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ABSTRACT

Motivation: Statins are the most widely used cholesterol-lowering
drugs. The primary target of statins is HMG-CoA reductase, a key
enzyme in cholesterol synthesis. However, statins elicit pleitropic
responses including beneficial as well as adverse effects in the liver
or other organs. Today, the regulatory mechanisms that cause these
pleiotropic effects are not sufficiently understood.
Results: In this work, genome-wide RNA expression changes in
primary human hepatocytes of six individuals were measured at
up to six time points upon atorvastatin treatment. A computational
analysis workflow was applied to reconstruct regulatory mechanisms
based on these drug–response data and available knowledge
about transcription factor (TF) binding specificities and protein–drug
interactions. Several previously unknown TFs were predicted to
be involved in atorvastatin-responsive gene expression. The novel
relationships of nuclear receptors NR2C2 and PPARA on CYP3A4
were successfully validated in wet-lab experiments.
Availability: Microarray data are available at the Gene Expression
Omnibus (GEO) database at www.ncbi.nlm.nih.gov/geo/, under
accession number GSE29868.
Contact: andreas.zell@uni-tuebingen.de; adrian.schroeder@uni-tuebingen.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Statins are widely used cholesterol-lowering drugs that inhibit
HMG-CoA reductase, a key enzyme in cholesterol synthesis.
Clinical trials, however, indicate that statins additionally cause
cholesterol-independent or pleiotropic effects (Liao and Laufs,
2005). These pleitropic effects may either be beneficial (e.g.
decrease of oxidative stress and inflammation) or toxic (e.g. statin-
induced liver injury; Cash et al. 2008). Currently, the specific
regulatory mechanisms that cause these adverse effects are not
sufficiently understood. Transcriptional regulators, including statin-
responsive transcription factors (TFs) and regulatory co-factors, are
suspected to be involved in these mechanisms (Hanai et al., 2007).
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Genome-wide mRNA expression profiling techniques are widely
used tools to monitor large-scale regulatory effects in response to
drug treatments. For this purpose, gene expression profiles are first
clustered into sets of co-expressed genes, which are assumed to be
co-regulated. Putative TFs are then inferred by mapping position
frequency matrices (PFMs), which are widely used models for
TF binding motifs, to the promoter sequences of putative target
genes (Wingender et al., 1997). According to the futility theorem
(Wasserman and Sandelin, 2004), however, the grand majority
of predicted transcription factor binding sites (TFBSs) is non-
functional, which is partly due to the degeneracy of TFBSs and
the low specificity of PFMs. One common approach to overcome
this problem and increase the specificity of TFBS detection is to
search for common combinations of TFBSs in sets of co-expressed
genes, referred to as cis-regulatory module (CRM) detection. CRM
detection methods rely on the assumption that co-regulated genes are
controlled by specific combinations of TFs, which bind in physical
proximity to each other (Loo and Marynen, 2009). The specificity of
CRM detection can be further increased by taking additional sources
of evidence into account, such as correlations between regulators and
putative target genes on the gene expression level (Wrzodek et al.,
2010). In this work, a multiobjective CRM detection approach was
used to infer new statin-induced gene regulatory relationships based
on microarray measurements, transcription factor binding sites and
protein–drug interaction data.

2 APPROACH
Primary human hepatocytes were used as model system to
investigate genome-wide regulatory effects upon statin treatment.
Microarray profiling was performed for six different individuals at
up to six time points (i.e. 0 , 6 , 12, 24, 48 and 72 h) after stimulation
with atorvastatin. A total of 1 429 probes were identified to be
differentially expressed (>1.7-fold), leastwise at one time point after
atorvastatin treatment compared with the control.

