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ABSTRACT

Motivation: Several measures have been recently proposed
for quantifying the functional similarity between gene products
according to well-structured controlled vocabularies where biological
terms are organized in a tree or in a directed acyclic graph (DAG)
structure. However, existing semantic similarity measures ignore two
important facts. First, when calculating the similarity between two
terms, they disregard the descendants of these terms. While this
makes no difference when the ontology is a tree, we shall show that
it has important consequences when the ontology is a DAG—this
is the case, for example, with the Gene Ontology (GO). Second,
existing similarity measures do not model the inherent uncertainty
which comes from the fact that our current knowledge of the gene
annotation and of the ontology structure is incomplete. Here, we
propose a novel approach based on downward random walks that
can be used to improve any of the existing similarity measures
to exhibit these two properties. The approach is computationally
efficient—random walks do not need to be simulated as we provide
formulas to calculate their stationary distributions.
Results: To show that our approach can potentially improve any
semantic similarity measure, we test it on six different semantic
similarity measures: three commonly used measures by Resnik
(1999), Lin (1998), and Jiang and Conrath (1997); and three recently
proposed measures: simUI, simGIC by Pesquita et al. (2008);
GraSM by Couto et al. (2007); and Couto and Silva (2011). We
applied these improved measures to the GO annotations of the
yeast Saccharomyces cerevisiae, and tested how they correlate
with sequence similarity, mRNA co-expression and protein–protein
interaction data. Our results consistently show that the use of
downward random walks leads to more reliable similarity measures.
Availability: We have developed a suite of tools that implement
existing semantic similarity measures and our improved measures
based on random walks. The tools are implemented in Matlab and are
freely available from: http://www.paccanarolab.org/papers/GOsim/
Contact: alberto@cs.rhul.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
Received on July 28, 2011; revised on February 29, 2012; accepted
on March 11, 2012

1 INTRODUCTION
The introduction of ontologies for gene functional annotation allows
us to compare genes by quantifying the similarity of the terms

∗To whom correspondence should be addressed.

Table 1. Statistics of GO terms and yeast annotation

Overlap in GO Uncertainty in yeast

Multiple parents Single parent Terms Non-leaf

BP 13 517 6349 3322 898
CC 1765 1005 754 203
MF 1424 7475 1857 366

BP, biological process; CC, cellular component; MF, molecular function. First column:
number of GO terms with more than one parent; second column: number of GO terms
with only one parent; third column: total number of GO terms to which yeast gene
are annotated; fourth column: number of GO terms to which some yeast genes are
annotated while not being annotated to any of their children. Only non-empty nodes
were considered. Annotations with evidence codes IEA, NR, ND and IC were excluded.

with which they are annotated. These comparisons are important as
they contribute to the inference of functional relationships between
gene products by providing a perspective that complements both
experimental information and sequence-based approaches.

Standard ontologies usually have a structure that can be modelled
by a rooted and oriented tree [e.g. MIPS (Mewes et al., 2006),
GenProtEC (Riley and Space, 1996)], or more generally by a
directed acyclic graph (DAG), like the Gene Ontology (GO;
Ashburner et al., 2000) which has become a standard and is the
focus of this article. In general, given two terms, comparisons are
not straightforward due to the complex structure of the ontologies.
Lord et al. (2003), Sevilla et al. (2005) and Schlicker et al. (2006)
discuss in detail the issues related to such comparisons, here we
only mention a few of them. For instance, comparisons should take
into account the position of the terms in the ontology structure as
terms in higher levels (i.e. closer to a root term) are less specific
and likely to be less informative. At the same time, the depth of the
term may not be an exact indicator of its specificity as some edges
(relations) in the ontology may cover a larger conceptual distance,
whereas others may cover shorter distances. Calculating the depth
of a term becomes even more problematic in DAG structures, as
a term may have multiple parent terms and thus multiple paths of
different lengths leading to the root term (see column 1 in Table 1).
Finally, ontologies and annotations are constantly refined and one
should not neglect the possibility of new annotations or new terms
being added later to the ontologies.

