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ABSTRACT

Motivation: Off-target activity commonly exists in RNA interference
(RNAi) screens and often generates false positives. Existing analytic
methods for addressing the off-target effects are demonstrably
inadequate in RNAi confirmatory screens.
Results: Here, we present an analytic method assessing the
collective activity of multiple short interfering RNAs (siRNAs) targeting
a gene. Using this method, we can not only reduce the impact
of off-target activities, but also evaluate the specific effect of an
siRNA, thus providing information about potential off-target effects.
Using in-house RNAi screens, we demonstrate that our method
obtains more reasonable and sensible results than current methods
such as the redundant siRNA activity (RSA) method, the RNAi gene
enrichment ranking (RIGER) method, the frequency approach and
the t-test.
Contact: xiaohua_zhang@merck.com
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
RNAi high-throughput screening (HTS) is broadly used in
the identification of genes associated with specific biological
phenotypes (Brass et al., 2008; Bard et al., 2006; Elbashir et al.,
2001; Konig et al., 2008; Klinghoffer et al., 2009; Nybakken et al.,
2005; Pelkmans et al., 2005; Zhao et al., 2010; Zhou et al., 2008).
However, false positives generated by non-specific effects can lead
to false leads and the use of resources to explore non-productive
research tracks (Birmingham et al., 2006; Jackson et al., 2003;
Konig et al., 2007). To reduce the impact of off-target effects

∗To whom correspondence should be addressed.

(i.e. the RNAi-mediated event in which unintended mRNAs with
sequence homology to the RNAi oligonucleotide are degraded) in
the screening process, researchers typically examine the collective
activity of multiple siRNAs (i.e. siRNA duplexes, also called
siRNA singles) with different sequences against a single target gene
(Blow, 2008; Echeverri et al., 2006). The major reason for doing
so is that the off-target effects of these siRNAs are likely to have
different directions and thus may be cancelled out in their collective
activity, whereas the on-target effects of these siRNAs should be in
the same direction and may have substantial magnitude (at least not
be cancelled out) when considered collectively.

Accordingly, analytic methods try to capture the collective activity
of multiple siRNAs targeting the same gene. The straightforward
analytic method is the so-called ‘frequency approach’. Generally, a
gene is selected as a hit if at least 25% of the siRNAs against the gene
are selected as hits (for example, two out of seven siRNAs) (Barbie
et al., 2009; Glaser and Ferrer, 2010). The frequency approach has
two major issues: (i) it may produce contradictory results: a gene
may be selected as both upregulated and downregulated hits and
(ii) it does not directly assess all the collective activity.

Recently, Konig et al. (2007) proposed the RSA method in which
they examine the rank distribution of all siRNAs targeting a gene
and calculate the statistical significance (or P-value) of all siRNAs
targeting a gene being unusually distributed toward the top ranking
slots based on an iterative hypergeometric distribution equation.
A single P-value is associated with a gene so that all siRNAs for
the same gene are assigned an identical P-value. A feature of this
approach is that a gene with multiple moderately active siRNAs
is weighted more heavily than a gene with fewer active siRNAs.
A potential barrier for applying this approach is that it requires two
arbitrary thresholds to initially define active siRNAs and negative
siRNAs. Barbie et al. (2009) proposed the RIGER method that does
not need such arbitrary thresholds. The RIGER method assigns an
enrichment score for a given gene according to the distribution of
measured values of its siRNAs within the rank list of all siRNAs
using a two-sample weighted ‘Zc’ statistic based on the likelihood
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ratio (Zhang, 2002). The P-value corresponding to the enrichment
score for each gene is calculated.

