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ABSTRACT

Motivation: The accurate identification of chemicals in text
is important for many applications, including computer-assisted
reconstruction of metabolic networks or retrieval of information about
substances in drug development. But due to the diversity of naming
conventions and traditions for such molecules, this task is highly
complex and should be supported by computational tools.
Results: We present ChemSpot, a named entity recognition (NER)
tool for identifying mentions of chemicals in natural language texts,
including trivial names, drugs, abbreviations, molecular formulas and
International Union of Pure and Applied Chemistry entities. Since
the different classes of relevant entities have rather different naming
characteristics, ChemSpot uses a hybrid approach combining a
Conditional Random Field with a dictionary. It achieves an F1

measure of 68.1% on the SCAI corpus, outperforming the only other
freely available chemical NER tool, OSCAR4, by 10.8 percentage
points.
Availability: ChemSpot is freely available at:
http://www.informatik.hu-berlin.de/wbi/resources
Contact: leser@informatik.hu-berlin.de
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1 INTRODUCTION
Metabolic and signaling networks representing complex
physiological processes play an essential role in systems
biology and drug research (Bordbar and Palsson, 2011). For
instance, simulation results derived from recently published human
metabolic networks provided substantial insight into functional
biochemical relationships at the systems level (Duarte et al., 2007;
Gille et al., 2010; Ma et al., 2007). Such networks are typically built
by a group of biological experts that systematically scan relevant
publications and extract the important information, which is a
particularly tedious and time consuming task requiring considerable
expertise (Alex et al., 2008). Natural language processing (NLP) can
accelerate this process, especially by automatically pre-annotating
network components (e.g. chemicals and proteins) and their
interactions (Ananiadou et al., 2006). Such annotations, if of high
quality, can considerably help to speed-up literature curation (Alex
et al., 2008).

Accordingly, most work has been invested in the development
of tools for named entity recognition (NER) of biomedical entities
(Krallinger et al., 2008). While these tools mainly focus on
identifying genes and protein names, in this work we address
chemical names, a task which has not received much attention yet
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(Cohen and Hersh, 2005; Erhardt et al., 2006). Finding mentions of
chemicals in text is hindered by the fact that there exist various
and highly heterogeneous ways of naming them. This includes
trivial names (e.g. water), brand names (e.g. Voltaren®), systematic
International Union of Pure and Applied Chemistry (IUPAC) names
[e.g. adenosine 3′,5′-(hydrogen phosphate)], generic or family
names (e.g. alcohols), company codes (e.g. ICI204636), molecular
formulas (e.g. COOH) and identifiers of various databases. On top,
many of these names are used in abbreviated form (e.g. DMS for
dimethyl sulfate).

A number of nomenclature organizations exist and strive for
systematic naming in the biochemical field, such as the IUPAC
and the International Union of Biochemistry and Molecular Biology
(IUBMB). However, most of their rules are only recommendations,
leaving ample room for variation in their appliance (Banville, 2006).
For instance, separating digits in systematic chemical names using
dashes or commas is equally valid. In contrast, both, the existence
as well as the non-existence of brackets and whitespaces can be
crucial for the correct identification of chemicals. For instance, the
placement of spaces between methyl, ethyl and malonate, results in
four different chemical structures (Banville, 2006).

This situation accounts for a high amount of possible synonyms
for one chemical entity. Sometimes these synonyms do not even
share a single pair of adjacent letters, e.g. in the case of phthalonitrile
and o-dicyanobenzene (Brecher, 1999). Chemical NER also tends
to be sensible to spelling errors, which is especially crucial in
long formulas, and errors during document transformations, for
instance through inappropriate tokenization or sentence splitting
(Hettne et al., 2010). Even small errors may change the meaning
of a chemical name completely; for instance, Brecher (1999) points
out that several pairs of different structures differ only by one single
character (e.g. methylamine and menthylamine). On top of these
problems, also homonyms are common-place, especially when it
comes to abbreviations.