2 MOTIVATION FOR THIS WORK
Several semantic similarity measures have been proposed that
have proved to be useful tools in a variety of biological problems

© The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 1383

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/10/1383/211540 by guest on 20 M
arch 2024

http://www.paccanarolab.org/papers/GOsim/
alberto@cs.rhul.ac.uk


Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[17:35 7/5/2012 Bioinformatics-bts129.tex] Page: 1384 1383–1389

H.Yang et al.

(a) (b)

Fig. 1. Illustration of two properties that should hold for a semantic similarity measure. Nodes are represented by a letter, the number of genes associated
to some of the nodes is shown in parentheses next to the nodes. In both (a) and (b), the semantic similarity between M and N should be greater than the
similarity between I and L because: in (a) M and N have a higher proportion of genes in common than I and L; in (b) M has less uncertainty than I .

(Guo et al., 2006; Jain and Bader, 2010; Othman et al., 2008).
However there are two important aspects that, to the best of our
knowledge, present state-of-the-art methods fail to take into account.
First, these measures compare two terms by examining only the part
of the hierarchy that is above them and do not consider the hierarchy
below the terms being examined—note that here and in the rest of
the article we are representing the Gene Ontology as an uprooted
DAG, where the most general terms are located at the top and their
(more specific) children are positioned below them. Second, existing
measures do not model the uncertainty in the ontology structure and
the annotation. Possibly new functional terms are currently missing
from the existing ontology which may affect the semantic similarity
of the terms being compared. At the same time, genes currently
annotated to non-leaf terms will eventually be moved to leaf nodes
once enough experimental evidence will become available—column
4 of Table 1 quantifies this uncertainty in annotation for yeast.

We shall now illustrate, by looking at the two toy examples
in Figure 1, the importance of each of these two aspects which
constitute the motivation for our work. Note that here and in the rest
of the article we shall only consider GO terms to which at least one
gene product is annotated.

The ontology structure beneath the terms under consideration.
Figure 1a shows a small example where we coloured two pairs of
terms (I,L) and (M,N) for which the ontology structure is identical
above them, but different below. In fact the children of term I
and term L are completely disjoint, whereas terms M and N have
a common child. Without loss of generality, we can assume that
the sets of genes annotated to the leaves A,B,C,D,E,F,G,H are
disjoint and that the set of genes assigned to I,L,M,N but not
to their children are also disjoint. Due to the ontology structure,
gene products annotated to H are also annotated to both M and N .
Therefore, nodes M and N are more similar than nodes I and L
because, given the structure of the hierarchy, they share 10 gene
products. Ideally, the semantic similarity between M and N should
be higher than that between I and L.

In other words, given the structure of the ontology, the similarity
between M and N is affected by the number of genes annotated to
H: the higher this number, the higher the similarity between them.
Therefore a well-defined measure of semantic similarity should take
into account the number of genes in H, which is located in the part
of the ontology below the nodes under consideration. That is, the
semantic similarity between two terms depends not only on their
common ancestors, but also on their common descendants.

The uncertainty in the ontology structure and current annotation.
We shall explain the role of uncertainty in semantic similarity using
the example in Figure 1b. As before, without loss of generality
we can assume that the sets of genes annotated to the leaves
A,B,C,D,E,F,G,H are disjoint and that the set of genes assigned
to I,L,M,N but not to their children are also disjoint.

Here the ontology structure above and below the pairs of terms
(I ,L) and (M,N) is identical. The difference between pairs (I ,L) and
(M,N) now lies in the number of gene products annotated to A, B,
E and F. Ten genes are annotated to each of E and F, thus making
node M completely determined. On the other hand, there is a great
uncertainty about node I , as only two genes are accounted for in A
and B. This means that relatively little is known about node I: genes
for this functional category are currently not well characterized,
possibly some of its descendant nodes have not been characterized
yet [See the Annotation Conventions (http://www.geneontology.
org/GO.annotation.conventions.shtml) for a better understanding].
This makes the similarity between the pair I and L much uncertain,
and therefore we would like to assign a greater semantic similarity
to nodes M and N which are instead completely determined.
Further discussions on the role of uncertainty are given in the
Supplementary Material where we also show the importance of
including uncertainty by comparing results obtained with and
without taking uncertainty into account.

