of the files.

All operations were also optimized. In the case of a Fixed Window track,
the length of the operation depends on bin size. In practice on a standard
desktop computer, most operations are computed in <1 min.
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