Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site

Gilad Wainreb1, Lior Wolf2,⁎, Haim Ashkenazy1, Yves Dehouck3 and Nir Ben-Tal1,⁎

1Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, 2The Blavatnik School of Computer Science, Tel-Aviv University, Ramat Aviv 69978, Israel and 3Bioinformatique génomique et structurale, Université Libre de Bruxelles, Av Fr. Roosevelt 50, CP165/61, 1050 Brussels, Belgium

ABSTRACT

Motivation: Accurate prediction of protein stability is important for understanding the molecular underpinnings of diseases and for the design of new proteins. We introduce a novel approach for the prediction of changes in protein stability that arise from a single-site amino acid substitution; the approach uses available data on mutations occurring in the same position and in other positions. Our algorithm, named Pro-Maya (Protein Mutant stAbility Y Analyzer), combines a collaborative filtering baseline model, Random Forests regression and a diverse set of features. Pro-Maya predicts the stability free energy difference of mutant versus wild type, denoted as ΔΔG.

Results: We evaluated our algorithm extensively using cross-validation on two previously utilized datasets of single amino acid mutations and a (third) validation set. The results indicate that using known ΔΔG values of mutations at the query position improves the accuracy of ΔΔG predictions for other mutations in that position. The accuracy of our predictions in such cases significantly surpasses that of similar methods, achieving, e.g. a Pearson’s correlation coefficient of 0.78 and a root mean square error of 0.96 on the validation set. Because Pro-Maya uses a diverse set of features, including predictions using two other methods, it also performs slightly better than other methods in the absence of additional experimental data on the query positions.

Availability: Pro-Maya is freely available via web server at http://bental.tau.ac.il/ProMaya.

Contact: nirb@tauex.tau.ac.il; wolf@cs.tau.ac.il

Supplementary Information: Supplementary data are available at Bioinformatics online.

Received on April 30, 2011; revised on September 15, 2011; accepted on October 1, 2011

1 INTRODUCTION

Understanding the mechanisms by which mutations affect protein stability is important for characterizing disease mechanisms and for protein design (Bromberg and Rost, 2009). Hence, the energetics of mutants has been studied extensively through experimental and theoretical approaches.

The methods for predicting the change in a protein’s stability (ΔΔG) that results from a single amino acid mutation can be roughly classified according to the types of effective potentials they rely on: physical effective potentials (PEP), statistical effective potentials (SEP) and empirical effective potentials (EEP). Notably, none of these potentials explicitly take into consideration relevant known mutations at the query position. PEP-based methods use atomic-level representations to capture the underlying physical phenomena affecting protein stability, e.g. van der Waals interactions and dihedral (torsion) angle (Prevost et al., 1991; Seeliger and de Groot, 2010). These techniques are computationally demanding and not applicable to large datasets (Kollman et al., 2000). SEP-based methods are based on the inverse Boltzmann law, which states that probability densities and energies are closely related quantities. Hence, these methods use datasets of proteins of known structures to calculate conditional probabilities that certain residues or atoms will appear in different contexts. Most SEP-based methods use pairwise potentials (Bahar and Jernigan, 1997; Samuelradla and Moult, 1998; Suppl, 1995), though some studies have employed higher order potentials; for example Vaisman et al. (1998) used a four-body potential. SEP-based methods are computationally efficient, more robust than PEP-based methods to low-resolution protein structure prediction and are suitable to include known and unknown physical effects (Lazaridis and Karplus, 2000). Methods in the third category (EEP-based) use experimental energy data to calibrate the weights of the energy function terms. The types of energy terms used can vary and might be SEP-, PEP-, physicochemically- or evolution-based methods (Bloom and Glassman, 2009; Gilis and Rooman, 1997; Masso and Vaisman, 2010; Shen et al., 2008). For example, PoPMuSiC-2.0 utilizes a neural network algorithm with SEP features that couple between the identity of the amino acid, secondary structure, accessibility and the spatial distance between amino acids (Dehouck et al., 2009). Conversely, FoldX’s (Guerois et al., 2002) energy function consists of PEP energy terms calibrated using a grid search method on experimental data. The recently developed Prethermut tool (Tian et al., 2010) incorporates the energy terms of FoldX and MODELLER (Salis and Blundell, 1993) into a Random Forests machine regression, and has reached impressive results. The use of a machine learning algorithm enables non-energy-like terms to be incorporated into the scoring function (Capriotti et al., 2005; Cheng et al., 2006; Montanucci et al., 2008). For example, both I-Mutant2.0 (Capriotti et al., 2005) and MUpro (Cheng et al., 2006) encode the identities of the wild-type (WT) and mutant amino acids in addition to the quantity