Nodes with multiple parents and genes annotated to non-leaf
terms appear very prominently in GO (Table 1). This provides us
with a strong motivation for developing methods which can take
into account the knowledge about the descendants of the terms
being considered and the uncertainty in the annotation and ontology
structure.

In this article, we shall describe how both these factors can be
quantified using downward random walks. This measure, which
we call the random walk contribution (RWC) can be integrated
with any standard semantic similarity measure, which we call host
similarity measure (HSM), to yield an integrated similarity measure
(ISM) that takes into account the whole ontology structure. In
other words our random walk similarity measure is a kind of ‘add
on’ to one’s favourite underlying similarity measure. The random
walk calculations can be done very efficiently—for the RWC we
only need to calculate the random walk stationary distribution
probabilities which can be easily obtained from the transition
equations presented in the sequel. We shall show results obtained
by integrating our random walk measure onto six commonly used
semantic similarity measures. These experiments will quantify the
advantage of including into semantic similarity calculations the
ontology structure beneath the terms under consideration and the
uncertainty in the ontology structure and annotation.

3 RELATED WORK
Several authors have provided methods for quantifying the semantic
similarity between terms in an ontology. These methods can roughly
be classified into three categories (Pesquita et al., 2009): (i) edge-
based methods which use the edges (relations) in the ontology and
their types as the primary data source; (ii) node-based methods,
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in which the main data sources are the terms, their properties
and the number of entities annotated to the given terms; and (iii)
hybrid methods which exploit the properties for both edges and
nodes. Edge-based semantic similarity measures are defined as some
function of the length of the paths linking the terms being considered
and the global position of the terms themselves within the ontology
structure (Li et al., 2003; Rada et al., 1989). Node-based methods
recognize the fact that the terms in the ontology are not equivalent:
some terms have more associated entities whereas others have less,
and the number of entities associated to a term may give an indicator
of the term importance or specificity. Therefore, these methods
generally define the semantic similarity between two given terms
as some function of the information content of their ancestors and
optionally of these terms themselves [e.g. (Couto et al., 2005; Jiang
and Conrath, 1997; Lin, 1998; Resnik, 1999; Schlicker et al., 2006;
Yu et al., 2007)]. Among these, the methods of Resnik (1999), Jiang
and Conrath (1997) and Lin (1998) received much attention in the
past few years. Given two terms, these measures are constituted by (a
normalization of) the information content of their most informative
common ancestor. Other more recent approaches consider more than
one ancestor, such as simUI and simGIC (Pesquita et al., 2008)
or GraSM (Couto and Silva, 2011; Couto et al., 2007). For more
details on different semantic similarity measures, see (Pesquita et al.,
2009).

There has been indeed much debate regarding which measure
should be preferred over the others for biological problems.
However, no clear consensus has been reached and it seems that
different measures are best suited for different domains. For this
reason our method, where the random walk similarity measure is
‘added on’ to a given underlying HSM, is suitable for different
applications.

In this article, we shall test the efficacy of our procedure on six
of these semantic similarity measures which we shall refer to as:
Resnik (Resnik, 1999); Lin (Lin, 1998); Jiang (Jiang and Conrath,
1997); simUI and simGIC (Pesquita et al., 2008); GraSM (Couto and
Silva, 2011; Couto et al., 2007). These measures are summarized in
the Supplementary Material.

4 METHODS
We begin by giving an intuitive description of our method, followed by a
more formal definition. Our basic assumption is that a HSM can generally
be considered accurate when comparing two leaf terms in GO—leaf terms
have no further children that these measures would ignore. On the other
hand, we propose that the semantic similarity of two non-leaf terms (or one
leaf term and one non-leaf term) would consists of two components: (i) a
similarity that depends on the ancestors of the terms being considered and
(ii) a similarity that depends on the (possibly shared) descendant terms and
their similarity scores.

