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ABSTRACT

Motivation: Over the last decade, both static and dynamic fragment
libraries for protein structure prediction have been introduced. The
former are built from clusters in either sequence or structure space
and aim to extract a universal structural alphabet. The latter are
tailored for a particular query protein sequence and aim to provide
local structural templates that need to be assembled in order to build
the full-length structure.

Results: Here, we introduce HHfrag, a dynamic HMM-based
fragment search method built on the profile-profile comparison tool
HHpred. We show that HHfrag provides advantages over existing
fragment assignment methods in that it: (i) improves the precision of
the fragments at the expense of a minor loss in sequence coverage;
(ii) detects fragments of variable length (6-21 amino acid residues);
(iii) allows for gapped fragments and (iv) does not assign fragments to
regions where there is no clear sequence conservation. We illustrate
the usefulness of fragments detected by HHfrag on targets from most
recent CASP.

Availability: A web server for running HHfrag is available at http://
toolkit.tuebingen.mpg.de/hhfrag. The source code is available at
http://www.eb.tuebingen.mpg.de/departments/1-protein-evolution/
michael-habeck/HHfrag.tar.gz

Contact: michael.habeck@tuebingen.mpg.de

Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

The success of many protein structure prediction methods critically
depends on the existence of structural templates and our ability to
detect them. It seems that known protein structures have reached a
sufficient level of diversity for template-based structure prediction
(Zhang and Skolnick, 2005). The percentage of new folds in the
Protein Data Bank (PDB) (Berman et al., 2000) dwindles, and even
the new folds tend to reuse building blocks such as super-secondary
structure motifs shared with non-homologous proteins (Fernandez-
Fuentes et al., 2010). The new folds add to PDB’s diversity
by providing new arrangements of known motifs rather than by
introducing completely novel building blocks. Also our ability to
identify structural templates has reached a level of sensitivity such
that the boundaries between homology modeling and threading
methods blur (Hildebrand et al., 2009). Structures evolve more
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slowly than sequences and therefore highly divergent sequences
may still share a common structure. The critical threshold of 30%
sequence identity has been pushed to ever smaller values by profile—
profile methods (Soding, 2005) superseding conventional sequence
comparison algorithms.

Even if no full-length template exists or if we fail to detect it,
there is still hope for structure prediction. Segments of the query
profile may show significant similarity to short conserved regions
in proteins from different folds. Such recurring sequence patterns
often correlate with persistent local structure. Examples of recurring
motifs have been compiled into the I-Sites fragment library (Bystroff
and Baker, 1998) and proved useful in protein structure prediction
(Bystroff and Shao, 2002). I-Sites aims to build a concise, static
dictionary of reusable fragments and is an early attempt to discover
a universal ‘structural alphabet’ (Offmann et al., 2007). In contrast,
dynamic methods such as Rosetta’s fragment extraction module
NNmake (Kim et al., 2004; Rohl et al., 2004) aim to create a
fragment library that is customized to the query sequence. Although
dynamically extracted fragments often correspond to the recurring
motifs of static approaches, no attempt is made to compile them into
a non-redundant universal dictionary.

Static fragment libraries trade low sequence coverage for high
precision. Therefore, dynamic fragment search seems more suitable
for structure prediction. In conserved regions, also a dynamic
approach should be as accurate as static libraries. But in non-
conserved regions, the better coverage of dynamic fragment search
comes at the price of reduced precision. Another limitation is that
fragments typically come in fixed size, with 9mer fragments being
a popular choice (Bystroff et al., 1996; Holmes and Tsai, 2004;
Simons et al., 1997). This is more for technical convenience rather
than having a specific biological meaning. The actual instances of
a structural motif often show variable lengths with extensions or
deletions at the termini. I-Sites tries to address this problem by
defining a set of overlapping, partially redundant motifs.

The Rosetta fragment selection tool NNmake searches a database
of crystal structures with better than 2.5 A resolution and pairwise
sequence identity <50% (Rohl et al, 2004). All nine residue
windows from the query sequence are compared to the database
entries using a score that is based on sequence profile comparison
and secondary structure match. The PSI-BLAST profiles of the
query and the candidate fragments are compared using the city-
block distance metric. This method has been extended by the
FRazor dynamic fragment selection tool (Li et al., 2008). Using
integer linear programming, FRazor combines the sequence profile
similarity score with additional structural features (secondary
structure, solvent accessibility and contact capacity) in order to
improve the fragment selection. An alternative to fragment selection
is the recent development of fragment sampling from probabilistic
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models. This approach has been pioneered by Hamelryck and co-
workers (Boomsma et al., 2008). Zhao et al. (2010) have developed
similar approaches but use different types of latent networks. The
basic idea of fragment sampling is to not select fragments from a
structure database, but to learn generative models of local protein
structure such as hidden Markov models. The advantage of this
approach is that the possible structures of a fragment are represented
probabilistically such that there is no restriction caused by the
size and diversity of a structure database. For every sequence, it
will be possible to generate fragment structures and to assess their
likelihood. The TorusDBN model (Boomsma et al., 2008) was
shown to generate conformations that are locally as accurate as
structures obtained with Rosetta.