Despite this heterogeneity, names for chemical structures in
text can roughly be divided into two classes: a rather closed
(finite) class for brand and trivial names, and an open (infinite)
class for names following rule-based conventions (e.g. IUPAC
names). In this article, we show that using a proper method
for recognizing entities in each of these two classes enables
the construction of a high-quality chemical NER system. We
built ChemSpot, a tool which combines into a single system
the two most prominent methods in NER: machine learning
and dictionary matching. ChemSpot uses a conditional random
field (CRF) to achieve high quality in recognizing IUPAC
names. As dictionary, ChemSpot uses ChemIDPlus (http://www.nlm
.nih.gov/pubs/factsheets/chemidplusfs.html), which allows, when
applied with a proper matching algorithm, tokenization method,
post-processing rules, high-quality annotation of trivial and brand
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names, molecular formulas and abbreviations. By bundling both
components into a single system, ChemSpot clearly outperforms
OSCAR3/4 (Corbett and Murray-Rust, 2006; Jessop et al., 2011),
the only other freely available NER system addressing all
classes of chemicals, and MetaMap (Aronson, 2001) on both
the comprehensive SCAI corpus (Kolářik et al., 2008) and the
automatically annotated DDI corpus (Segura-Bedmar et al., 2010).
For instance, ChemSpot outperforms OSCAR4 by >10 percentage
points F1 measure on the SCAI corpus.

2 RELATED WORK
NER in the biomedical domain has mainly focused on protein
or gene names, where a wealth of systems have been developed
[e.g. BANNER (Leaman and Gonzalez, 2008), ProMiner (Fluck
et al., 2007) or GNAT (Hakenberg et al., 2011)]. In contrast,
recognition of chemicals has received much less attention. The
Open-Source Chemistry Analysis Routines (OSCAR) software
(Corbett and Murray-Rust, 2006) is a system for the recognition
of chemical entities based on Maximum Entropy Markov Models
(MEMMs) (McCallum and Freitag, 2000). Corbett and Copestake
(2008) evaluated OSCAR3 on a corpus consisting of 42 chemistry
publications (Sciborg corpus) and a corpus consisting of 500
PubMed abstracts (PubMed corpus). They reported an F1 measure of
80.7% for the former and 83.2% for the latter corpus. Unfortunately,
both corpora are, to this day, not publicly available (P.Murray-Rust,
personal communication). Jessop et al. (2011) recently refactored
OSCAR3, providing a new version, OSCAR4, which in our
evaluation (see Section 4) yielded a minor increase in performance
compared with OSCAR3.

Klinger et al. (2008) used a CRF for extracting IUPAC and
IUPAC-like chemical entities. They reported an F1 measure of
85.6% on their IUPAC test corpus (see Section 3.3 for an overview of
the feature set used in their work). This tool is not freely available
and does not cover drugs and trivial names. Note that CRFs are
widely used for NER in various domains. For instance, ABNER
(Settles, 2005) and BANNER (Leaman and Gonzalez, 2008) are both
CRF-based NER tools for extracting protein mentions. BANNER
is based on the CRF library MALLET (McCallum, 2002) and
achieves competitive results on the BioCreative II corpus (http://
banner.sourceforge.net/ last accessed 2012-01-20). In Section 3.3,
we shall describe how we use BANNER’s API to employ a CRF for
the recognition of IUPAC entities.

Another common approach for NER is using a dictionary of the
terms of interest. Hettne et al. (2009) built a combined dictionary
for names of small molecules, drugs and abbreviations using
name lists from the Unified Medical Language System (UMLS),
MeSH, ChEBI, DrugBank, KEGG, HMDB and ChemIDplus. They
increased the quality of the dictionary by applying rule-based term
filtering and manually reviewing frequent terms. The performance
of all dictionaries as well as the combined dictionary was evaluated
on the SCAI corpus (see Section 3.2) using the Peregrine dictionary-
matching software (Schuemie et al., 2007). The combined dictionary
achieved an F1 measure of 50%, but ChemIDplus alone already
achieved 49%. Hettne et al. used Peregrine with a configuration that
performs case-insensitive matching and favors the longest match.
They adjusted Peregrine’s tokenizer to perform coarse tokenization,
i.e. they did not use periods, commas, plus signs, hyphens, single
quotation marks and parentheses as word delimiters. Additionally,

Table 1. Annotated text corpora for training and assessment of chemical
NER tools

Corpus Focus Available

PubMed corpus (Corbett and Copestake,
2008)

General chemicals No

Sciborg corpus (Corbett and Copestake,
2008)

General chemicals No

IUPAC training corpus (Klinger et al.,
2008)

IUPAC entities Yes

IUPAC test corpus (Klinger et al., 2008) IUPAC entities Yes
SCAI corpus (Kolářik et al., 2008) General chemicals Yes
DDI corpus (Segura-Bedmar et al., 2010)a Drugs Yes

aCorpus was annotated using MetaMap, thus, it is not a real gold-standard.

post-filters were applied to remove characters and common suffixes
that are not part of chemical entities.