In both RSA and RIGER methods, the null distribution is formed
from all the siRNAs in the entire list in an experiment. However,
to limit experimental cost, many genome-scale RNAi screens do
not use multiple siRNAs against a gene in the primary screen.
In fact, most genome-scale RNAi screening projects start with a
primary screen where thousands of siRNA pools (three to four
siRNAduplexes per well) are investigated with or without replicates.
The hits from the primary screen without replicates are usually
investigated in one or more confirmatory screens where each
pool has replicates. The genes selected from either primary or
confirmatory screens are further investigated by designing multiple
siRNAs per gene in a screen. The screen in which the phenotypic
effects of multiple siRNAs per targeted gene are measured separately
is called a deconvolution screen. Therefore, most of the genes
included in a deconvolution screen should have non-zero effects.
Consequently, both RSA and RIGER methods are suitable for a
primary screen where most siRNAs should have no or very small
effects. They are inappropriate for a deconvolution screen where all
siRNAs are pre-selected to have a large effect.

We present a method using the strictly standardized mean
difference (SSMD) to directly assess collective activity of multiple
siRNAs targeting a gene. SSMD can also be applied to one siRNA
pool or one siRNA (Zhang, 2010a, 2007; Zhang et al., 2007, 2010).
To distinguish these two types of SSMD, we use cSSMD to denote
the SSMD for collective activity of multiple siRNAs. Like RSA and
RIGER, cSSMD captures the collective activity of multiple siRNAs
against a gene, thus minimizing the impact of off-target effects.
Unlike RSA and RIGER, the cSSMD method does not form the null
distribution from all investigated siRNAs in a screen; thus, it works
effectively for both primary and confirmatory screens with multiple
siRNAs against a gene. We use three in-house RNAi screening
projects to demonstrate the utility of the cSSMD method compared
with the RSA, RIGER, t-test and frequency approach.

2 METHODS

2.1 Collective activity of multiple siRNAs
Suppose m siRNAs with different sequences against a target gene are
measured separately. The activity of an individual siRNA on a measured
response is usually represented by the difference of measured values between
this siRNA and a negative reference group. Let dij denote the difference in
the j-th replicate of the i-th siRNA. Assuming that the i-th siRNA has a mean
value of µi, we construct the model for dij as follows:

dij =µi +eij (1)

where, i=1,...,m and j=1,...,ni;
eij’s are independently distributed with N(0,σ2

i.e)
µi is the mean of the i-th siRNA.

The collective activity of m siRNAs is represented by the average
activity of m values each drawn from one of the m siRNAs. Thus, we
can investigate it as follows. For the i-th siRNA among the m siRNAs,
let random variable Di represent the difference of measured values between
the siRNA and a negative reference. Di has a density function fi, mean µi

and variance σ2
i . The collective effect of the m siRNAs is represented by the

difference Dcollective of measured values between an siRNA and a negative
reference in a group that is formed by pooling all the m siRNAs with equal
weights, i.e. fcollective =∑m

i=1 ( 1
m fi) where fcollective is the density function of

Dcollective. Let µcollective and σ2
collective be the mean and variance of Dcollective,

respectively, and µ• = 1
m

∑m
i=1µi. Then,

µcollective =µ• = 1

m

m∑
i=1

µi (2)

The mean of the i-th siRNA, µi, includes its on-target effect µi.on-target

and off-target effect µi.off-target. It is well known that one siRNA can
have a consistently strong phenotypic effect on a gene and another
siRNA can have a consistently weak phenotypic effect on the same
gene regardless of the RNAi libraries used. Therefore, siRNAs targeting
the same gene may have different specific on-target effects beyond the
amount of on-target effect shared by all the m siRNAs. Consequently,
we further partition the on-target of the i-th siRNA µi.on-target into two
parts: the shared on-target effect µi.shared on-target and specific on-target effect
µi.specific on-target, i.e. µi.on-target =µi.shared on-target +µi.specific on-target. Thus,
µcollective =µshared-on-target +µ̄specific-on-target +µ̄off-target. That is, µcollective

equals the shared on-target effect plus the sum of specific on-target and
off-target effects averaged over the m siRNAs. When m is large, the off-
target effect should be cancelled out; so is the specific on-target effect. That
is, µ̄specific-on-target +µ̄off-target ≈0; subsequently µcollective ≈µshared-on-target,
which indicates that the mean of collective activity of a large number of
siRNAs targeting the same gene represents the shared on target effects of
these siRNAs on the gene.