© The Author(s) 2011. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
To this end, we developed an approach based on adaptation of the [Potapov et al., 2009]. Two large non-redundant datasets have been compiled by Potapov et al. (2009; PoPMuSiC-DB), containing 2155 and 2648 mutations, respectively. The datasets comprise ΔG measurements from thermal and denaturant denaturation experiments. To avoid redundancy, each dataset considers only one ΔG value per mutant. In cases where multiple values have been obtained for a single mutant, Potapov et al. select the mutant’s ΔG as the mean of the measures, whereas Dehouck et al. determine this value using a weighted average, giving higher weights to measurements taken in physiological conditions (pH close to 7, temperature close to 25°C and without additives). Thus, although the two datasets share 1405 common mutations, the ΔG values assigned to some of these differ.

Preliminary examination of the PoPMuSiC-DB indicated that ΔG values of mutations occurring at the same protein position tend to cluster (data not shown), i.e. ΔG values of mutations in a given position are closer to each other, on average, than to ΔG values in other positions. This suggests making explicit use of known ΔG values to predict the effects of new mutations. To this end, we developed an approach based on adaptation of the baseline model of the BellKor collaborative filtering algorithm (CF) (Koren, 2008). To improve its accuracy, we combined the baseline model algorithm with a content-based model. The content-based model takes into account features of the mutation and its surrounding sequence, structure, SEP- and EEP-based features. We benchmarked our algorithm extensively by carrying out cross-validation on the PoPMuSiC-DB and Potapov-DB datasets and by running it on additional validation set. Statistical analysis of the results indicates that Pro-Maya surpasses all the compared methods both when additional ΔG values for the query position are available and when they are not.

2 METHODS

Our algorithm treats differently mutations at positions for which a ΔG value for a different mutant is known (denoted MRPM, multi-replacement position mutation) and at positions with no additional known recorded mutations at the query position (denoted SRPM, single-replacement position mutation). Given a query mutation of SRPM we follow the traditional machine learning scheme. Specifically, the query mutations is fed to a pre-calculated Random Forests regression model (Breiman, 2001) to predict the query’s ΔG denoted as ΔG_{SRPM} (described in Section 2.1). For MRPMs, as detailed in Figure 1, the predicted ΔG_{MRPM} is utilized as an input to an additional prediction step using the integrated baseline- and content-based model, denoted as the collaborative filtering and content-based (CFCB) algorithm. The ΔG_{CFB} for the MRPMs is calculated using a Random Forests model retrained on a dataset comprising the training dataset and the user reported ΔG records of mutations at the query position. The input to the CFCB algorithm also includes a matrix representation of the known ΔG (described in Section 2.2) and a set of the features. Note, that the ΔG_{CFB} in our algorithm is utilized both for the prediction of SRPM mutations and as an input to the CFCB algorithm. The Pro-Maya algorithm predicts the ΔG change of the mutant versus the wildtype protein (i.e. Mutant-WT). Thus, indicating both the magnitude of the stability change and its sign, i.e. whether the mutant is more or less stable than the WT.

2.1 Calculation of ΔG_{CFB}

The ΔG_{CFB} is calculated using the Random Forests R implementation (Liaw and Wiener, 2002). The number of trees to grow was set to 600 since the addition of more trees did not change the performance. The number of random features to be searched at each tree node was the square root of the number of features, i.e. 6.