Segura-Bedmar et al. (2008) introduced DrugNER, a system for
drug name recognition. This system combines the UMLS MetaMap
Transfer (MMTx) program and nomenclature rules by the World
Health Organization International Nonproprietary Names (INNs)
Program. They reported a precision of 99.1% and a recall of 99.8%
on their DrugNER corpus. However, drugs in this corpus were
automatically annotated using the same tools and, thus, cannot
be considered as gold-standard entities (I.Segura-Bedmar, personal
communication).

A common problem in chemical NER is the sparsity of annotated
corpora for training and evaluation. Many of the corpora mentioned
in this section actually are not available publicly, focus only on
a restricted class of chemicals, or cannot be considered as gold-
standards (Table 1). In this work, we use all available corpora we
are aware of and provide evaluation results for ChemSpot and other
tools on the IUPAC test corpus, the SCAI corpus and the DDI
corpus.

3 METHODS

3.1 ChemSpot
ChemSpot’s main innovation is the combination of a CRF and a dictionary
to explicitly cover the different naming conventions for entities commonly
subsumed under the term ‘chemical’. IUPAC entities are morphological more
complex than other chemical entities, calling for a classification-based tool,
whereas brand names, drugs and small molecules follow hardly any rule
and are best captured by an exhaustive dictionary (Kolářik et al., 2008). In
contrast to previous approaches, which tried to cover both of these name
classes with a single approach, ChemSpot uses a specific technique for
each class.

Figure 1 illustrates the architecture of ChemSpot’s annotation and post-
processing components. First, a CRF (left branch in the figure) and a
dictionary (right branch) are independently used to annotate the input
text. Dictionary matches are post-processed by expanding partial matches,
correcting the boundaries of these matches and truncating common suffixes.

Entities extracted by the dictionary may overlap, but they will cover
the same span of text after match expansion. Hence, only one entity is
kept. Finally, ChemSpot keeps the union of all entities extracted by the
dictionary or the CRF. However, both approaches may extract the same entity
or substrings of the same entity. In such cases, ChemSpot resolves these
overlaps by favoring a match from the CRF over one from the dictionary.
We decided to use this rule, because we observed that in most cases of an
overlap the dictionary match is a substring of the CRF match or the CRF’s
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Fig. 1. Overview of ChemSpot’s architecture. The left branch corresponds
to ChemSpot’s CRF and the right branch to its dictionary component. Both
are independently used to annotate text. Subsequently, annotations of both
components are merged

boundary detection is more accurate. ChemSpot also normalizes entities
that were extracted by its dictionary component to CAS Registry IDs (see
Section 5).

3.2 Corpora
Table 1 lists all corpora with annotations for chemicals we are aware of.
Only the SCAI corpus (Kolářik et al., 2008), provided by the Fraunhofer
Institute for Algorithms and Scientific Computing (SCAI; http://www
.scai.fraunhofer.de/en/business-research-areas/bioinformatics/research-
development/information-extraction-semantic-text-analysis/named-entity-
recognition/chem-corpora.html last accessed 2012-01-20) is freely available,
has a comprehensive coverage of chemicals, and can be considered as
a gold-standard. Therefore, we use this corpus for evaluating ChemSpot
and its competitors. SCAI also provides two corpora only annotated with
IUPAC entities [used in the work of Klinger et al. (2008)] which we shall
use for training of ChemSpot’s CRF component. These three corpora are
provided with tokenization and entities are encoded in the IOB format.
However, for fair comparison with OSCAR, we use our own tokenizer for
the SCAI corpus. As suggested by Klinger et al. (2008), we split at every
non-letter and non-digit character, as well as all number-letter changes.
For training and tagging with the CRF, we use sentences as input. As
sentence boundaries are not present in the corpora, we employ the sentence
detector included in OpenNLP (http://incubator.apache.org/opennlp/ last
accesses 2012-01-20) with the JULIE Lab GENIA model (https://www
.julielab.de/coling_multimedia/de/downloads/NLP+Tool+Suite/Models/
SentDetectGenia_bin.gz last accessed 2012-01-20; Buyko et al., 2006).