For the variance of Dcollective, we have, σ2
collective =∫

(x−µcollective)2fcollectivedx=∫ (x−µcollective)2 · 1
m (
∑m

i=1 fi)dx=
1
m

∑m
i=1σ2

i + 1
m

∑m
i=1 (µi −µcollective)2. Clearly, the variance of Dcollective

consists of two parts: one is 1
m

∑m
i=1σ2

i contributed by within-siRNA
variation and the other is 1

m

∑m
i=1 (µi −µcollective)2 contributed by between-

siRNA variation. The within-siRNA variation comes from the variation of
technical replicates of the same siRNAs; thus, it represents the technical or
measurement variation. Meanwhile, if we treat different siRNAs targeting
the same gene as a biological replicate, the between-siRNA variation
represents the biological variation. For convenience, let us use σ2

biological to
denote the between-siRNA variance. In a deconvolution screen, the interest
is in the biological variation. Then, the SSMD for the collective activity
based on biological variation is (Zhang, 2011)

βbiological = µcollective

σbiological
=

1
m

m∑
i=1

µi√
1
m

m∑
i=1

(µi −µ•)2

(3)

Let d̄i be sample mean of the difference in the i-th siRNA. Let d̄ = 1
m

∑m
i=1 d̄i.

Then, the estimate of mean µcollective is

µ̂collective = d̄ (4)

The SSMD of the collective activity Dcollective based on biological variation
can be estimated using the uniformly minimal variance unbiased estimate
(UMVUE) below.

β̂=√
2

�
(

m−1
2

)
�
(

m−2
2

) d̄√
m∑

i=1
(d̄i − d̄)2

(5)

2.2 Individual activity and specific effect of an siRNA
The individual activity of an siRNA (say siRNA i) can be assessed using
the random variable Di representing the difference between siRNA i and
a negative reference. It is trivial to make estimation and inference for the
mean of Di. The estimation and inference of SSMD for Di are provided in
Zhang (2008). The UMVUE estimate of SSMD for the individual activity
of siRNA i is,

β̂i =
√

2√
ni −1

�

(
ni−1

2

)

�

(
ni−2

2

) d̄i

si
(6)

where si is the sample SD of the difference in siRNA i and ni is the number
of replicates that siRNA i has.
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The specific effect of an individual siRNA beyond the shared on-target
effect may be caused by either off-target or specific on-target effects. This
specific effect is represented by the magnitude of difference between the
individual siRNA and all siRNAs targeting the same gene. This magnitude
difference can be addressed using the contrast variable for the main effect
of the siRNA when we treat each siRNA targeting the same gene as a factor
level in one-way ANOVA (Zhang, 2009). That is, the specific effect of the
i-th siRNA among the m siRNAs targeting the same gene can be assessed
using contrast variable

Vi =Di − 1

m

m∑
k=1

Dk =
m∑

k=1

ckDk where ck =
{

1− 1
m , when k = i

− 1
m , when k �= i

.

The mean of Vi is τi =µi − 1
m

m∑
k=1

µk

=µi.specific-on-target +µi.off-target − 1

m

m∑
k=1

(
µk.specific-on-target +µk.off-target

)
.

Therefore, τi is a combination of specific on-target effect and off-target
effect of the siRNA away from the sum of specific on-target and off-target
effect averaged over the m investigated siRNAs. If the sum of specific on-
target and off-target effects averaged over the m investigated siRNAs is zero
[i.e. 1

m

∑m
k=1

(
µk.specific-on-target +µk.off-target

)=0 which approximately holds
especially when m is large], then τi =µi.specific-on-target +µi.off-target. Thus, τi

roughly represents the sum of specific on-target and off-target effects of the
i-th siRNA. Whether the m siRNAs have equal or unequal variances, the
estimate of τi is τ̂i =∑m

k=1 ck d̄k .