2.1 Clustering
In contrast to cell lines, primary tissue material is obtained from
individual donors and is characterized by considerable inter-subject
variability. In order to account for this variability, the Extended
Dimension Iterative Signature Algorithm (EDISA) was applied to
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find sets of genes with highly correlated expression profiles over
time. The 3D clustering algorithm EDISA (Supper et al., 2007)
is able to deal with multicondition time-resolved datasets. EDISA
mines for independent response clusters, which are sets of genes
that show highly correlated profiles within each condition, but
different expression profiles between the conditions. Furthermore,
EDISA is a fuzzy clustering algorithm. Thus, one gene can occur
in multiple clusters. This is biologically evident, since one gene
can be part of various regulatory programs. Gene expression
profiles of different donors were not pooled, but perceived as
different experimental conditions. By this means, as depicted in
Figure 1a, inter-subject variability was accounted for. In total, 13
different sets of co-expressed genes were identified (File S1 in
Supplementary Material). As depicted in Figure 1a, expression
profiles of the same genes differ between the six individuals, but
strongly correlate within each individual. In order to assess if
sets of co-expressed genes are functionally related, Gene Ontology
(GO) enrichment analysis was applied. To this end, for each
cluster of genes a hypergeometric test was performed to check
if certain GO categories are overrepresented. As depicted in File
S1 of Supplementary Material, statistically significant enrichments
were detected in nine clusters. Genes of steroid biosynthesis
were overrepresented most frequently, and also genes of fatty
acid and drug metabolism were found to be co-expressed and
thus putatively co-regulated. Interestingly, coordinated induction of
several cytochrome P450 enzymes following atorvastatin treatment
of primary human hepatocytes within a similar time-frame has
recently been observed in Feidt et al. (2010).

2.2 Cis-regulatory module detection
CRM detection was applied next, to identify specific combinations
of TFs for each cluster of putatively co-regulated genes. CRM
approaches usually tackle the problem of low motif specificity in
promoter sequences by mining for patterns of co-occurring TFBSs
in proximal promoter sequences of co-expressed genes (Loo and
Marynen, 2009). The identification of such patterns of TFBSs is
computationally a complex combinatorial optimization problem.
One possible approach to solve this problem is to explore the
search space of possible solutions, i.e. possible combinations of
TFBSs, by a heuristic search procedure. For this purpose, Aerts
et al. (2004) propose an evolutionary algorithm based on a new
CRM scoring function. Multiobjective CRM detection algorithms
further increase the specificity of TFBS modules by integrating
additional knowledge about the respective experimental conditions
into the search procedure, as introduced by the ModuleMaster
algorithm (Wrzodek et al., 2010). ModuleMaster is based on a
multiobjective genetic algorithm (MOGA) that samples the search
space by generating candidate solutions, which are iteratively
recombined, mutated and evaluated according to the following
objective functions: (i) the module score evaluates the quality of
a single CRM according to the single TFBS scores within all
promoter sequences; (ii) correlation score that quantifies the linear
relationship of expression profiles of candidate TFs and the cluster
centroid; and (iii) associations between TFs and a certain stimulus,
based on protein–protein and protein–drug interaction data. The third
objective function was applied to further increase the specificity of
the derived CRMs with respect to the given experimental condition
(i.e. atorvastatin treatment). To this end, interaction networks from

Fig. 1. Transcriptional and hypothetical signaling network inference
of atorvastatin cluster 4. (a) Depicted are the expression profiles of
seven Affymetrix probes, which map to three different cytochrome P450
monooxygenases (CYP3A4, CYP3A43, CYP3A7). The expression profiles
are highly correlated within each individual, but slightly diverse between
the individuals. (b) Six different TFs have been identified by cis-regulatory
module detection to be involved in the atorvastatin-responsive regulation
of CYP3A4 and CYP3A43. (c) Inferred hypothetical pathway connection
between the six identified TFs and atorvastatin, based on protein/drug
interaction data. Among the discovered TFs are different nuclear hormone
receptors (NRs), like the PPARA:RXR heterodimer, NR2C2 and NR1H2
(LXR). The latter two NRs are associated to the same binding site and
may be involved in regulatory cross talk on the binding site level. The
regulatory influence of LXR on CYP3A4 was previously published in
Duniec-Dmuchowski et al. (2007). The regulatory relationship between
PPARA:RXR as well as NR2C2 an CYP3A4 was not known before and
could successfully be validated in wet-lab experiments (see Section 2.3 ).