HHsearch (Soding, 2005) has proven to be a very sensitive
profile—profile comparison tool for template selection in comparative
modeling and threading (Hildebrand et al., 2009). Here, we extend
its scope to the case when the structure database does not provide
a full-length template. We take advantage of HHsearch’s high
sensitivity in order to detect local regions of structural similarity,
shared among proteins across different folds. Once these regions
are identified in the target sequence, our method attempts to
find and excise matching segments with known structure and to
build a fragment library that is: (i) dynamic (i.e. fragments are
customized to the query sequence aiming at high coverage); (ii)
flexible (i.e. fragments are variable in length but also allow for gaps
and gapped fragment assignments) and (iii) precise (i.e. conserved
regions are not buried in a large number of false positives).

We have benchmarked our fragment search method on 105
proteins from CASP 9 and observed an increased precision
(compared with Rosetta’s fragment search) as well as an increased
sequence coverage (compared with I-Sites). A fragment library that
shows a higher coverage than a static dictionary and that is, at
the same time, more precise than the dynamic Rosetta approach
should allow for more efficient sampling of conformational space
by fragment assembly. This implies that an ab initio model of the
target structure can be built in less number of trials and from better
decoys. We support this notion by applying our fragment library to
CASP 9 targets using a modified Rosetta ab initio protocol, adjusted
to work with fragments of variable length.

2 METHODS

Given a query sequence of unknown structure, our method builds a dynamic
library by excision of fragments from a non-redundant structure database.
First, the query HMM is divided into a set of overlapping HMM fragments of
variable length (6—21 residues). The optimal boundaries of each query HMM
segment are determined dynamically: HMM-HMM comparison probes
each fragment for recurrence in the structure database. Second, an ordered
fragment map is compiled by finding the locally optimal regions of similarity
between the query HMM segments and the HMM s in the structure database.

2.1 Generation of HMM profiles

We use the standard HHpred toolchain (Hildebrand et al., 2009) to build
a profile-HMM of the query sequence and the sequences in the template
database. This step involves generation of multiple alignments with several
rounds of PSI-BLAST (Altschul et al., 1997). In addition to a pure sequence-
based score, predicted and observed secondary structure is taken into account.
We use DSSP (Kabsch and Sander, 1983) to calculate eight-state secondary
structure assignments for known structures from the template database.
The query sequence is also converted to a profile HMM with predicted
three-state secondary structure using PSIPRED (Jones, 1999). Each final
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Fig. 1. Flowchart of the fragment extraction procedure. (a) Procedure to
determine fragment boundaries dynamically. (b) Fragment search using the
dynamically extracted query fragments.

HMM comprises amino acid emission probabilities and secondary structure
propensities and is built using HHmake with pseudo-count correction.

2.2 Template database

To strip down homologies from the PDB, we use the April 2010 build of
PDBselect25 (Griep and Hobohm, 2010) as template database. There are
4824 chains in the set sharing sequence identity up to 25%. For each structure,
a profile HMM (sequence profile and secondary structure) is generated using
the above procedure and the 3D coordinates are extracted. We refer to
the resulting set of HMM/3D structure pairs as PDBS25-HMM template
database.

2.3 Fragment extraction and assignment

The fragment extraction routine uses the HHsearch algorithm for HMM-
HMM alignment (Soding, 2005). HHsearch scores via co-emission
probability of the amino acid distributions at each profile column and through
secondary structure match. In all HHsearch runs, the hit list includes all
matches with probability >0.2. If there are no or less than 10 hits with
probability greater than this threshold, additional hits with lower probability,
if available, will be included until the number of hits is at least 10. Figure 1
shows a flowchart of our dynamic fragment search (a detailed description of
HHfrag can be found in the Supplementary Material). The search consists of
two phases: (i) identification of flexible query segments and (ii) fragment
search. The first step is detailed in the next subsection. In the second
phase, each query fragment HMM is compared against the template database
using local HMM-HMM alignment (HHsearch with default parameters).
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Aligned regions in the database entries are excised as template fragments
if they are at least six residues long. Finally, we build a position-specific
fragment map that combines all extracted fragments (see Fig. 5 for example).
Each fragment in the map is described by a profile HMM segment (6-21
residues in length), a 3D structure and its position in the query profile.