The standardized mean (i.e. SMCV) λi of Vi is λi =
m∑

k=1
ckµk√

m∑
k=1

c2
k σ2

k

.

In the situation where the m siRNAs have unequal variance, the estimate
of λi using the method-of-moment (MM) method is (Zhang, 2009)

λ̂i =

m∑
k=1

ck d̄k√
m∑

k=1
c2

k s2
k

(7)

In the situation where the m siRNAs have equal variance, the UMVUE
estimate of λi is (Zhang, 2009),

λ̂i =
√

K√
N −m

m∑
k=1

ck d̄k√
MSE·

m∑
k=1

c2
k

(8)

where N =
m∑

k=1
nk , K =2·

(
�
(

N−m
2

)
�
(

N−m−1
2

)
)2

and MSE= 1
N−m

m∑
k=1

(nk −1)s2
k . The

confidence interval of τi and λi can also be derived (Zhang, 2009).

3 RESULTS
To illustrate the utility of the cSSMD method, we applied them
in three in-house RNAi projects for varicella zoster virus (VZV),
diabetes and Alzheimer’s diseases (AD), respectively.

3.1 VZV siRNA screening project
Following a primary screen with 3–9 replicates, 81 pools of siRNAs
(most of which showed upregulated activity) were selected for
further investigation in a deconvolution screen. In the deconvolution
screen, each gene corresponding to one of the 81 pools was targeted
by 3 or 7 siRNAs. These siRNAs were transfected into MRC-5

Fig. 1. A deconvolution siRNA screen for VZV. Top: the black round point
(or red +) denotes average value for an siRNA (or for all siRNAs targeting
a gene); the orange (or blue) number indicates the number of siRNAs being
selected as an upregulated (or downregulated) hit in the siRNA level for
a gene; middle: P-values from RIGER, RSA and t-test; bottom: estimated
cSSMD and average value for all siRNAs targeting a gene.

human lung fibroblast cells in a 384-well plate format. A forward
transfection protocol was used, with a cell density of 6500 per well.
Twenty-four hours later, cells were infected with virus and incubated
for an additional 48 h. Cells were then fixed with formaldehyde
and immunostained with an antibody to the viral capside protein
gH coupled to a secondary antibody labeled with Alexa488, and
counterstained with a nuclear dye (DAPI, Ex 405). The plates were
then read on a scanning laser cytometer (Acumen Ex3, TTP). They
were arranged in two source plates and six experimental plates were
generated from each source plate. The goal in this screen was to
select upregulated hits for potential cellular protein involved in viral
entry and spreading.

We first applied the frequency approach to the screen. That is,
for each siRNA, we estimated average fold change and SSMD
[by Equation (6)] across its replicates (Zhang, 2008). The siRNA
with average fold change ≥1.2 and SSMD ≥1.28 was selected as
upregulated hits and those with average fold change ≤1/1.2 and
SSMD ≤−1.28 was selected as downregulated hits in the siRNA
level. The number of upregulated (or downregulated) hits for each
gene is shown in orange (or blue) number in the top panel of Figure 1.
The gene with at least 25% of its targeting siRNAs being selected
as hits in the same direction in the siRNA level is selected as a hit
in that direction in the gene level. Using this frequency approach,
we would select 65 genes as upregulated hits and 1 gene as both
upregulated and downregulated hit.

One issue with the frequency approach is that it only captures a
portion of siRNAs with strong effect and ignored the information
about the remaining siRNAs. Consequently, a gene selected as an
upregulated hit may have two or more siRNAs with measured
values in the opposite direction (e.g. Genes 2, 3, 5, 8, 9 in the
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Fig. 2. The measured fold changes relative to a negative control in each
replicate of siRNAs targeting Genes 2, 53, 73 and 81, respectively. In each
panel, the bars next to each other with the same color denote the fold changes
in the replicates of an siRNA. A red ’+’ denotes the average fold change of
all replicates for an siRNA. ’p.RIGER’, ’p.RSA’ and ’p.tTest’ denote the
P-values by RIGER, RSA and t-test, respectively.

top panel of Fig. 1). The extreme case is that a gene is selected
as both upregulated and downregulated hits (e.g. Gene 2 shown in
Figs 1 and 2). On the other hand, if all the investigated siRNAs
targeting a gene have consistent moderate effects in one direction,
the frequency approach may not pick this gene as a hit (e.g. Genes
53, 62, 66, 70 in the top panel of Fig. 1).