Table 2 shows for every entity type the frequency in the corpora, the
number of tokens and sentences, and the entity density, i.e. the proportion
of tokens that are part of an entity. Note that the proportion of sentences
containing a chemical entity is much lower in the IUPAC test corpus than
in the training corpus. We consider this a realistic scenario since a chemical
NER tool often will be applied to arbitrary biomedical publications where
only few sentences contain a chemical entity.

Table 2. Statistics of the corpora used for training and evaluation showing
the total number of occurrences and the entity density, i.e. the proportion of
tokens that are part of an entity

IUPAC IUPAC SCAI Example
training test corpus
corpus corpus

IUPAC 3712 151 391 2-Phthalimidoaceto-
2′,6′-xylidide

PARTIUPAC 322 0 92 1-(Hydroxyalkyl)-
MODIFIER 1040 14 104 Moiety
FAMILY 0 0 99 Pyranones
SUM 0 0 49 (CH2)nNHCOCH2I
TRIVIAL 0 0 414 Chloroform
ABBREVIATION 0 0 161 CmPS
Number of sentencesa 3744 4878 914
Number of tokens 161 591 124 122 30 734
Entity density (%) 25.6 0.7 17.6

Note that there is no overlap between entities.
aNumber of sentences was obtained using OpenNLP with the JULIE Lab GENIA model
(Buyko et al., 2006).

3.3 CRF
A CRF is a probabilistic undirected graphical model. In contrast to generative
models such as hidden Markov models (HMMs), CRFs do not need to make
assumptions about the underlying observation distribution (McCallum and
Freitag, 2000). Furthermore, a huge number of arbitrary and non-independent
features can be used to describe the input data (McCallum, 2003). In contrast
to CRFs, MEMMs (as the one used in OSCAR) suffer from the label bias
problem (Lafferty et al., 2001), i.e. more probability mass is assigned to states
with fewer outgoing transitions. By overcoming this disadvantage, CRFs are
well suited for sequence labeling tasks such as NER. For further information
on arbitrary and linear-chain CRFs, we refer to Klinger and Tomanek (2007).

ChemSpot uses MALLET (McCallum, 2002) as underlying CRF
implementation through the convenient API provided with BANNER
(Leaman and Gonzalez, 2008), i.e. we use BANNER’s data structures,
methods for training and inference, as well as its configuration for MALLET.
To adapt to chemical NER, we turned off BANNER’s tokenizer, POS-tagger,
lemmatizer and post-processing components and replaced its feature set with
a subset of the one published by (Klinger et al., 2008) for the recognition
of IUPAC and IUPAC-like chemical names. This set includes the following
features classes:

• morphological features (regular expressions)

◦ all of the token’s characters are capitalized

◦ token represents a real number

◦ token is a dash, quote or slash

• bag-of-words

• token prefix of length two

• token suffix of length two

• token is preceded or succeeded by a whitespace.

ChemSpot configures BANNER to employ a second-order CRF and an
offset conjunction of two. Offset conjunction of k adds all features of the
k preceding and succeeding tokens to the token’s features, thus, providing
the CRF with more contextual information.

Tagging with a CRF is performed using the Viterbi algorithm, which is
linear in the number of tokens and quadratic in the number of labels (Klinger
and Tomanek, 2007). For instance, tagging the SCAI corpus with our CRF
takes on average 2 ms per sentence.
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3.4 Dictionary
ChemSpot uses the ChemIDplus dictionary post-processed by (Hettne et al.,
2009) to extract drugs, abbreviations, trivial names, molecular formulas and
family names. In Hettne et al.’s evaluation, the ChemIDplus dictionary
performs only 1 percentage point F1 measure worse than the combined
dictionary (see Section 2) while being substantially smaller (almost half
as much entities). It consists of 260 393 concepts and 1 378 808 terms.
When faced with such a huge number of terms, it is crucial to convert the
dictionary into a data structure which allows to match terms very fast. For this
purpose, we use the dictionary-matching component of LINNAEUS (Gerner
et al., 2010), which converts the dictionary into deterministic finite-state
automata resulting in linear time complexity. In contrast to the dictionary-
matcher Peregrine (used by Hettne et al.), LINNAEUS has no need for a
tokenizer, i.e. mentions are directly extracted from text using the finite-state
automaton rather than a dictionary look-up for sequences of tokens. Tagging
the SCAI corpus with this dictionary as automaton takes 18 ms per sentence
on average.