2.4 Identification of flexible query segments

We aim to determine fragments that are flexible in length because it is
unlikely that a fixed length will work for all types of fragments equally well.
Since HHsearch uses a local alignment algorithm, alignment of the full-
length query profile over a set of templates will produce a list of template
fragments with variable length. However, HHsearch still tends to maximize
the number of matches between the template and query profile and does not
necessarily focus on the conserved blocks. The default search behavior of
HHsearch is therefore not suited to decompose the query sequence into short
conserved motifs.

To trigger the desired local search behavior, we chop the query HMM into
a nested set of segments. At a given column c, this procedure results in a
list of candidate query segments spanning residues (c,c+6) to (c,c+21).
However, the excision of a profile segment with a fixed position is an
inherently ‘violent’ act that may destroy the information encoded in the entire
profile— in the same way as blindly extracting a word from a sentence may
yield a truncated word. We use the number of hits to rank the integrity of
the candidate query segments—the candidate with the highest number of
matches is likely to be the one that survives the excision with minimal
‘damage’. For each candidate fragment, we run HHsearch and collect
local profile matches in the PDBS25-HMM database. The query segment
achieving the maximum number of hits is chosen as optimal query segment,
because it has the highest degree of recurrence among the candidates and the
best chance of collecting true positives when used for query. After shifting
the origin of the nested segments by three, we find the next query segment
and thereby obtain optimal query fragments at positions 143 xi.

2.5 Assessment of fragment searches

We use several criteria to assess the performance of fragment searches.
A fragment is considered a true hit or true positive if the Coe RMSD to the
native structure is below a threshold value (typically 1.5 A). Since the RMSD
is strongly length dependent, we also ran tests with a length-independent
definition of true positives. However, we found that the overall picture of
our results does not change (for details see Supplementary Material). We
therefore use the conceptually simpler definition of a true positive based
on RMSD (Kolodny et al., 2002). The precision is the percentage of true
positives among the fragments assigned to the query. We report local residue-
wise precision that assesses the percentage of true hits covering a specific
residue. We also report the global precision measuring the percentage of true
positives assigned to the entire target. The coverage is the percentage of
target residues that are covered by at least one truly positive fragment (Li
et al., 2008). Precision and coverage depend on the true positive threshold
and increase if the threshold increases. Figures reporting all criteria are found
in the Supplementary Material.

2.6 Fragment selection with Rosetta NNmake

All Rosetta 9mer and 3mer fragment libraries were generated using NNmake
and the default Rosetta Fragments database taken from Rosetta v3.1. We used
only PSIPRED secondary structure predictions and therefore the fragment
generation program was started with the relevant command line arguments
to suppress all other secondary structure prediction options.

2.7 Fragment sampling with TorusDBN

As an alternative to NNmake, we used the TorusDBN model by Boomsma
et al. (2008) to sample protein conformations with a generative probabilistic
model. For a given query sequence, we instantiated a TorusDBN model based

Fig. 2. Redundancy of the I-Sites library. (a) Superimposition of 10
paradigm structures of several overlapping I-Sites motifs. These fragments
have been assigned to the same region of a query sequence, because they
have very similar profiles and cover the same structural motif. (b) Gapped
fragments (green, red) and fragments with flexible boundaries found by
HHfrag.

on the sequence and predicted secondary structure and drew 100 random
conformations. For calculation of the precision and accuracy, we used 9mer
fragment structures excised from the full-length samples.

2.8 Decoy generation

To test our fragments in ab initio structure prediction, we have built a
modified version of the standard Rosetta AbinitioRelax application from
the Rosetta 3.1 C++ source distribution. We store the fragment library in
Rosetta fragment format and directly feed it into AbinitioRelax in place of
the standard 9mer library. We generate 1000 decoys per target. Each decoy
is superimposed to the native structure of the target using local RMSD fitting
and ranked by Coe RMSD and TM-score (Zhang and Skolnick, 2004).