We applied both RSA and RIGER methods to the VZV screen.
For the investigated genes, the P-values in the upregulated direction
from either RSA or RIGER are mostly very large (the blue or red
points in the middle panel of Fig. 1) and the q-values from the
RIGER method are all very large >0.7. There are three genes with
P<0.01 by RSA and no gene with P<0.01 by RIGER. The gene
with the smallest P-value by RIGER is Gene 81 shown in Figure 2. If
we used the RSA or RIGER method, we would have concluded that
there are few upregulated hits in this screen. However, the frequency
approach clearly indicates that a high portion of gene (i.e. 65 out
of 81) were upregulated. The data for many genes are similar to
those in Gene 53 shown in Figure 2. Most of the replicates in most
siRNAs targeting Gene 53 had average fold change >1.2 (top panel
of Fig. 2). Clearly, the data reveal that many genes have upregulated
effects. Thus, the results by either RSA or RIGER in the VZV screen
are misleading.

The use of classical one-side t-test yields 43 genes with P<0.01
(middle panel in Fig. 1), which matched with both the observation
of the data and the results by the frequency approach better than
the results by RSA or RIGER (see examples in Fig. 2). The issue
with the P-value from the classical t-test is that it is affected by both
effect size and sample size. For the same size of non-zero effects, the
larger the sample size, the smaller the P-value. Consequently, the
genes with fewer siRNAs are less likely to be selected as hits even
though they may have a large effect. In the VZV screen, if we use

Table 1. The categorization of effect sizes of collective activity of multiple
siRNAs targeting a gene based on estimated SSMD values

Direction Effect size of
collective
activity

Screen 1:
VZV

Screen 2:
Diabetes

Screen 3:
AD

Upregulation Extremely strong 0 0 0
Very strong 2 0 0
Strong 5 0 6
Fairly strong 9 1 4
Moderate 15 1 10
Fairly moderate 16 5 11
Fairly weak 16 4 34
Weak 8 12 33
Very weak 5 30 59
Extremely weak 4 51 46

Zero Zero strength 0 0 0
Downregulation Extremely weak 0 60 56

Very weak 1 71 34
Weak 0 39 16
Fairly weak 0 27 6
Fairly moderate 0 16 5
Moderate 0 1 1
Fairly strong 0 3 1
Strong 0 0 0
Very strong 0 0 0
Extremely strong 0 0 1

the criterion of P<0.01 to select upregulated hits, we would miss
Genes 73 and 48 that have large effects because they have three
siRNAs per gene, whereas most of the remaining genes have seven
siRNAs per gene (black points in the middle panel of Fig. 1).

cSSMD can directly assess the size of collective effects of
multiple siRNAs targeting a gene. Thus, cSSMD represents the
effect size of the targeted gene and we can apply the SSMD-based
criterion (Zhang, 2009) to the estimated cSSMD values to categorize
the gene effects. The calculation of cSSMD using Equation (5) is
illustrated in the Supplementary Materials. Based on the estimated
cSSMD values, we have 2 very strong, 5 strong, 9 fairly strong, 15
moderate, 16 fairly moderate, 16 fairly weak, 8 weak, 5 very weak, 4
extremely weak upregulated genes and 1 very weak downregulated
gene in the VZV screen (Table 1). With the information about the
effect sizes of genes based on the collective activity of its targeted
siRNAs, we can choose the genes for further investigation based on
our need. For example, in some cases, we may only focus on the 16
genes with fairly strong, strong or very strong upregulated effects.
In other cases, we may focus on the 47 genes with fairly moderate or
stronger upregulated effects. When using cSSMD for hit selection,
we may also consider average fold change for a gene simultaneously
(Zhang, 2010b).