After the matching phase, we apply a number of post-processing rules.
First, we keep only terms with a character length >2, since one-letter and
two-letter words are highly ambiguous. Second, all terms matching a regular
expression for real numbers are removed. Third, since the dictionary may
find partial matches, every extracted entity is expanded until its boundaries
lie next to a whitespace, tab or line-break character (Fig. 2). As proposed by
Hettne et al., we check whether the entity’s boundaries are correct (no full
stop or wrongly placed bracket) and remove brackets if they surround the
whole entity. Finally, we remove certain suffixes at the end of entities using
the list provided by Hettne et al. This list consists of common suffixes that
certainly are not part of chemical entities (e.g. ‘-induced’, ‘-inhibitor’ and
‘-related’).

4 RESULTS
First, we compare ChemSpot with OSCAR3 (current Alpha
5 release) and OSCAR4 on the SCAI corpus using standard
configurations for OSCAR3 and OSCAR4: The MEMM is used
with a confidence threshold of 0.2. Only chemical annotations are
considered; the reaction, adjective, enzyme and prefix annotations of
OSCAR3 and OSCAR4 are out of scope, as well as the MODIFIER
annotations provided by the SCAI corpus. We then separately
evaluate the performance of ChemSpot’s dictionary component.
Furthermore, we provide a detailed comparison of ChemSpot’s CRF
component with that of Klinger et al. (2008) on the IUPAC test
corpus. Results are shown in Figure 3 and Table 3. Finally, we
compare ChemSpot to MetaMap, as other tools, such as DrugNER,
are largely based on MetaMap. Further analysis will be provided in
Section 5.

4.1 Evaluation on the SCAI corpus
ChemSpot achieves a precision of 67.3%, a recall of 68.9% and
an F1 measure of 68.1% on the SCAI corpus. This is an increase
of 10.8 percentage points in F1 measure compared with OSCAR4
(Fig. 3). The CRF component of ChemSpot alone yields a rather low
recall of 28.1% on chemical entities of the SCAI corpus. This is not
surprising since the CRF is focused solely on IUPAC entities. As
the CRF is able to extract IUPAC entities with a very high precision
of 88.3%, it is worthwhile to use it in addition to the dictionary. We
shall analyse the benefit from using this hybrid approach in more
detail in Section 5.1.

One reason for the comparably weak performance of OSCAR4
may be the fact that OSCAR4 uses its own tokenizer. (Kolluru
et al., 2011) investigated the impact of different tokenizers on
the performance of OSCAR3 and observed an increase up to
2.09 percentage points F1 measure on the Sciborg corpus. As the
performance difference to ChemSpot is 10.8 percentage points F1
measure for OSCAR4 and 13.2 for OSCAR3 on the SCAI corpus,
we expect that neither of the two would outperform ChemSpot with
a different tokenization on this corpus.

4.2 Dictionary alone
Compared with Hettne et al. (2009), our dictionary-matching
component achieves an increase of 9.3 percentage points F1 measure
when using the ChemIDPlus dictionary for extracting chemical
entities on the SCAI corpus (Table 3). We attribute this increase
in performance to our post-processing using the match expansion
explained in Section 3.4. In contrast to Peregrine, ChemSpot does
not perform word sense disambiguation, which leads to an increase
in recall but also lowers precision. Furthermore, we suspect that the
different matching mechanism of LINNAEUS combined with our
match expansion is a reason for this increase in performance. Since
LINNAEUS directly extracts mentions in text rather than looking
up sequences of tokens in the dictionary, often partial matches
from longer, unknown entities are extracted. These partial matches
would probably be missed by a dictionary look up relying on coarse
tokenization. In the subsequent expansion and boundary-correction
step, these partial matches often lead to the extraction of the correct
entire chemical entities. This is emphasized by the fact that we
observed a decrease for the dictionary component of 14.9 percentage
points to an F1 measure of 43.4% (precision: 42.7%, recall: 44.0%)
on the SCAI corpus when turning match expansion off.

Our dictionary matcher alone already performs 1 percentage
points F1 measure better than OSCAR4 on the SCAI corpus (Fig. 3).