the protein–protein interaction database STRING (Jensen et al.,
2009) and the protein–drug interaction database STITCH (Kuhn
et al., 2010) were integrated. These networks contain confidence
values between 0 and 1 for all interactions depending on their
reliability. Confidence scores between a candidate set of TFs and
the atorvastatin stimulus were calculated based on shortest path
algorithms (Supper et al., 2009). Thus, the third objective function
makes sure that the TFs of a candidate solution are likely to
be downstream targets of the atorvastatin stimulus. A schematic
flowchart of the implemented analysis workflow is depicted in
Supplementary Figure S3.
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Application of this multiobjective CRM detection method
revealed several interesting combinations of TFs, which are
putatively involved in atorvastatin-responsive gene regulation. As
depicted in File S1 of Supplementary Material, among the most
frequent TFs in atorvastatin-treated primary human hepatocytes are
Krüppel-like factors, i.e. KLF4 and KLF11. KLFs have previously
been published in the context of statins (Tuomisto et al., 2008) and
were recently found to be involved in the adipogenesis pathway
(Brey et al., 2009). The hypoxia-inducible factor 1 (HIF1A) was
previously found to be involved in the regulation of the ATP-binding
cassette (ABCA1) and plays a role in hypoxia-mediated inhibition
of cholesterol synthesis (Ugocsai et al., 2010). The retinoid X
receptor (RXR) in combination with various other TFs of the
nuclear receptor (NR) family were found to be involved in the
regulation of three different atorvastatin clusters (see Cluster 1,
4 and 5 in File S1 of Supplementary Material). The heterodimer
RARA:RXR, for instance, is known to regulate the expression of
bile acid transporters and also influences the expression of HMG-
CoA (Dawson et al., 2009). Further known regulators in the context
of statins are hepatocyte nuclear factor 4 (HNF4; Vock et al. 2008),
SP3 (SP1) transcription factor (Lin et al., 2008) and POU class
2 homeobox TF 1 (OCT1), which was shown elsewhere to get
activated upon statin treatment (Ortego et al., 2002). The CRM
detection results of Cluster 4 (Fig. 1b) suggest that CYP3A4,
which is one of the best characterized enzymes of atorvastatin
detoxification (Jacobsen et al., 2000), is regulated by several TFs of
the NR family [i.e. the PPARA:RXR heterodimer, NR1H2 (LXR),
NR2C2] and three further TFs (i.e. TGIF1, SMAD2 and ELF1).
The NR NR2C2 as well as NR1H2 bind to the same xenobiotic
response element within the CYP3A4 promoter. This indicates that
these TFs may be involved in regulatory cross-talk on the binding
site level. The regulatory influence of liver X receptor (NR1H2) on
CYP3A4 has previously been shown in Duniec-Dmuchowski et al.
(2007), but the putative influence of NR2C2 was unknown so far.
This regulatory relationship was successfully validated in wet lab
experiments as described below. The heterodimer PXR:RXR (see
Cluster 5 in File S1 of Supplementary Material) was previously
shown to be activated by vitamin E (Traber, 2004) and additionally
regulates the expression of transporters as SLCO1B1 (contained in
Cluster 5), which is able to transport statins (Rodrigues et al., 2009).
The main target gene of statins, the HMG-CoA reductase, which is
contained in Cluster 7, has previously been shown to be regulated
in the context of hypoxia by HIF1A (Pallottini et al., 2008).

2.3 Experimental validation
Putative NR2C2 binding sites in the CYP3A4 promoter region at
−1.1 kb was identified by computer-aided search for consensus
motifs. Electrophoretic mobility shift assay demonstrated NR2C2
binding to the predicted sequence within CYP3A4 promoter
(Supplementary Fig. S1). The proposed association between PPARA
and CYP3A4 was validated by shRNA silencing experiments
using lentiviral shRNA infection in three independent hepatocyte
cultures. All cultures were treated with two different PPARA
targeting shRNAs. PPARA-silenced hepatocyte cultures showed
>50 % decreased CYP3A4 expression levels, as determined by
quantitative PCR, compared with control cultures infected by
non-silencing shRNA (data not shown). Additionally, as depicted
in Supplementary Figure S2, the treatment of primary human

hepatocytes with an PPARA agonist (WY14,643) results in an
increased expression of PPARA mRNA itself, paralleled by an
induction of mRNA expression of its known target gene HMGCR
as well as CYP3A4. The treatment with a chemical antagonist of
PPARA (MK886) demonstrates that the inhibition of PPARA leads
to the downregulation of HMGCR and CYP3A4 mRNAexpressions.