The cSSMD for a gene captures the information for all its
measured targeting siRNAs. Hence, it will not have the issue of the
frequency approach described previously. For example, Genes 3, 5,
8, 9 (selected as hits by the frequency approach) all have cSSMD
<0.5 and average fold change <1.2, thus all having weak or weaker
upregulated effects by the SSMD criterion. Genes 52, 62, 66, 70
(not selected as hits by the frequency approach) all have cSSMD
>1.28 and average fold change >1.2, thus having moderate or
stronger effects by the SSMD criterion. The cSSMD and average
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fold change for Gene 2 are 0.02 and 1.009, respectively. Thus,
the cSSMD method will not select it as either an upregulated or
downregulated hits.

The cSSMD method does not form the null distribution from
all investigated siRNAs in a screen. Thus, it avoids the misleading
result of hit selection generated by the RSA and RIGER methods
when the majority of investigated genes in a screen have effects in
one direction. For example, the measured values in the replicates
of siRNAs targeting Gene 53 clearly indicate that this gene has
upregulated effects (top panel of Fig. 2). The cSSMD for Gene
53 were 1.34, indicating that this gene has moderate upregulated
effects. However, the P-value for this gene was 0.265 by RIGER
and 0.205 by RSA. Neither RIGER nor RSA can support that Gene
53 has upregulated effects. Using the RIGER and RSA methods, for
many genes, we would obtain misleading results similar to those
for Gene 53. Another of them (i.e. Gene 57) is demonstrated in the
Supplementary Material. The data for all the 81 genes are listed in
the Supplementary Material.

Because cSSMD measures the effect size, it is more robust to
sample size than the classical t-test. For example, all the measured
fold changes of all the replicates for each of the three siRNAs
targeting Gene 73 are >1 and most of them were >1.2 (Fig. 2). In
contrast, five out of the seven siRNAs targeting Gene 53 has at least
one replicate with measured fold change <1 (Fig. 2). The measured
values clearly indicate that Gene 73 has a larger upregulated effect
than Gene 53. However, the P-value (i.e. 0.014) for Gene 73 is about
five times the P-value (i.e. 0.003) for Gene 53 (Fig. 2). In contrast,
the estimated cSSMD value (i.e. 1.89) for Gene 73 is larger than that
(i.e. 1.34) for Gene 53 (Fig. 2), correctly reflecting the information
contained in the measured values.

In addition to assessing the collective activity of multiple siRNAs,
the SSMD-based method can assess the specific effect of an siRNA
relative to the collective effects of all siRNAs targeting the same
gene as presented in the Section 2. SSMD [estimated using Equation
(8)] for the deviation from the collective mean can be used to assess
the size of specific effects of an siRNA. The specific effect of an
siRNA is a combination of off-target effect and specific on-target
effect that this siRNA has. It is impossible to completely separate an
off-target effect from a specific on-target effect in current designs of
studies. However, the consideration of both specific and collective
effects may provide information about which siRNAs are more
likely to have off-target effects and which are more likely to have
specific on-target effects. The siRNAs with large specific effects for
themselves but small collective effects for their targeted genes are
more likely to have large off-target effects (e.g. the siRNAs marked
with blue in Fig. 3). The siRNAs with large specific effects in one
direction but large collective effects in the opposite direction are also
more likely to have large off-target effects (e.g. the siRNAs marked
with green in Fig. 3). The siRNAs with large specific effects in
one direction and large collective effects in the same direction are
more likely to have large specific on-target effects (e.g. the siRNAs
marked with red in Fig. 3).