The Random Forests regression utilizes a total of 11 descriptors (F1–F11) with 30 dimensions, which can be roughly divided into sequence- and structure-based features as follows:

2.1.1 Sequence-based features The multiple sequence alignment (MSA) holds important information regarding the physicochemical preference of the position in the protein. From the MSA, we calculated the position specific scoring matrix (indicating the frequency of the amino acids in each MSA column) and used a physicochemical scale matrix to calculate the weighted average and SD of a physicochemical property. Given a mutation, we measured the degree to which its physicochemical properties deviated from the mean physicochemical preference at the query position. Each query mutation was evaluated according to the following physicochemical properties (F1–F3): hydrophobicity scale (Koscel and Ben-Tal, 2002), molecular weight and isoelectric point (Supplementary Table S1). In addition, we added into the model the number of sequences in the alignment (F4).

Based on a related study (Waintre et al., 2010), we added a additional descriptor measuring the sequence identity of the query protein to the closest homolog bearing the mutant amino acid (denoted SIDCH) (F5). For example, mutation I48A in the Hordeum vulgare chymotrypsin (UniProtKB/Swiss-Prot ID: IC12_HORVU) (The UniProt Consortium, 2010) was shown by Jackson et al. (1993) to cause a major destabilization of the protein. Fifteen homologous proteins with sequence identities of 51–47% to IC12_HORVU feature the amino acid alanine in the corresponding position. Here we set the SIDCH of I48A to 47%. We also included an array of 20 features

![Fig. 1. Prediction scheme for a query mutation with known ΔG values for additional mutations at the same position](image)
(for 20 residue types) to encode the identity of the WT and mutant amino acids (F6). The features of the WT and mutant amino acids were set to 1 or −1, respectively, and the rest of the features were set to 0.

2.1.2 Structure-based features Average solvent accessibility: the side chain accessible surface area [calculated by NACCESS (Hubbard et al., 1991)] was averaged over all the protein structures of the query protein (F7). In proteins for which an X-ray crystal structure existed, all structures determined through nuclear magnetic resonance (NMR) were disregarded. Protein flexibility: to reflect the mobility of the protein’s backbone at the mutated positions, we used the B-factors of the crystal structure (F8).

FEP-based features: we made use of \(\Delta \Delta G \) values predicted by the Prethermut tool (Tian et al., 2010) (F9). Prethermut uses a Random Forests machine learning algorithm and combines the energy terms of FoldX and MODELLER (Salz and Blundell, 1993). The energy terms are translated into units of SD from the average of the energy terms calculated over all possible mutations of the whole protein. To calculate the Prethermut prediction value, we conducted a Random Forests regression over the original energy terms (calculated using the Prethermut script). As suggested by Tian et al., the number of trees to grow was set to 650 and the number of random features to be searched at each tree node was the square root of the number of features, i.e. 8.

SEK-based features: the amino acid-specific torsion angle potential was calculated according to Parthiban et al. (2006) (F10). In addition, we utilized the PoPMuSiC-2.0 predicted \(\Delta \Delta G \) value, calculated using the energy terms in Delbrouck et al. (2009) and the Gaussian regression (Rasmussen and Williams, 2006) implementation of Weka (Frank et al., 2004) (F11). The Gaussian regression cross-validation results of PoPMuSiC-2.0 were comparable with the published results. The predicted PoPMuSiC-2.0 \(\Delta \Delta G \) values for mutations that were absent from the Potapov-DB were calculated using the PoPMuSiC-2.0 web server.

2.2 CFCB algorithm

CFCB recommender systems are used by many websites to generate personalized recommendations. For example, when a customer purchases an item on a retail website, such algorithms try to predict which other items the user would enjoy, on the basis of his/her past behavior and similarity to the behavior of other users. CF algorithms use only user-item data to make predictions. Conversely, content-based algorithms rely on the features describing the mutation whose \(G \) indices in matrix \(r \) and \(G \) values for unknown mutations in \(X_{\text{Potapov}} \) are calculated according to Parthiban et al. (2006) (F10). In addition, we utilized the PoPMuSiC-2.0 predicted \(\Delta \Delta G \) value, calculated using the energy terms in Delbrouck et al. (2009) and the Gaussian regression (Rasmussen and Williams, 2006) implementation of Weka (Frank et al., 2004) (F11). The Gaussian regression cross-validation results of PoPMuSiC-2.0 were comparable with the published results. The predicted PoPMuSiC-2.0 \(\Delta \Delta G \) values for mutations that were absent from the Potapov-DB were calculated using the PoPMuSiC-2.0 web server.