3 METHODS

3.1 Microarray experiments and preprocessing
Whole-genome Affymetrix U133 plus 2.0 (Affymetrix, Santa Clara, CA,
USA) microarray measurements were conducted using samples of primary
human hepatocyte cultures from six individuals. Each sample was treated
with atorvastatin (60 µM) and dimethylsulfoxide (DMSO), which was used
as control solvent. Microarray measurements were performed at five time
points (0, 6, 12, 24, 48 and 72 h) after the drug stimulus. Low-level
microarray preprocessing, i.e. normalization and background correction was
conducted using the GC-RMA algorithm implemented in R Bioconductor
(www.bioconductor.org). Differentially expressed genes were determined
using a fold change filter of 1.7.

3.2 Clustering
The Extended Dimension Iterative Signature Algorithm (EDISA) was used
in this work to detect sets of co-expressed genes (Supper et al., 2007).
EDISA is especially designed for time-series datasets that are observed
under several experimental conditions. The algorithm iteratively screens
for groups of genes and conditions, whereas the same genes are highly
correlated according to Pearson’s correlation coefficient. EDISA expects the
two correlation thresholds τG and τC as input parameters. τG specifies how
well each gene has to be aligned with the average trajectory of the cluster,
and τC specifies how well each condition has to be aligned with the average
trajectory of the cluster. Low values of τG and τC will produce clusters with
few highly correlated gene expression profiles. Increasing the values of τG

and τC will result in clusters with a high number of genes that show a reduced
correlation. In this work, τG =0.05 and τC =0.25 were determined by a grid
search, as described in File S1 of Supplementary Material. GO enrichment
analyses were performed using hypergeometric testing (Hahne et al., 2008).
To this end, probe set identifiers were mapped to their annotated gene names.
To avoid the accumulation of type I errors, subsequently, the Sidak equation
was applied to correct for multiple testing (Ludbrook, 1998). The Sidak
equation is, similar to the widely used Bonferroni method, a conservative
multiple testing correction strategy, which is additionally characterized by
a low false positive rate. Since all successive calculations are performed on
the gene level, the expression profiles of probe sets belonging to the same
gene were averaged.

3.3 Mapping TFBSs
PFMs were mapped to the promoter sequences according to Aerts et al.
(2004) by calculating a match score for all subsequences in the promoter.
These scores indicate how likely it is that the considered subsequence is
generated by the motif model with respect to the background (Aerts et al.,
2004). As background model, a fourth-order hidden Markov model derived
from coding sequences was used. Promoter sequences (1000 bp upstream
from TSS) were retrieved from the Ensembl database (www.ensembl.org). In
order to decide if a certain match score should be counted as putative binding
site or not, cutoff levels need to be defined. Individual cutoff values were
precalculated for each PFM individually, rather than choosing a global cutoff
score for all PFMs. To this end, a conservative cutoff strategy is implemented,
which is based on scanning non-regulatory (i.e. exonic) sequences and
calibrating the cutoff score such that no hits are found on non-regulatory
sequences (Kel et al., 2003).
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Sources of PFMs : PFMs from JASPAR (jaspar.genereg.net) and
TRANSFAC™ (Biobase International, Wolfenbüttel, Germany) were used to
scan for TFBSs. Until now, PFMs have been experimentally determined for a
small fraction of all human TFs only. Thus, highly accurate PFM predictions
were additionally included into the analysis workflow. These predictions
were provided by a machine learning approach based on similarities of
various sequence derived features (Schröder et al., 2010).

3.4 Multiobjective CRM detection
In this work, CRMs were detected by the ModuleMaster algorithm using
three objective functions. The first objective function sums up PFM
match scores of the candidate solutions within all promoter sequences.
ModuleMaster expects a predefined module size (i.e. the number of TFBSs)
as input parameter, which was set to 5. Penalty terms guarantee that the
TFBSs of a candidate solution within each promoter sequence are arranged
within a certain window size, which is set to 200 bp. Furthermore, two
single binding sites are not allowed to overlap, which is also ensured by a
penalty term. The second objective function evaluates the linear relationship
of expression profiles between candidate TFs and the cluster centroide
by multivariate linear regression, which is quantified by the coefficient of
determination (Zou et al., 2003). More details about the implementation of
these functions can be found in Wrzodek et al. (2010). The third objective
function is based on the BowTieBuilder algorithm (Supper et al., 2009),
a heuristic pathway inference algorithm that identifies the most confident
pathway between two given sets of proteins. To this end, interaction networks
from the protein–protein interaction database STRING (Jensen et al., 2009)
and the protein–drug interaction database STITCH (Kuhn et al., 2010) were
merged. Low-confidence interactions (<0.7) were removed. As mentioned
above, each interaction is associated with a confidence score between 0 and
1 depending on the reliability of the information sources. BowTieBuilder
(Supper et al., 2009) optimizes this confidence score during pathway
inference in order to find the most confident connection between atorvastatin
and a given set of candidate TFs. The confidence of a path is calculated
by multiplying the confidence scores of each interaction. Details about
this scoring scheme are given in File S1 of Supplementary Material. The
ModuleMaster algorithm was run with 30000 fitness evaluations, mutation
rate of 0.1 and a crossover rate of 0.7.