3 RESULTS AND DISCUSSION

3.1 From static to dynamic fragment libraries

Our initial goal was to create a static dictionary of fragments from
profile HMMs. One of the issues that we wanted to address was
the restriction to a fixed fragment length. To determine recurrent
fragments of variable length, we use the approach outlined in
Section 2.4. This approach rediscovers most of the motifs present in
1-Sites but does not improve the coverage significantly, which makes
sense intuitively because any attempt to describe a large cluster of
fragments by a single profile will eventually decrease the sensitivity
of the profile. We also find that many of the long fragments in our
static library correspond to more than one I-Sites motif, suggesting
that some fragments could be decomposed further into submotifs.
Some proteins in the template database contain instances of the ‘full’
motif, while others have only ‘partial’ or even ‘minimal’ matches.
This modularity is also observed in the I-Sites library itself (Fig. 2).
Some I-Sites motifs are highly related in terms of sequence and
structure and refer to a common core motif. We also found instances
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Fig. 3. Sequence coverage and precision for benchmark protein 3nzIlA at
various RMSD cutoffs. StaticHH is the early, static version of HHfrag
mentioned in Section 3.1.

of fragments that contain minimal gaps or insertions, which suggests
that there is no ‘optimal’ length for a given fragment and that it
should be beneficial to allow for greater flexibility when defining
fragment boundaries.

Comparison of the performance in fragment assignment between
I-Sites and a classical dynamic approach (Rosetta fragments) shows
that I-Sites as well as our own static library is highly specific, but
the sequence coverage is insufficient for structure prediction (Fig. 3).
On the other hand, Rosetta’s fragment extraction module achieves
excellent coverage but tends to bury the good fragments in a vast
number of low-quality hits.

3.2 Dynamic fragment detection

Based on the above observations, we decided to keep our fragments
variable in length but make the fragment extraction routine truly
dynamic with the aim of increasing the coverage while maintaining
the current high level of precision. Figure 3 shows an example
where our method may look outperformed by Rosetta in terms of
coverage: Rosetta reaches 87% coverage at an RMSD threshold of
1.4 A, whereas HHfrag’s coverage is 76% at the same threshold.
However, coverage alone is a misleading metric. Coverage counts
the number of residues that are covered by at least one fragment with
acceptable structure but does not assess how many of the assigned
fragments are actually correct. The picture changes significantly if
one considers also the precision of the fragments and asks oneself:
if, at a given position in the query sequence, we pick one of the

HHfrag
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Fig. 4. Local residue-wise precision at RMSD threshold 1.5 A for target
3nzIA (blue bars). The red regions denote the false-positive rate. The white
regions at the N- and C-termini are unassigned (gaps in the fragment map).

assigned fragments randomly, what is the chance that this fragment
will have the correct structure? For the same target, HHfrag has
1.5-fold higher precision than Rosetta at the same RMSD cutoff.

The position-specific precision (Fig. 4; see also Supplementary
Material) reveals that the quality of the assigned fragments is
not uniform along the sequence of the query. Plots of the local
precision usually demonstrate a characteristic shape. We observe
well-expressed peaks of high-quality fragments connected by
regions with no or very uncertain assignments. The high-quality
regions exhibit a strong sequence signal and typically correspond to
recurrent motifs similar to the I-Sites paradigms. The profiles of the
I-Sites motifs always align to query regions where HHfrag assigns a
high amount of truly positive fragments, 80+ 18% on average. The
unassigned and/or low-quality regions show the highest variability
and uncertainty, and need to be modeled using a brute-force approach
during an ab initio structure prediction. The fact that HHfrag
does not assign fragments to uncertain regions (‘white regions’ in
the fragment map) should be considered a feature rather than a
shortcoming, because it indicates that such areas require special
treatment during modeling. However, current structure prediction
protocols such as Rosetta AbinitioRelax may not be able to take
advantage of this information (Supplementary Material).

The residue-wise precision diagrams have also similar patterns for
both our and Rosetta’s fragment maps. The locations of the high-
accuracy peaks along the target sequence are correlated. However,
the Rosetta histograms display a peculiar triangular shape, whereas
HHfrag assignments have a more block-like structure. The peaks
in NNmake’s fragment map are sharp, and the precision quickly
decreases as we move away from the maximum. This behavior
can be explained by the lack of context variability of the Rosetta
fragments and illustrates some of the disadvantages of using
fragments of constant length.