Fig. 2. Example of dictionary matching, match expansion and boundary correction for the snippet ‘…inactivation was slowed by MgATP in the case of
N6-CH3-N6-R-ATP [R = (CH2)4N(CH3)CO(CH2)5NHCOCH2I].’ from the SCAI corpus. Characters on gray background denote the current span of the
entities
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Fig. 3. Precision (P), recall (R) and F1 measure (F) for the various chemical NER approaches evaluated on the SCAI corpus. The value below the score
denotes the difference to the performance of OSCAR4

Table 3. Precision (P), recall (R) and F1 measure (F) for the various chemical NER approaches evaluated on
the IUPAC test corpus and the SCAI corpus

IUPAC training corpus IUPAC test corpus SCAI corpus

P R F P R F

OSCAR3 (Kolářik et al.) 52 72 60
OSCAR3 (Hettne et al.) 45 82 58
OSCAR3 41.4 81.6 54.9
OSCAR4 2.3 81.5 4.4 45.7 76.5 57.3
CRF (Klinger et al.) X 86.5 84.8 85.6
CRF (our impl.) X 61.7 80.1 69.7 88.3 28.1 42.6
Dictionary (Hettne et al.) 71 37 49
Dictionary (our impl.) 60.8 56 58.3
ChemSpot X 67.3 68.9 68.1

Methods in bold were evaluated by us. ‘X’ denotes a training on the corpus.

This is surprising as a dictionary matcher has the disadvantage that
its performance relies mostly on up-to-date dictionary entries, an
issue especially important for chemical entities where new names
appear with high frequency. The high performance of the dictionary
suggests that the entities in the dictionary are up-to-date or that
the corpus on which OSCAR4’s MEMM was trained is outdated.
As the dictionary was composed in 2009 and the SCAI corpus was
published 2008, it is more likely that the SCAI corpus is too outdated
to highlight the advantage of the MEMM over the dictionary. This
emphasizes again that the lack of sufficient training and evaluation
corpora in the chemical domain is a severe problem for evaluating
NER tools.

4.3 Evaluation of the CRF on the IUPAC test corpus
As described in Section 3, the CRF component of ChemSpot is
trained on the same corpus (IUPAC training corpus) with nearly
the same feature set as the system by Klinger et al. (2008).
Surprisingly, our performance is much lower than that reported
in Klinger et al. (2008). Since this system is not freely available,
we can only speculate about the reasons. We obtain a precision
of 61.7%, a recall of 80.1% and a F1 measure of 69.7%. This is
a difference of 15.9 percentage points F1 measure compared with
Klinger et al. In contrast to their third-order CRF, we use a second-
order CRF and a different training method (label likelihood instead
of stochastic gradient). Moreover, we do not apply bootstrapping for
meta-parameter optimization (R.Klinger, personal communication).
However, meta-parameter optimization increases the fit of the model

to the corpus, often leading to worse performance on unseen
instances (Tikk et al., 2010). Since the test corpus contains only few
entities, these differences can lead to large deviations in F1 measure.

4.4 Comparison with MetaMap
To estimate the performance difference of ChemSpot to MetaMap-
based tools (e.g. DrugNER), we run MetaMap in standard
configuration on the SCAI corpus using the UMLS chemical branch.
MetaMap achieves a comparably low F1 measure of 30% (precision:
23.6%, recall: 41.4%). A large number of errors, when using
MetaMap out-of-the-box, are due to the fact that only partial matches
of entities get extracted. This is the same problem we encountered
when using LINNAEUS and that we were able to tackle by applying
match expansion as explained in Section 3.4. Although MetaMap is
highly configurable (Aronson, 2001), we do not believe that other
configurations could bridge this performance gap. Moreover, finding
good configurations would require optimization to the corpus thus
increasing the danger of overfitting. Both OSCAR4 and ChemSpot
clearly outperform MetaMap in their standard configuration.

5 DISCUSSION

5.1 Combining the strengths of a dictionary and a CRF
We investigated in which way ChemSpot combines the strengths
of the CRF trained for the extraction of IUPAC entities and the
dictionary. To analyze the coverage of both approaches, we counted
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Table 4. TP, FN and R of the CRF and the dictionary component for different
classes of chemical entities

CRF Dictionary Shared

TP FN R (%) TP FN R (%) TP

IUPAC 263 128 67.3 203 188 51.9 143
PARTIUPAC 63 29 68.5 27 65 29.3 22
FAMILY 9 90 9.1 25 74 25.3 6
SUM 0 49 0 23 26 46.9 0
TRIVIAL 11 403 2.7 317 97 76.6 9
ABBREVIATION 0 161 0 80 81 49.7 0
ALL 346 860 28.7 675 531 56 180

The last column denotes the number of true positives shared by both approaches.
TP, true positive; FN, false negative; R, recall.

the number of true positives and false negatives for different
classes of chemical entities on the SCAI corpus and calculated
the recall that was caused by the dictionary and by the CRF,
respectively. Furthermore, we calculated in how many true positives
both approaches agreed.