To understand how our method accounts for these descendant terms, let us
consider Figure 2a which shows a simple hypothetical ontology consisting
of seven terms. When a gene is annotated to a term, it is also annotated to all
of its parents; therefore we know that 10 out of the 50 genes annotated to C
are not annotated to any of C’s descendants (F and G). We call these genes
partially annotated as they cannot currently be assigned to F or G or to a
yet uncharted new GO term (situated below C) due to the limitation of our
current biological knowledge. Given a randomly selected gene annotated to
C, this gene is annotated to F with probability 0.6 and to G with probability
0.2. The remaining probability of 0.2 corresponds to the event that the gene
is only partially annotated. Therefore, when one compares a gene annotated
to C to some other gene annotated to a term X, there is a 60% chance that one

is comparing a gene annotated to F and a 20% chance that one is comparing
a gene annotated to G. The semantic similarity between C and X thus may be
approximated by weighting the semantic similarities between the pairs (F,X)
and (G,X) by the factors 0.6 and 0.2, respectively. In other words, our idea is
to decompose the semantic similarity of the two terms being compared into
a weighted sum of the semantic similarities of their descendant leaf terms,
and in this way we take into account both the ontology structure beneath
the terms under consideration and the uncertainty in the current annotation.
Note that, due to the possibility of partially annotated genes assigned to a yet
uncharted new GO term, the weights assigned to the children of a node do
not necessarily sum to 1, thus accounting for the uncertainty in the ontology
structure.

In order to obtain the weights, we need to estimate the probability of a
gene annotated to a general non-leaf term T to actually belong to an arbitrary
leaf term L. This is done by conducting downward random walks on the
ontology structure: we start a random walker from T , let it move downward
towards leaf terms by following the edges and we observe the fraction of
walks that terminate in L. Note that, considering the possibility of partially
annotated genes assigned to a yet uncharted new GO term when calculating
these probabilities amounts to introducing some fictional extra nodes in the
ontology structure—this is our model for the uncertainty in the ontology
structure. At the same time, the higher the uncertainty of a node, the smaller
will be the fraction of genes assigned to its descendants—this is our model
for the uncertainty in the annotation. Formally, the method consists of four
major steps as follows.

Step 1: Initialization. Let Nv be the number of genes annotated to node
v, and N∗

v the number of genes annotated to v but not to any of its children.
For each non-leaf node v, an extra ‘unknown’ child node Uv is added to the
ontology graph (Fig. 2b). An edge is then added from v to Uv and is labelled
as follows:

P(v→Uv)= N∗
v

Nv
. (1)

Each parent–child edge v→c in the ontology graph is then labelled by a
transition probability:

P(v→c)= (1−P(v→Uv))
Nc∑

u:∃v→u Nu
. (2)

The above two equations ensure that the transition probabilities define a
downward random walk on the graph as each edge points downwards in the
tree and the transition probabilities of the outgoing edges of a node add up
to 1. Note, how N∗

v in Equation (1) quantifies the amount of the uncertainty
in the annotation of node v. According to Equation (1), N∗

v �=0 implies a
non-zero transition probability to the unknown child node Uv. This affects
the transition probability P(v→c) in Equation (2): the larger N∗

v , the smaller
the transition probability P(v→c).