2.2.1 The prediction models

The BellKor CF algorithm (Koren, 2008) tries to model the relations between the known data points in matrix \(r \). The model’s parameters are learned during the training procedure. The optimal model is later utilized to predict \(\Delta \Delta G \) values of unknown mutations in positions with known \(\Delta \Delta G \) values for other mutations.

The BellKor model integrates three types of approaches to CF: a baseline model, a neighborhood model and the latent factor model. Our CFCB algorithm integrates the BellKor baseline estimator model with a content-based model. We also implemented the neighborhood and latent factor models, but according to our analysis their incorporation into the model does not improve the prediction accuracy significantly, although it might in certain cases (Supplementary Material). A schematic representation of all models can be seen in Supplementary Figure S1.

2.2.2 The baseline estimator model

Different MU and positions have different \(\Delta \Delta G \) tendencies. For example, the \(\Delta \Delta G \) of a mutation at a buried position in a protein is usually larger than that of the same mutation at an exposed position. Similarly, we would expect that in most cases the consequences of mutation to proline would be more severe than a mutation to alanine. Hence, each position and MU is assigned a unique baseline estimator, denoted \(b_i \) and \(b_u \), respectively. Thus, for every \(y_u \) we define a baseline estimator \(b_u = b_i + b_u \) with \(b_i \) denoting the overall average of all \(\Delta \Delta G \) in \(r \). The variables \(b_i \) and \(b_u \) are learned during the training stage of the algorithm (described in Section 2.2.2).

2.2.3 The content-based model

The baseline model does not use any explicit description of the mutation. In order to describe the biological aspects of the mutation, we use a linear regression solution (with no intercept) ([Equation (1)]) with a subset of the features (described in Section 2.2): solvent accessibility, torsional statistical force field, Prethermut MODELLER-based features, the SiFT predicted compatibility of the mutated amino acid to the query position (Ng and Henikoff, 2003) and \(\Delta \Delta G \) predictions by PoPMuSiC-2.0, Prethermut. In addition, we also use as a feature the \(\Delta \Delta G \) of a mutation at a buried position in a protein is usually larger than that of the same mutation at an exposed position.

2.2.4 The integrated model

The integrated model (Equation (2)) combines the baseline- and content-based models. \(y_u \) denotes the predicted \(\Delta \Delta G \)

\[
y_u = b_i + \sum_{g=0}^{d} x_{ug} F_g
\]

2.2.5 The CFCB training and prediction procedures

As in any machine learning algorithm, the aim of the training procedure is to obtain parameters that fit the model to the observed data best. Unconventionally, the CFCB model is retrained for every server query in order to identify the parameters of the newly added user-reported mutations, e.g. the baseline estimator of the newly added position. The model with the optimized set of parameters presumably describes best the relations between the known \(\Delta \Delta G \)s in matrix \(r \) and is used to predict the unknown MRPM queries.

The training procedure is performed using a stochastic gradient descent algorithm that attempts to minimize the associated regularized squared error function ([Equation (3)]) and determines the following parameters: \(b_i, b_u \) and \(F \). Thus, starting with random values for the parameters, it randomly loops over all the known \(\Delta \Delta G \)s in \(r \) (which is composed of all known mutations across all proteins in the training dataset) and modify the parameters by moving in the opposite direction of the gradient ([Equation (4)]). The descent iterations continue until the difference between the root mean square error between the predicted \(\Delta \Delta G \)s and the known \(\Delta \Delta G \)s ([predicted \(\Delta \Delta G \)s – observed \(\Delta \Delta G \)s]) of the current iteration and the previous iteration is smaller than \(\epsilon \). During the training, we used the following meta parameters: (learning rate) \(\gamma = 0.02 \), (regularization factor) \(\lambda = 0.0025 \) and \(\epsilon = 0.00001 \).