Table 4 shows that the majority of IUPAC entities can be found
using the CRF. However, more than half of the IUPAC entities found
by the CRF were also found using the dictionary. This is due to
the fact that the dictionary also contains few IUPAC entities, in
particular those that appear frequently in texts. Furthermore, our
matching strategy for dictionary entries is useful to expand partial
matches to IUPAC entities. Surprisingly, the dictionary extracted 60
IUPAC entities that were missed by the CRF.

Clearly, the CRF alone should solely be used to extract IUPAC
entities. Matches for other classes of chemical entities are sparse (9
matches for FAMILY and 11 for TRIVAL) and most of them are
also found by the dictionary. The dictionary covers a wide range of
trivial names. However, its recall for sum formulas, abbreviations
and family names is considerably lower than that for trivial names.

5.2 Results for OSCAR
Comparing the results of our evaluation of OSCAR3 with
results previously published by others on the same corpus shows
considerable differences (Table 3). The F1 measures of OSCAR3
evaluated on the SCAI corpus range from 60% (Kolářik et al.,
2008) to 58% (Hettne et al., 2009), whereas we obtained an F1
measure of only 54.9%. All previous evaluations used—as we do—
the standard configuration with the same scope on chemical entities,
i.e. disregarding other annotations. Therefore, we believe that the
difference most likely is caused by using different versions of
OSCAR3. As we used the most recent version of OSCAR3, it is
surprising that the performance deteriorates.

In contrast to ChemSpot, which uses a dictionary and a CRF,
OSCAR relies solely on a MEMM model. Hence, ChemSpot only
requires a IUPAC-annotated corpus for training, whereas OSCAR
needs one annotated corpus covering all classes of chemical entities.
Training both systems on the same corpus would be an interesting
experiment, but, apart from the SCAI corpus, no publicly available
corpus containing IUPAC and other chemical names exists. The
SCAI corpus is held back for evaluation purposes and is, in
our opinion, too small to be divided into separate training and
test sets.

Table 5. Error analysis of 50 randomly sampled false
negatives missed by ChemSpot on the SCAI corpus

Error type False negatives, n (%)

Partial match 6 (12)
Annotation error 4 (8)
Not in dictionary/recognized 36 (72)
Tokenization error 4 (8)

Table 6. Error analysis of 50 randomly sampled false
positives extracted by ChemSpot on the SCAI corpus

Error type False positives, n (%)

Partial match 15 (30)
Annotation error 4 (8)
Out of corpus scope 23 (46)
Not a chemical 8 (16)

In OSCAR3, a balance between precision and recall can be
achieved by providing a confidence threshold. We tested OSCAR3
with several confidence thresholds in steps of 0.1 from 0.1 to 0.9
and found the threshold of 0.5 to yield the best performance (59%
precision, 65.7% recall and 62.1% F1 measure) on the SCAI corpus.
Note that finding the optimal confidence threshold is not possible
in a realistic scenario, as the evaluation corpus is not known in
advance. ChemSpot outperforms OSCAR3 by 6.0 percentage points
F1 measure even when the latter’s confidence threshold is optimized
for the SCAI corpus.

5.3 Evaluation on the DDI corpus
We also compared ChemSpot and OSCAR4 on the entities of the
DDI corpus (Segura-Bedmar et al., 2010). We found that ChemSpot
(precision 80.1%, recall 55.7% and F1 measure 65.7%) outperforms
OSCAR4 (precision 70.7%, recall 50% and F1 measure 58.6%) by
7.1 percentage points F1 measure. However, one has to keep in
mind that entities in this corpus were automatically annotated using
MetaMap and that the focus of this corpus is on drugs rather than
on chemical entities in general. Hence, the results mostly reflect
the differences between ChemSpot and OSCAR4 compared with
MetaMap, respectively, in terms of recognizing drugs. Still, it is
reassuring that ChemSpot outperforms OSCAR4 also on this corpus.
In particular, ChemSpot achieves a higher recall than OSCAR4 on
the DDI corpus, which was not the case on the SCAI corpus. We
explain the higher recall with the high coverage of our dictionary
concerning drugs.