3.2 RNAi screening projects for diabetes and AD
Here, we further demonstrate the utility of the cSSMD methods
in two more in-house RNAi screening projects. In an RNAi
project for diabetes, following a primary screen without replicates
and a confirmatory screen with replicates for siRNA pools,

Fig. 3. SSMD for assessing specific effects of siRNAs in the VZV
deconvolution screen. Black points: siRNAs having weak or no specific
effects; blue points: siRNAs being more likely to have large off-target effects,
whereas their target genes have no or weak effects; green points: siRNAs
being more likely to have large off-target effects, whereas their targeted genes
have a large effect in the opposite direction; red points: siRNAs being more
likely to have large specific on-target effects.

we investigated 321 genes in a deconvolution screen. In this
deconvolution screen, a human hepatoma cell line (PLC PRF 5)
was transfected with siRNA and treated with dexamethasone, cAMP
and a suboptimal dose of insulin. After 48 h, a four-gene quantitative
nuclease protection assay (qNPa, High Throughput Genomics) in a
384-well format was used to measure the gene expression of Beta-
actin, glucose-6-phosphatase (G6PC) and pyruvate dehydrogenase
kinase 4 (PDK4) (in addition to a negative control gene). siRNAs
that modulate the gene expression of these readouts were analyzed
and tested for their ability to modulate gluconeogenesis and insulin
sensitivity. The major goal in this screen was to select siRNAs with
inhibition effects to identify potential diabetes drug targets. Thus,
of the 321 genes, 68% were preselected to have downregulated (i.e.
inhibition) effects and 32% were preselected to have upregulated
effects and 315 genes had 7 siRNAs each with triplicates.

Based on estimated cSSMD for the collective activity of their
siRNAs, the effect sizes of the investigated genes are summarized
in the fourth column of Table 1. The results indicate that many
investigated genes have small downregulated effects. There are 47
genes with cSSMD ≤−0.75 and 11 genes with cSSMD ≥0.75.
Based on a classical t-test, using P<0.05 in either direction, there
are 42 downregulated hits and 11 upregulated hits. Based on RIGER,
using P<0.05 in either direction, there are 20 downregulated hits
and 19 upregulated hits (Fig. 4). The results by cSSMD and classical
t-test match with the results in previous primary and confirmatory
screens better than those by RIGER. Moreover, among the 47
downregulated hits by cSSMD, 31 were not selected as hits by
RIGER. These 31 hits were confirmed to have downregulated effects
in follow-up Taqman qPCR experiments. Note, because both the
RSA and RIGER methods formalize the null distribution from all
the siRNAs in the entire list in an experiment and because RSA
requires two arbitrary thresholds, whereas RIGER does not, here
we present the results in the two screens by RIGER but not those
by RSA.
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Fig. 4. Analytic results for all genes in a deconvolution siRNA screen for
diabetes. Top: the grey round point (or black ‘+’) denotes average value
for an siRNA (or for all siRNAs targeting a gene); Middle: P-values from
RIGER (grey points) and t-test (black ‘+’); bottom: estimated cSSMD (grey
points) and average value (black ‘+’) for all siRNAs targeting a gene.

The SSMD method and classical t-test obtain similar results in
the diabetes screen: all the 42 downregulated hits by the t-test were
among the 47 downregulated hits by cSSMD and both methods
selected the same 11 genes as upregulated hits. This is because 315
out of 321 investigated genes in the diabetes screen had 7 targeting
siRNAs and because |SSMD| ≥0.75 is approximately equivalent to
P<0.05 in either direction for a gene with seven targeting siRNAs.
If many genes have different number of targeting siRNAs, the SSMD
and classical t-test may obtain different results, as demonstrated in
the following screen for AD.

In this deconvolution screen for AD, siRNAs were transfected
into H4 neuroglioma cells in a 384-well plate format. A reverse
transfection protocol was used, with a cell density of 6000 per
well. Forty-eight hours later, cells were assayed for cell viability
and then lysed. Cell lysates were then used to measure total ABCA1
levels by ELISA. The siRNAs that substantially altered totalABCA1
levels in H4 cells were considered hits. The goal in the above
confirmatory screen was to select activation hits to identify potential
AD targets. Thus, of the 323 investigated genes in the AD siRNA
screen, 18% were preselected to have downregulated effects and
82% were preselected to have upregulated effects. In this screen,
the numbers of siRNAs targeting a gene differ for different genes:
199 genes are targeted each by 7 siRNAs, 86 by 6, 21 by 5, 2 by 4,
4 by 3, 1 by 2, 2 by 8, 2 by 9 and 6 by 10 siRNAs.