\[
\min_{b_i, b_u, F} \sum_{u \in \text{MU}, i \in \text{Positions}} \left(y_{ui} - y_{ui}^0 \right)^2 + \lambda \left(b_i^2 + b_u^2 + \sum_{g=0}^{d} F_g^2 \right)
\]
2.3 The datasets and performance measurements

To train and assess our algorithm, we utilized two publicly available datasets: the PoPMuSiC-DB with 2684 mutations in 137 proteins and the Potapov-DB with 2155 mutations in 79 proteins. Both datasets include ΔΔG values of non-redundant single-site mutations (apart from a single mutation in Potapov-DB that was disregarded). Several Protein Data Bank (PDB) structures (NMR and Cα mutation in Potapov-DB that was disregarded) have been previously used as benchmarks: Potapov-DB for Prethermut (Tian et al., 2009) and PoPMuSiC-DB for PoPMuSiC-2.0 (Dehouck et al., 2009).

To fairly compare our method with Prethermut and PoPMuSiC-2.0, we followed their cross-validation protocols and used a 5- and 10-fold cross-validation on the PoPMuSiC-DB and Potapov-DB sets, respectively. The randomly selected folds were maintained throughout the prediction scheme, i.e. the calculation of the Prethermut, PoPMuSiC-2.0, ΔΔGRF and CFCB prediction values. To calculate the average and SD for the performance measures, we used a bootstrap procedure with 1000 iterations. For each iteration, we randomly selected 60% of the cross-validation dataset as a test and the rest of the mutations were used for training. However, during the LOO-neglected, randomly selected mutation occurring at the query position was removed from the training set.

To empirically estimate how well Pro-Maya can be generalized to unseen mutations, it is important that the training and testing sets are as dissimilar as possible. Therefore, we performed an additional LOO variation, we name LOO-unseen. During each iteration of the LOO-unseen, a single mutation was kept for testing and the rest of the mutations in the query position were used for training. All the rest of the mutations that occur at proteins with a low sequence identity to the query protein (sequence identity <50%) were added to the training set.

At each iteration of LOO-all, LOO-neglected and LOO-unseen the ΔΔG prediction models of Prethermut and PoPMuSiC-2.0 had to be retrained with the modified training set. Since for the Potapov-DB we do not have the PoPMuSiC-2.0 statistical force field components (needed for the retraining), all the LOO procedures were conducted solely on the PoPMuSiC-DB for which we have the required PoPMuSiC-2.0 statistical force field components.

To evaluate performance, we used two standard measures: the Pearson’s correlation coefficient (PCC) and root mean square error (RMSE) between the measured and predicted ΔΔG values (Supplementary Equations S7 and S8).

2.4 Data collection

Both the sequences and PDB file names required were extracted from the corresponding SWISS-PROT entries (Jain et al., 2009). The MSAs and the PDB files were downloaded from the ConSurf-DB (Goldenberg et al., 2009) and PDB (Berman et al., 2000) databases, respectively.

3 RESULTS

3.1 Cross-validation results

According to the PCC and RMSE, Pro-Maya exhibits better performance than FoldX, Prethermut and PoPMuSiC-2.0 for both the Potapov-DB and the PoPMuSiC-DB sets (Table 1; Supplementary Figures S2 and S3). Pro-Maya reached a PCC of 0.77 for both sets (column ΔΔGRF ∪ CFCB) and RMSE values of 1.09 and 0.94 for the Potapov-DB and PoPMuSiC-DB sets, respectively. These results are also superior to those obtained by C/CPSA (Benedix et al., 2009), EGAD (Pokala and Handel, 2005), FoldX (Guerois et al., 2002), Hunter (Tian et al., 2009), I-Mutant2.0 (Capriotti et al., 2005), Rosetta (Rohl et al., 2004) and the combined method used by Potapov et al. (2009) on the Potapov-DB (Supplementary Table S4).

To gain a more comprehensive understanding, we also examined the results on the MRPMs and SRPMs subsets of each of the two datasets. The results for the MRPM sets exhibit how well Pro-Maya utilizes the ΔΔG data of known mutation(s) in a specific position to predict ΔΔG values of other mutations at the same site. As can be seen in Table 1, although all methods perform better on the MRPMs, our CFCB algorithm utilizes the training data best and reaches correlation values of 0.83 for the Potapov-DB set and 0.82 for the PoPMuSiC-DB set.