Step 2: Downward random walk. In this step, a downward random walk
is conducted from each non-leaf node v0 to determine its relationship to the
leaf nodes. Let Wv0

t (v) denote the probability of the random walker being at
node v after t steps when it started from v0. Initially, Wv0

0 (v)=1 if v=v0 and
zero otherwise. The probabilities at step t+1 can be determined based on
the probabilities at step t given the transition probabilities. The exact rules
are different for leaf and non-leaf nodes. We know that if we were at a leaf
node in step t, we will stay there in step t+1. Therefore, the probability of
being at some leaf node l in step t+1 is equal to the probability of being
there in step t plus the probability of arriving there from one of its parents:

Wv0
t+1(l) = Wv0

t (l)+
∑

v:∃v→l

Wv0
t (v)P(v→ l). (3)

Similarly, the probability of being at a non-leaf node v at step t+1 is equal
to the probability of being at one of its parents q at step t, multiplied by the
probability that we have chosen edge q→v to arrive at v:

Wv0
t+1(v) =

∑

q:∃q→v

Wv0
t (q)P(q→v). (4)

(for the root node the summation becomes empty and we set its value to
zero). Since, we are always stepping downward from a non-leaf node towards
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(a) (b) (c)A

B

D(10) E(10)

(40) C

F(30) G(10)

(50)

(100) A

B

UB

0.25

D(10)

0.25

E(10)

0.25

(40)

0.36

C

F(30)

0.6

G(10)

0.2

UC

0.2

(50)

0.44

UA

0.2

(100)

0.25

Fig. 2. Illustration of the proposed measure on a hypothetical ontology. (a) The ontology as a DAG. Nodes are represented by a letter, non-leaf nodes are
circled; the number of genes associated to each node is shown in parentheses next to the node. (b) The ontology graph extended by the unknown nodes
as described in Step 1. The transition probabilities shown as edge labels were calculated using Equations (1) and (2). (c) Histograms of the random walk
distributions over the leaf nodes for nodes A, B and C.

one of its children, we will always end up in one of the leaf nodes sooner or
later. Once we entered a leaf node, there is no escape, therefore the stationary
distribution Wv0∞ of the random walk will attain zero probabilities on non-leaf
nodes and some non-zero probabilities on leaf nodes (including the newly
introduced unknown nodes). This distribution depends solely on v0 and it
contains the information about the relationship between v0 and the leaf terms
of the ontology.

Step 3: Calculating the RWC. Given two nodes, v0 and v1, the RWC
can be calculated based on a given host measure HSM and their stationary
distributions Wv0∞ and Wv1∞ .

As we described earlier, we assume that the similarity between two leaf
nodes is given by the HSM. The RWC between two non-leaf terms is the HSM
between all their leaf descendants weighted by their probabilities. These
probabilities are given by the stationary distribution of the random walks
started at these non-leaf nodes. The two random walks are assumed to be
independent, therefore the RWC for nodes v0 and v1

RWC(v0,v1)=
∑

i,j∈L
Wv0∞ (i)Wv1∞ (j)HSM(i,j) (5)

(where L is the set of all leaf nodes except the newly added unknown nodes)
gives the expected semantic similarity according to the host measure between
the descendants of v0 and v1, assuming that those descendants are reached
according to the probabilities in Wv0∞ and Wv1∞ .

Note, how the RWC takes into account both the ontology structure
beneath the terms under consideration and the uncertainty in the ontology
structure and annotation. In fact, given two terms, the existence of common
descendants will influence the RWC: the greater the number of common
descendants, the more similar the distributions obtained on their descendant
leaves and as a result, the greater the contribution of the RWC to their
similarity score. At the same time, uncertainty affects the RWC as follows.
Since the transition probabilities encode the uncertainty in a given node T
itself and each of T ’s descendants, the uncertainty information is finally
transmitted to the distribution on leaves as the random walker starting from
T moves down. Therefore the greater the uncertainty in a given node T
itself and each of its descendants, the smaller will be the total probability
mass accumulated on its descendant leaves, and consequently the smaller
the contribution of the RWC to the similarity score.