5.4 Error analysis
To assess the frequency and types of errors for ChemSpot, we
randomly sampled 50 false negatives (Table 5) and 50 false positives
(Table 6) on the SCAI corpus and performed a manual error
classification using the scheme from Hettne et al. (2009).

The main reasons why ChempSpot missed entity mentions were
either their absence in the dictionary or the fact that they were not
recognized by the CRF (72%). Those false negatives mainly fall into
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the class of missed abbreviations (e.g. ‘YTX’ or ‘LPA’) and missed
family names (e.g. ‘lipid’ or ‘amines’). Furthermore, we classified
six false negatives as partial match (12%), since only a substring
was extracted (e.g. ‘potassium’ instead of ‘potassium phthalmide’).
In all, 8% of the false negatives are annotation errors, i.e. we believe
that they were not correctly annotated (e.g. the missing bracket at
the beginning of ‘2-carbomethyoxyphenyl)sulfenyl’). Another 8%
were classified as tokenization errors, i.e. errors that could have
been prevented by a more appropriate tokenization. For instance,
‘Ca(2+)’was not recognized in the snippet ‘concentration-dependent
elevation of [Ca(2+)]i’ due to the suffix ‘i’, which hindered
ChemSpot’s boundary correction from removing the surrounding
brackets.

We found 46% of the false positives to be larger molecules
that commonly are not considered as chemicals, especially protein
drugs (Table 6). These were not annotated in the corpus and are
therefore out of corpus scope. However, we believe that entities
in this error class might be of interest for some chemical NER
applications. A partial match could be achieved for 30% of the false
positives (e.g. ‘tetrazole’ instead of ‘tetrazole acid’), which shows
that post-processing deserves further attention in future versions of
ChemSpot. 8% are annotation errors, i.e. chemicals that in our
opinion were omitted or marked incorrectly in the corpus. We
found 16% of the false positives to be not a chemical, of which
most were caused by homonymous abbreviations. For instance,
‘CPT’was extracted as abbreviation for ‘camptothecin’, whereas the
abstract was in fact about ‘…cumulative prospect theory’. Clearly,
such errors call for including appropriate methods for word sense
disambiguation (Alexopoulou et al., 2009).

5.5 GeneView: application of ChemSpot on PubMed
We applied ChemSpot to all abstracts from PubMed (as of November
2011), yielding 73 883 960 entities in 9 861 936 publications. Of
these entities, 61 316 472 (83%) could be mapped to 59 255
distinct CAS Registry IDs. All annotations are publicly available
through GeneView (Thomas et al., 2010), a tool for searching
PubMed with automatically derived annotations of genes/proteins,
SNPs, histone modifications, species, etc (http://bc3.informatik
.hu-berlin.de/ last accessed 2012-01-20). Furthermore, GeneView
can be used to search MEDLINE publications by CAS Registry
IDs. Additionally, chemical annotations with a CAS Registry
ID are linked to ChemIDPlus Light (http://chem.sis.nlm.nih.gov/
chemidplus/chemidlite.jsp last accessed 2012-01-20).

6 CONCLUSIONS AND FUTURE WORK
We introduced ChemSpot, a hybrid system for extracting chemical
entities from natural language texts. ChemSpot is based on a CRF
trained for identifying IUPAC entities and a dictionary built from
ChemIDplus for extracting drugs, abbreviations, molecular formulas
and trivial names. Evaluations showed a major performance
advantage compared with the only other freely available NER tool
for chemical entities, OSCAR4. Thus, we believe that ChemSpot
sets a new state-of-the-art in the recognition of chemical entities.

We conclude that using a hybrid NER approach for adequately
treating different classes of chemical entities is highly beneficial.
CRFs are suitable for extracting morphologically rich IUPAC
entities, whereas a dictionary is useful for extracting the often short

and erratically structured names of drugs, trivial names, etc. By
combining the strengths of both approaches, ChemSpot achieves a
major increase in performance and a broad coverage of chemical
entities.

Future work will focus on the normalization of chemical entities to
known identifiers. So far, ChemSpot assigns a CAS Registry ID only
to entities that were extracted by the dictionary component and not
changed during match expansion. We plan to address this drawback
in future releases of ChemSpot. Furthermore, we aim at improved
performance for abbreviations and sum formulas by applying rule-
based NER methods.
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