The results for the SRPM subset indicate the performance for mutations at positions that are absent from the training set. For this mutation subset, our prediction scheme does not involve the CFCB algorithm and relies solely on the Random Forests regression and on the quality of the features. Here, our prediction scheme performs slightly better than Prethermut and PoPMuSiC-2.0 on both datasets. However, all methods show major decline in the performance. Note that although the ranges of Prethermut’s and our results coincide according to the average and SD, for all subsets created during the bootstrapping process our PCC showed a average (minor) improvement of 0.02 ± 0.1 over the PCC of Prethermut, the best of the other methods.

Interestingly, each method achieved a lower RMSE for the PoPMuSiC-DB set than for the Potapov-DB set. This trend is also seen in the cross-validation results of the 1405 mutations shared between the two datasets (data not shown). Possible explanations are suggested in the Section 4 below.

Pro-Maya’s performance was also evaluated on a validation set of mutations excluded from the PoPMuSiC-DB set and for both the Potapov-DB set. This validation set has been previously used by Dehouck et al. to benchmark PoPMuSiC-2.0, Dmutant (Zhou and Zhou, 2002), Auto-MUTE (Masso and Vaisman, 2010), FoldX (Guerois et al., 2002), CUPSAT (Parthiban et al., 2006), Eris (Yin et al., 2007) and I-Mutant2.0 (Capriotti et al., 2005). Both the PCC and RMSE values indicate that Pro-Maya performs better than these aforementioned methods (Table 2; Supplementary Table S5) for the entire validation set and for its SRPM and MRPM subsets. As can be seen in Table 2, Pro-Maya’s PCC on the entire validation set reaches a value of 0.79, constituting an improvement of 0.07 and of 0.1 over the PCCs obtained by Prethermut and by PoPMuSiC-2.0, respectively.

To estimate how well Pro-Maya performs on query mutations at proteins that are not homologous to any of the proteins in the training set, we compared the performance of the LOO-unseen with the performance of the LOO-all (Supplementary Table S4). Interestingly, although the performance of the ΔΔGRF of the
All the dataset performs better on the entire validation set and subsets.

The FAQ section also contains a detailed description of Pro-Maya's performance for the Random Forests and collaborative filtering results on the SRPM and prediction schemes on the whole validation set, and the MRPM and SRPM subsets. The results over the three classes, although there is no reason to believe that the performance over them will differ significantly from the rest.

3.2 How do the number and type of mutations with known ΔG values in the query position affect the prediction accuracy?

Figure 2 shows that Pro-Maya's prediction accuracy increases significantly with the addition of a single or two known mutations at the query position, and that the accuracy does not improve further with the addition of more than two records.

Intuitively, we might expect that the prediction accuracy of the CFCB algorithm is not affected by the identity of the mutations, because the CFCB algorithm is trained on pairs of proteins with known mutations. However, this is not the case. The results of the 5- and 10-fold and LOO-unseen cross-validation can be viewed online at the FAQ section of the Pro-Maya website.

The FAQ section also contains a detailed description of Pro-Maya's training set e.g. number of proteins, number of mutated positions per protein, functionality [SCOP classification (Andreeva et al., 2008)] and physical properties of the proteins. An analysis of Pro-Maya's LOO-unseen versus the SCOP classification (Supplementary Table S6) of the proteins shows that Pro-Maya performs similarly on the All α, All β, α+β and α/β SCOP classes with a PCC ranging from 0.59 to 0.64 for the SRPM and 0.8–0.83 for the MRPM. The PoPMuSiC-DB includes low number of mutations from the Coiled-coil, Multi-domain and Small proteins SCOP classes. Thus, we cannot estimate Pro-Maya performance on these classes, although there is no reason to believe that the performance over them will differ significantly from the rest.
Thus, it assumes that all measurements were taken under the same conditions. This improvement is independent of the amino acid identity of the improvement in accuracy is facilitated by the incorporation of as few as one known mutation in the query position. The results suggest that the improvement in accuracy is facilitated by the incorporation of as few as 1–2 known ΔAG values in the query position.