Step 4: Combining the HSM and the RWC. The RWC now needs to be
combined with the HSM. In fact, the RWC only considers the hierarchy below
the terms being examined while the HSM only accounts for the hierarchy
above the given terms. By combining the two, we are able to consider both
the higher parts and the lower parts of the hierarchy relative to the given
terms. The ISM is then as follows:

ISM(v0,v1)= 1
2

(
RWC(v0,v1)+HSM(v0,v1)

)
. (6)

We shall now clarify our method through an example. In Figure 2a,
there are 100 genes annotated to the terms of the ontology, the exact
counts being shown in parentheses next to the nodes. The ontology

Table 2. Resnik’s measure (HSM_Resnik), together with RWC and ISM
calculated using Resnik’s measure as HSM (RWC_Resnik and ISM_Resnik)
for some pairs of nodes in the example in Fig. 2

HSM_Resnik RWC_Resnik ISM_Resnik

A-A 0 0.333 0.166
B-B 0.916 0.775 0.846
B-C 0 0.311 0.156
C-C 0.693 0.692 0.693
C-E 0 0.183 0.092
D-D 2.302 2.302 2.302
D-E 0.916 0.916 0.916
D-F 0 0 0
D-G 0.916 0.916 0.916
E-E 2.302 2.302 2.302
E-F 0 0 0
E-G 0.916 0.916 0.916
F-F 1.204 1.204 1.204
F-G 0.693 0.693 0.693
G-G 2.302 2.302 2.302

extended by the unknown nodes along with the calculated edge transition
probabilities are shown in Figure 2b. The stationary distributions (W∞) can
be calculated in a bottom-up manner for each non-leaf node (Fig. 2b).
The probability of a random walk starting from node B and ending in
node D, E, F and G is (0.25,0.25,0,0.25), respectively; a random walk
starting from node C ends up in the same leaf nodes with probabilities
(0,0,0.6,0.2). The stationary distribution corresponding to starting node
A then follows by recognizing that we step to node B with probability
0.36 and node C with probability 0.44 in the first step and then the
random walks are the same as in the above cases, hence the final
stationary distribution follows by taking 0.36×(0.25,0.25,0,0.25)+0.44×
(0,0,0.6,0.2)= (0.09,0.09,0.26,0.18). These distributions do not add up to
1 as the remaining probabilities are leaked to the unknown leaves.

Let us now calculate the semantic similarity between node B and C using
Resnik’s measure as the HSM (Fig. 2c). The RWC is obtained by taking the
expected HSM between the pairs of leaf nodes in which two random walkers
will end up if the first walker is started from node B and the second one is
started from node C. For instance, the probability of the first random walker
ending up in node E and of the second one in node G is 0.25×0.2=0.05,
since the two random walkers are independent. This has to be multiplied by
the HSM of node E and G (0.916) yielding the contribution of the pair E–G to
the overall RWC of B and C: 0.916×0.05=0.0458. Such contributions have
to be calculated for every pair of leaves, and the sum of these contributions
gives us the RWC of node B and C, which is 0.311. Finally, in Step 4, the
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RWC is combined with the HSM. Since the host measure happens to be zero
for node B and C if we are using Resnik’s measure, the final ISM will be
equal to half of the random walk similarity.

It is worthwhile to compare Resnik’s original similarity measure with our
ISM (Table 2). The two similarity measures are equivalent for leaf nodes,
since we always trust the HSM unconditionally for leaves. However, the
combined measure is larger in those cases, in which there are overlaps
between the descendants of the nodes being considered. For instance, the
ISM yields a similarity of 0.092 for nodes C and E since the measure assumes
that nodes annotated by C are also annotated by either F or G with some
probability, and the HSM is not zero for the E–G pair. Similar reasoning
applies for the similarity of B–C: the increase is due to the fact that node G
is a child of both B and C. However, sometimes the ISM is smaller than the
HSM, as in the case of the semantic similarity of B with itself, where the
combined measure considers that there is a fairly wide branching at node B
and genes annotated by B may end up in different branches.

It is important to point out that the algorithm actually explores the ontology
in more than just the upward and downward directions. For instance, in
Figure 2, the fact that E and G are siblings increases the similarity between
E and C, as C is a parent of G. Since E and C do not belong to either one’s
ancestry, it follows that the measure is able to take more from the ontology
than the set of ancestors and descendants.