3.5 Experimental validation
Human NR2C2 protein was synthesized in vitro using the expression plasmid
pcDNA3 1-His-TAK1 (Yan et al., 1998), which was kindly provided by
A.M. Jetten (NIEHS, Research Triangle Park, NC, USA), and the TNT
T7 Quick Coupled transcription/translation system (Promega). Nuclear
receptor response elements were generated by annealing 1 nmol each of two
complementary oligonucleotides in 25 mM Tris–Cl, pH 7.5, 25 mM NaCl,
5 mM MgCl2 in a total volume of 200 µl. Radioactive labeling was performed
by incubating 10 pmol of the annealed double-stranded oligonucleotide with
2 U of Klenow fragment and 25 µCi -32 P dCTP in 50 mM Tris–Cl, pH
7.5, 50 mM NaCl, 10 mM MgCl2, 0.2 mM each of dATP, dGTP, dTTP in
a total volume of 50 µl at 37˚C for 60 min. The labeled double-stranded
oligonucleotides were purified through ProbeQuant™ sephadex G-50 micro
columns (GE Healthcare). Binding reactions and gel electrophoresis were
performed as described elsewhere (Geick et al., 2001). Retarded complexes
were quantified with the BAS1800 II phosphor-storage scanner (Fuji,
Kanagawa, Japan) and AIDA software (Raytest, Staubenhardt, Germany).
For chemical treatment, two batches of human primary hepatocytes from
different donors were cultured in Williams E Medium as described previously
(Feidt et al., 2010). Treatment was performed using 10 µM WY14643
(Sigma, C7081) and 10 µM MK886 (Sigma, M2692) for 48 h. For
quantitative RT–PCR analysis, cDNA was synthesized using 500 ng of total
RNA as described elsewhere (Feidt et al., 2010). The self-designed forward
and reverse primers as well as probes for the detection of PPARA and
CYP3A4 are available upon request. For detection of HMGCR, Taqman

Gene Expression Assay was purchased (HS00168352m1) from Applied
Biosystems (Foster City, USA).

4 DISCUSSION AND CONCLUSION
Microarray time-series experiments in primary human hepatocytes
were conducted in order to investigate genome-wide regulatory
effects upon atorvastatin treatment. We applied a novel
computational analysis workflow to reconstruct transcriptional
regulators that are involved in atorvastatin-responsive regulation
of drug metabolism and other metabolic processes. As stated by
the futility theorem (Wasserman and Sandelin, 2004), conventional
sequence based methods to infer regulatory relationships fail to find
specific results. To this end, a multiobjective CRM detection method
was applied here that integrates knowledge about the experimental
condition and drives the search toward regulators that are highly
specific with respect to the drug treatment. Several new regulatory
relationships in atorvastatin-treated hepatocytes were discovered.
Binding of NR2C2 to the promoter of certain cytochrome P450
family (CYP) genes was successfully validated using gel-shift
assays. Furthermore, the inferred regulatory influence of PPARA
on CYP3A4 was successfully validated using specific agonist
and antagonist experiments in primary human hepatocytes. These
transcriptional regulators constitute promising candidates for future
studies. First, because of their relationship to the expression of
CYP3A4, which is the most important enzyme for atorvastatin
biotransformation (Neuvonen et al., 2006), and second due to their
involvement in adverse drug reactions and other pleiotropic statin
effects (Pascussi et al., 2008). PPARA, for instance, one of the
identified transcription factors, is well known to influence fatty acid
profiles as well as inflammatory processes, both of which are known
to be beneficially influenced by statins.
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