The main advantage of HHfrag is therefore the ability to focus
more precisely on the actual boundaries of the conserved regions.
Gapped fragment assignments have a small impact on the global
precision of the method provided that the database of structural
templates is diverse enough (Section 3.3). However, the ability to
detect insertions and deletions may have a decisive advantage if the
database contains only few instances of a structural motif.
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(b)

Fig. 5. Fragment map generated with Rosetta NNmake (a) and HHfrag (b).
Shown are top 4 NNmake and all HHfrag fragments assigned to benchmark
protein 3nzIA (thick backbone). The fragments were superimposed onto the
native structure. As already evident from Figure 4, residues 35-55 (thicker
backbone) are covered by significantly more accurate HHfrag motifs.

3.3 Benchmark

We used 105 target sequences from the CASP 9 competition
(http://www.predictioncenter.org/casp9/) to test the performance of
our dynamic fragment search method. The experimental structures
of the benchmark proteins have been published after May 2010 and
therefore do not appear in our template database. For each target, we
built a position-specific fragment map (see Section 2) and compared
its performance to a reference Rosetta 9mer fragment map. The
Ca coordinates of all fragments were superimposed onto the native
structure of the target based on the fragment map (Fig. 5 shows an
example).

Figure 6 shows the distribution of fragment lengths found by
dynamic HHfrag searches. The distribution of fragment lengths
peaks at a value of seven, but shows significant probability for
detecting longer fragments (the average length is 10.3+3.6).

The average sequence coverage of HHfrag is 71+13% (Fig. 7).
If we restrict the analysis to residues in regular secondary
structure, the coverage rises to 84+ 14%. The percentage of residues
that remain completely unassigned (white regions) is 19412%.

10K
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1357 91 14 17 20 23 26 29
Length
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Fig. 6. Distribution of the lengths of all fragments extracted by HHfrag in
the benchmark.
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Fig. 7. Overall precision at an RMSD cutoff of 1.5 A. Each bar corresponds
to a CASP 9 target. The targets in the benchmark are ordered by decreasing
difficulty (red: FM, yellow: FM/TBM, green: TBM). The black line
represents the maximum sequence coverage achieved by each library at that
RMSD cutoff.

This is a significant improvement over static libraries such as I-
Sites and an acceptable loss in coverage compared with Rosetta’s
fragment selection module reaching 90+6% coverage. Figure 7
provides also a summary of the global precision for all targets in the
benchmark. On average, HHfrag obtains a precision of 62+16%,
which is a significant improvement over Rosetta’s fragment selection
with a precision of 38+17%. The improvement in the precision
is two-fold on average and for some targets achieves a dramatic
increase by a factor of 4 to 6. This improvement is clearly consistent
across all three CASP target categories.

We also compared the quality of fragments extracted with HHfrag
with generative statistical models that capture local sequence—
structure correlations. We used the TorusDBN model of Boomsma
et al. (2008) to draw 100 random configurations for each of the
105 CASP targets and compared the local quality of the sampled
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conformations with the HHfrag fragment assignments (Fig. 7; see
Section 2 and Supplementary Material for more details). This
comparison shows that HHfrag produces more accurate and less
heterogenous local structural fragments than the TorusDBN model
(average precision 28.4416.3%, average coverage 91.31+6.5%). At
this instance, we would like to point out that comparison of fragment
selection and fragment sampling methods is a non-trivial issue. In
HHfrag, not all residues are assigned the same number of fragments,
because we use fragments of variable length and because HHsearch
assigns a variable number of hits to a query segment (on average
there are 39 such hits). This will potentially lower the coverage of
HHfrag’s fragment selection in comparison to methods that use a
fixed number of top scoring fragments such as NNmake. However,
coverage is not the only important parameter, and the major goal of
HHfrag is to find a trade-off between precision and coverage. There
is a fundamental difference here between fragment selection and
fragment sampling. In fragment selection by searching a database,
some residues (typically located in loops) will never be assigned
a fragment for various reasons: either these residues are highly
non-conserved and the fragment detection fails or the database of
templates is not comprehensive enough. In probabilistic fragment
sampling, on the other hand, there is always a non-zero change that
every residue will be covered as long as we sample long enough.
In the limit of infinitely many samples drawn from a generative
probabilistic model such as TorusDBN, the coverage will approach
one, but the precision may drop to very low values if the native
fragment is not contained in the high probability density region.
This shows that coverage is not the only quantity that should be
looked at. Also for practical purposes, we want a small number of
fragments, which is valid for HHfrag.