Based on estimated cSSMD for the collective activity of their
siRNAs, the effect sizes of the investigated genes in the AD screen
are summarized in the fifth column of Table 1. There are 14 genes
with cSSMD ≤−0.75 and 65 genes with cSSMD ≥0.75. Based
on a classical t-test, using P<0.05 in either direction, there are 12
downregulated hits and 48 upregulated hits. Based on RIGER, using
P<0.05 in either direction, there are 19 downregulated hits and 35

Fig. 5. Analytic results for all genes in a deconvolution siRNA screen for
Alzheimer’s disease. Top: the grey round point (or black ‘+’) denotes average
value for an siRNA (or for all siRNAs targeting a gene); middle: P-values
from RIGER (grey points) and t-test (black ‘+’); bottom: estimated cSSMD
(grey points) and average value (black ‘+’) for all siRNAs targeting a gene.

upregulated hits (Fig. 5). Again, the proportion of upregulated hits
selected by the SSMD method matches with the proportion from
previous screens for siRNA pools better than that by RIGER. Since
the proportion of genes targeted by <7 siRNAs in the AD screen is
larger than that in the diabetes screen, the difference in the number
of selected hits between the SSMD method and the classical t-test
in the AD screen is larger than that in the diabetes screen.

4 DISCUSSIONS AND CONCLUSIONS
To reduce the impact of off-target effects in RNAi screening projects,
it is common to conduct experiments investigating multiple siRNAs
per gene. Currently, corresponding analytic methods include the
frequency approach, RSA, RIGER and t-test. In this article, we
present the cSSMD method. The RSA and RIGER method require
that the majority of siRNAs under investigation should have at
most very weak effects in a deconvolution screen. However, the
siRNAs under investigation in most deconvolution screens have
been selected because they were positive or part of a positive
siRNA pool in at least one previous screen. Therefore, the RSA
and RIGER are not suitable for many RNAi screens investigating
multiple siRNAs per gene.

Unlike the RSA and RIGER method, the cSSMD method does not
draw the null distribution from all investigated siRNAs in a screen.
Thus, it works effectively for both primary and deconvolution
screens with multiple siRNAs against a gene. Like RSA and RIGER,
cSSMD captures the collective activity of multiple siRNAs against
a gene, thus minimizing the impact of off-target effects. Also a gene
with multiple moderately active siRNAs is weighted more heavily
than a gene with fewer active siRNAs in the cSSMD method so,
unlike the frequency approach, the cSSMD method does not miss
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the selection of genes with consistent moderate effects. Like the t-
statistic, the cSSMD estimate captures both the average value and
variability of measured responses of multiple siRNAs targeting a
gene. Unlike the t-statistic, the SSMD estimate is more robust to
differences in sample size. The applications of the cSSMD method
to three in-house RNAi screens also demonstrate that the results
obtained by the cSSMD method are more reasonable and sensible
than those obtained using the frequency approach, RSA, RIGER or t-
test in terms of matching with (i) data in current experiments, (ii) the
results in previous experiments and (iii) the results in available
follow-up experiments.

It should be noted that, similar to the t-statistic, the cSSMD
method may overemphasize the genes with consistent but weak
effects for its targeting siRNAs. To ensure that average fold change
has a reasonable magnitude, the dual-flashlight plot (Zhang, 2010b)
which considers both SSMD and average fold change can be used.

Finally, although the experiments demonstrated in this article are
screens for siRNAs, all the proposed method can readily be applied
to screens for short hairpin RNAs (shRNAs) and others.
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