4 DISCUSSION

We tested Pro-Maya extensively using cross-validation on two datasets and an additional validation dataset, and found that it outperformed current methods for the prediction of mutation stability. Our results demonstrate that the availability of as few as one or two records in the query position improve the prediction accuracy of ΔAG values of additional mutations in that position. This improvement is independent of the amino acid identity of these records and of the sequence identity of the query protein to the training set. Thus, a systematic alanine-scanning mutagenesis of all the amino acids in a protein could greatly increase Pro-Maya’s prediction accuracy for any mutation in the protein.

The performance of our Random Forests prediction scheme on the SRPM subset is slightly better than that of the other methods we investigated. We attribute the improvement to the use of an inhomogeneous feature set comprising PEP-, SEP- and evolution-based features, including predictions by the Prethermut (Tian et al., 2010) and PoPMuSiC-2.0 (Dehouch et al., 2009) tools. Previous prediction methods, in contrast, have been based on features of a single type (e.g. only PEP).

Pro-Maya’s RMSEs for mutations in the PoPMuSiC-DB set are consistently lower than those for the Potapov-DB set. This is presumably because of the different procedures used for compilation of each dataset. PoPMuSiC-DB’s compilation procedure used a weighted average of the identical mutations occurring in different conditions to calculate the ΔAG values that are most likely to occur at physiological conditions. Whereas, the Potapov-DB compilation procedure gives equal weight to the various conditions at which ΔAG was measured.

the server is best suited for predicting mutations at physiological conditions.

Pro-Maya’s improved accuracy is facilitated by the use of a baseline estimator that utilizes known ΔAG records to determine a position-specific baseline ΔAG (b) model. The underlying assumption of Pro-Maya is that the ΔAG of a mutation is strongly dependent on properties that are inherent to the amino acid position in the protein (e.g. solvent accessibility, amino acid identity, interaction with the environment and secondary structure). Thus, on average all mutations at the same position are expected to have similar ΔAG values. Therefore, the position baseline ΔAG which presumably reflects the inherent properties of the position can roughly model the query mutation. To fully model a mutation, Pro-Maya also uses a content-based model and a MU-specific ΔAG baseline-based model. These models describe the mutation outcome attributes (e.g. physicochemical properties) and predict the ΔAG shift from the position baseline. Nevertheless, it is expected that mutations with an irregular ΔAG that differs much from the position baseline would be harder to predict.

By design, Pro-Maya is not very suitable as a classifier of whether a mutation would stabilize or destabilize the protein; a classifier should be trained to this end.

CF algorithms have been developed mainly for online electronic commerce applications and are particularly useful for exploiting large datasets very rapidly. To the best of our knowledge, their use in biology is quite scarce (Eftahn et al., 2006). The success of the CFCB algorithm in this study and the capability of the neighborhood- and latent factor-based models to identify biological properties (discussed in the Supplementary Material) suggest that the CF approach could be applied to additional problems in biology. Examples include the identification of deleterious mutations in single nucleotide polymorphism data, the detection of true protein–protein interactions in noisy yeast two-hybrid and mass spectrometry data, as well as the prediction of ligand and drug molecules that could bind target proteins. Our CFCB algorithm and its integration with the neighborhood- and latent factor-based models can be readily adapted to these problems.

ACKNOWLEDGEMENTS

We would like to thank Daphna Meroz for helpful discussions and Amit Ashkenazi for her assistance in the web server construction.

Funding: This study was supported by a grant from the German-Israeli Project Cooperation (DIP). Y.D. is Postdoctoral Researcher at the Belgian F.R.S.-FNRS. I.A. is a fellow of the Edmond J. Safra Program in Bioinformatics at Tel-Aviv University.

Conflict of Interest: none declared.

REFERENCES

Bronberg,Y. and Rost,B. (2009) Correlating protein function and stability through the analysis of single amino acid substitutions. BMC Bioinformatics, 10 (Suppl. 8), S8.

Jan,E. et al. (2009) Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics, 10, 136.