The calculations for the random walk are computationally inexpensive.
The random walks from each non-leaf node to all the leaves can easily be
calculated using Equations (3) and (4), which amount to k matrix-vector
multiplications where k is an integer number smaller than the maximum
depth of the tree. Let us assume that k is proportional to log(n), where n is
the number of nodes. If the cost of each multiplication is O(m), where m is
the number of non-zero elements in the transition matrix, then the overall
cost for a random walk for all the non-leaf nodes is O(nmlog(n))—which is
equivalent to O(n2 log(n)) since m is proportional to n.

The algorithm description given in this section details the case in which
the HSM is defined over pairs of terms (e.g. Resnik). A slight modification
of the above description extends the algorithm for HSMs defined over pairs
of genes (e.g. simUI or simGIC). The basic idea of the extension is that the
random walkers will start from each gene instead of each term. In the first
step, a random walker at gene i will jump randomly to one of the terms. This
extension is detailed in the Supplementary Material where the algorithm is
also represented in matrix form.

5 RESULTS
In order to evaluate our method we need to show that standard
similarity measures are improved when integrated with RWCs.
Therefore, we chose the six well-known similarity measures of
Resnik, Jiang, Lin, GraSM, simUI and simGIC, and we compared
their performance with the performance of the ISM which used
these as host measures—we shall indicate these as ISM_Resnik,
ISM_Jiang and so on, respectively. The performance was compared
using sequence similarity data, co-expression data derived from
microarray and protein–protein interaction data. All experiments
were performed on the GO annotations of the yeast Saccharomyces
cerevisiae. The versions of the GO and of the annotation file dated
November 12, 2010, and November 11, 2010, respectively. In the
results reported here, annotations with evidence code IEA, NR, ND
and IC were excluded. Also, when comparing two gene products
which were annotated to several GO terms, their similarity was taken
as the maximum of their pairwise similarities.1 Results using the
best-match average approach (Pesquita et al., 2009; Schlicker et al.,

1We also tried different settings, e.g. including IC, taking the average value
of the similarity between groups of GO terms, and the results obtained were
equivalent to the ones presented here.

2006) are shown in Supplementary Material. Following previous
authors, [e.g. (Pesquita et al., 2009; Schlicker et al., 2006)], in this
article we used only the ‘is-a’ and ‘part-of’ relationships between
GO terms.

5.1 Comparison with sequence similarity
A technique which has been used by several authors to compare the
performance of different semantic similarity measures is to test how
well these measures correlate with sequence similarities (Lord et al.,
2003). The idea is that semantic similarity should correlate, to some
extent, with sequence similarity.

We used the protein similarity scores published by the SGD
project (http://downloads.yeastgenome.org) which were calculated
using the Smith–Waterman algorithm (Smith and Waterman, 1981)
for every pair of yeast ORF protein sequences. Figure 3 shows
the correlation between these scores and the different semantic
similarity measures on each of three GO DAGs separately. We can
see that our proposed method greatly improves all the three host
semantic similarity measures—the value of the correlation of the
ISMs improves the corresponding HSMs for all the GO DAGs in
all cases except two.

We note that some authors have evaluated their semantic similarity
measure by first binning the sequences and semantic similarity
scores, and then calculating the correlation between the bins [e.g.
(Lord et al., 2003)]. Our experiments employing this binning
procedure gave results similar to the ones shown here and they are
reported in the Supplementary Material.

5.2 Comparison with gene co-expression patterns
Another method which has been used by several authors to compare
the performance of different semantic similarity measures is by
testing how well these measures correlate with gene expression
similarities (Sevilla et al., 2005; Wang et al., 2004). The idea
behind this is that since genes involved in the same process
tend to exhibit similar expression patterns, we could expect good
semantic similarity measures calculated on the GO biological
process ontology to be correlated with the expression similarity.

For our experiments, we used the yeast cell cycle data from
(Spellman et al., 1998), and tested our procedure both on the four
independent experiments (α factor, CDC15, CDC28 and elutriation)
and on a combined dataset obtained by concatenating these four
microarrays.