Of all true positive fragments (RMSD < 1.5 A) found by HHfrag
90.8% have uninterrupted structure. However, gapped fragments
have been extracted at least once for 98 out of all 105 benchmark
proteins. These gaps typically represent very small insertions or
deletions in or around the central region of the motif (see the
Supplementary Material). With the current degree of structural
diversity of the PDBS25-HMM database, the gapped assignments
are not strongly influencing the overall performance of HHfrag.
However, 8.4% of the best-fitting fragments per query position are in
fact part of gapped assignments, which suggests that gap detection
may be useful when the number of available local templates is
limited.

3.4 Impact on decoys

The performance of our variable-length fragment libraries with
refined precision was tested in ab initio protein folding experiments
(Fig. 8; see also Supplementary Material). After modifying the
original Rosetta AbinitioRelax protocol to accept fragments of
variable length, we generated decoys for a subset of the proteins
in our benchmark. Initially, we found 15 targets for which the
BAKER-ROSETTASERVER has submitted models on CASP 9
with comparable or even better quality than the HHpredA server.
Following the guidelines in the AbinitioRelax’s documentation, we
picked the 11 shortest single-domain targets with lengths up to 150
residues to ensure that Rosetta has a good chance to predict their
structure with reasonable accuracy. After generating 1000 decoys for
each target in the subset using standard parameters and fragments
detected with Rosetta NNmake, 4 targets remained for which Rosetta
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Fig. 8. Distribution of the decoy TM-scores. The decoys were generated
using the Rosetta AbinitioRelax protocol with HHfrag (black), Rosetta
NNmake fragments (orange). (A) 3nzlA; (B) 2101A; (C) 2102A; (D) 2109A.

performed well: 3nzlA, 2101A, 2102A and 2109A. The exact criteria
for selection were as follows: (i) average TM-score to the native
greater than the random (0.17) and (ii) at least 2% of all decoys
have significant TM-score (>0.4). For each target, we repeated the
AbinitioRelax protocol with exactly the same parameters, except for
the 9mer fragment library, which was substituted by a corresponding
HHfrag-derived variable-length fragment library.

In all instances, we observed a positive shift in the distribution of
decoy TM-scores implying an increased accuracy of the predicted
structures (Fig. 8). HHfrag shifts the position of the most populated
TM-score bin and increases the fraction of good decoys (TM-score
> 0.4) by 31, 26, 14 and 29%, respectively. Although the best decoys
generated with both methods have essentially the same TM-score,
good decoys are produced 1.4 —16.0 times more often when using
a fragment library built with HHfrag.

4 CONCLUSION

We have introduced HHfrag, a new HMM-based fragment detection
method that uses the profile comparison tool HHpred to build a
customized fragment library for a query protein sequence. Our
results show that a dynamic fragment library has advantages over a
static library in that it improves the sequence coverage dramatically.
Compared to other dynamic approaches such as Rosetta NNmake,
HHfrag improves the precision of the fragments significantly at the
expense of a 19£15% loss in sequence coverage. A distinctive
advantage is that HHfrag extracts fragments with variable length
that may also contain gaps.

Often fragments identified by HHfrag seem to point at a common
evolutionary origin of the proteins sharing the same motif. Consider
the example of the GD box (Alva et al., 2009). The GD box links
remotely homologous members of the cradle-loop barrel metafold
(Alva et al., 2008) and also otherwise unrelated folds sharing an
analogous motif. HHfrag detects GD boxes with very high coverage
and precision. This example shows that fragments found by HHfrag
may arise from a common evolutionary origin and can be also the
result of convergence.

Our experiences with decoy generation using Rosetta’s
AblnitioRelax protocol shows that most likely new strategies of
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fragment assembly need to be developed in order to take full
advantage of the HHfrag approach. Tests with an ideal fragment
library show that even few gaps in the fragment map may have
a disastrous effect on the distribution of decoys (Supplementary
Material). Moreover, an increased number of false positives slows
down the convergence and can also increase the population of
misfolded decoys. In the examples where Rosetta successfully
generates near-native decoys, we see a clear enrichment of
near-native structures when using HHfrag fragments. Often, this
enrichment is the result of a more pronounced folding funnel (see
energy versus TM-score plots in the Supplementary Material).
Here, our main focus is on how to select fragments that
capture local protein structure and not on how to improve the
Rosetta structure prediction protocol. Fragments are useful for
many purposes, not only for structure prediction. Fragment-based
approaches have, for example, been instrumental in the recent
structure determination of mitochondrial uncoupling protein 2
(Berardi et al., 2011). Future work will focus on the combination of
HHfrag fragments with sparse and low-quality experimental data.
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