Following the approach of previous authors (Sevilla et al., 2005)
we first measured the gene expression similarity using the Pearson’s
correlation coefficient between the gene profiles. We then calculated
the correspondence between such expression similarity and the
semantic similarity again using the Pearson’s correlation coefficient.
Results are shown in Figure 4.

We can see that our approach, which combines a given HSM
with the random walk measure, improves the correlation between
co-expression and semantic similarity in all the cases except one.
Experiments using the binning procedure also gave the same
conclusion (see the Supplementary Material).

5.3 Comparison with protein–protein interactions
Finally, we compared the performance of our ISMs by investigating
the relationship between semantic similarity and protein–protein
interactions. Our idea was to formulate this as a classification
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Fig. 3. Correlations between sequence similarity and different semantic similarity measures in yeast, shown separately for the three DAGs of the GO (BP,
biological process; CC, cellular component; MF, molecular function). For a given HSM (R, Resnik; J, Jiang; L, Lin; G, GraSM; UI, simUI; GI, simGIC) the
lighter colour shade represents the original HSM and the darker colour the corresponding ISM.

Fig. 4. Correlations between gene co-expression scores and different semantic similarity measures on the Biological Process DAG of the GO. Measures are
calculated for the four individual cell cycle microarray experiments for yeast (α factor, CDC15, CDC28 and elutriation) as well as for the combined dataset,
which is obtained by concatenating the four experiments. Notation and colours are the same as in Figure 3.

problem and to check how well the different semantic similarity
measures perform at predicting protein–protein interactions.

We built a gold standard dataset of interacting and non-interacting
pairs of proteins (positive and negative pairs) taken from all possible
yeast protein pairs. Following the approach of previous authors [e.g.
(Krogan et al., 2006)] positive pairs were obtained from the MIPS
protein complex database (Mewes et al., 2006), whereas negative
pairs were constituted by pairs of proteins known to have different
subcellular localization. The final gold standard set contained 9324
positive and 2 341 019 negative pairs.

Results of the prediction were evaluated using receiver operating
characteristic (ROC) curves—the best semantic measures are the
ones for which the ROC curve steeply rises towards the top left
corner and the area under the curve (AUC) is greatest. As noticed by
previous authors [e.g. (Collins et al., 2007)], due to the imbalance
between positive and negative examples, the relevant part of the
ROC curve is on the far left end of the X-axis. Therefore, we restrict
our analysis to this part of the ROC curve only—following the
setting of (Collins et al., 2007), we used the part of the ROC curves
where the false positive rate (FPR) is ≤ to 0.002. Figure 5 shows
the AUC scores, and Figure 6 shows the ROC curves for the cellular
component (CC). We can see that our approach always improves the
reliability of all tested semantic similarity measures when predicting
protein interactions using CC and that it is better in the majority of
the cases when using biological process or molecular function.

6 DISCUSSION
Existing semantic similarity measures have two important
limitations. First, these methods assess the similarity between

two terms by examining only the part of the hierarchy that is
above these two terms while they do not consider the hierarchy
below the terms being examined. Second, existing measures do
not model the uncertainty in the GO structure and existing gene
annotation. In this article, we proposed a novel approach for
measuring the semantic similarity among terms on DAGs. The
method is based on downward random walks and it can be used to
improve existing semantic similarity measures in order to overcome
the above two limitations. We extensively tested our approach
by using three different perspectives based on gene expression
data, sequence similarity data and protein–protein interaction data.
Results consistently show that semantic similarity measures are
improved when they are combined with downward random walks.

A few aspects of our method should be further investigated.
For example, we are currently mixing HSM and RWC in equal
proportion, while one could optimize the balance between the
two components of the ISM for different problems. Also, for
ISM_simUIC and ISM_simGIC instead of using a uniform jump to
go from gene to GO terms one could attempt using a non-uniform
jump which could be weighted, for example, by the information
content.
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