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ABSTRACT

Motivation: One of the fundamental questions in genetics study
is to identify functional DNA variants that are responsible to a
disease or phenotype of interest. Results from large-scale genetics
studies, such as genome-wide association studies (GWAS), and
the availability of high-throughput sequencing technologies provide
opportunities in identifying causal variants. Despite the technical
advances, informatics methodologies need to be developed to
prioritize thousands of variants for potential causative effects.
Results: We present regSNPs, an informatics strategy that
integrates several established bioinformatics tools, for prioritizing
regulatory SNPs, i.e. the SNPs in the promoter regions that
potentially affect phenotype through changing transcription of
downstream genes. Comparing to existing tools, regSNPs has
two distinct features. It considers degenerative features of binding
motifs by calculating the differences on the binding affinity caused
by the candidate variants and integrates potential phenotypic
effects of various transcription factors. When tested by using the
disease-causing variants documented in the Human Gene Mutation
Database, regSNPs showed mixed performance on various diseases.
regSNPs predicted three SNPs that can potentially affect bone
density in a region detected in an earlier linkage study. Potential
effects of one of the variants were validated using luciferase reporter
assay.
Contact: yunliu@iupui.edu
Supplementary information: Supplementary data are available at
Bioinformatics online
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1 INTRODUCTION
A key goal in human genetics is to identify the functional DNA
variants that give rise to phenotypic differences among individuals.
Recent studies of complex diseases and phenotypes have tended
to focus on genome-wide association studies (GWAS) employing
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hundreds of thousands of single nucleotide polymorphisms (SNPs).
GWAS target common DNA variants, which could either directly
contribute to the clinical phenotype or provide an indirect proxy for
functional variants, which are in linkage disequilibrium (LD) with
the SNP being tested. Distinguishing between direct, mechanistic
contributions emanating from the functional variants themselves and
indirect associations resulting from LD is challenging and improved
methods are needed. One feasible solution is to catalog all DNA
variants in the LD region of the association, both common and rare,
by utilizing next-generation sequencing (NGS) technology.

The large number of variants that will be identified generates
an urgent need for bioinformatics and computational approaches
capable of prioritizing the variants most likely to underlie
the observed association, for further biological testing. Non-
synonymous substitutions within coding regions directly affect
protein structure and are likely to affect protein function; a variety of
algorithms, including PolyPhen (Ramensky et al., 2002), SIFT (Ng
and Henikoff, 2003), TopoSNP (Stitziel et al., 2004), PMUT (Ferrer-
Costa et al., 2005), LS-SNP (Karchin et al., 2005), SNPeffect v2.0
(Reumers et al., 2006), SNPs3D (Yue et al., 2006) and PolyDoms
(Jegga et al., 2007), were designed to identify functional non-
synonymous substitutions. Synonymous coding variants may also
exert phenotypic effect by influencing the conformation, splicing and
stability of pre-mRNAs or by altering the expression level of a given
protein (Capon et al., 2004; Hunt et al., 2009; Kimchi-Sarfaty et al.,
2007). Coding sequences make up <2% of the human genome (Elgar
and Vavouri, 2008). The regulatory component of the human genome
is much less well defined but based upon conservation is 2 to 3
times larger than the coding region (Cooper et al., 2010). Regulatory
variants can affect the transcription initiation rate (Mertens et al.,
2009), microRNA binding and protein expression (Nicoloso et al.,
2010), but are far more difficult to identify. It should therefore come
as no surprise that many of the variants associated with common,
complex disease by GWAS do not alter coding sequences but rather
occur within the non-coding regions of genes or intergenic regions
(Chen et al., 2010; Dickson et al., 2010; Glinskii et al., 2009;
Hindorff et al., 2009; Johnson and O’Donnell, 2009).

Tools such as FASTSNP (Yuan et al., 2006), PupaSuite (Conde
et al., 2006) and SNPlogic (Pico et al., 2009), have been designed to
identify SNPs residing in known transcription factor binding sites
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(TFBSs), and exonic splice enhancers/silencers. Lee and Shatkay
(2009) developed a scoring system for SNP prioritization that
combines results from multiple independent prediction tools, using
a probabilistic framework. The predictions made by these methods
are not phenotype-specific, since they are based only upon our
knowledge of the binding characteristics of known trans-acting
regulatory factors. Nica et al. (2010) recently proposed a novel
method for the prioritization of causal SNPs that employs an
empirical methodology that accounts for local LD structure and
integrates expression quantitative trait loci (eQTLs) and GWAS
results in order to reveal the subset of association signals that are due
to cis eQTLs. However, this algorithm does not consider sequence
features of protein–DNA binding sites, and requires gene expression
data, which is not always available for a given tissue and, more
importantly, in the right biological context.

To address these limitations, we present a bioinformatics
approach, regSNPs, which prioritizes transcriptional regulatory
SNPs in LD regions detected by GWAS or linkage studies by
integrating existing bioinformatics tools. We tested our model by
assessing its ability to identify mutations logged in the Human Gene
Mutation Database (HGMD) (Stenson et al., 2009), a comprehensive
collection of gene mutations underlying or associated with human
inherited disease. The accuracy of our approach varies among
diseases, with the area under the curve (AUC) of the receiver
operating characteristics (ROC) curve ranging from 53.7% in
schizophrenia to 77.9% in breast cancer. We applied our method to
a region on chromosome 1q that had previously been found through
linkage and association analysis to harbor genetic factors that
contribute to the variation of femoral neck and lumbar spine bone
mineral density (BMD) in premenopausal white women (Ichikawa
et al., 2008). Three SNPs were selected as likely to be functional,
with an estimated false discovery rate (FDR) <25%. They were
then further tested for influence on transcription in vitro. Our
results suggest that the proposed approach should be well suited for
prioritizing transcriptional regulatory SNPs within the chromosomal
regions found to be associated with a disease or phenotype.

2 METHODS

2.1 Data source and materials
SNPs in HapMap release 27 derived from Utah residents with ancestry
from Northern and Western Europe (CEU) were used. Promoter regions
were defined as between upstream 3000 bp and downstream 1000 bp from
transcriptional start sites of genes based on RefSeq annotation. A total of
96 069 promoter SNPs were identified; 10 000 were randomly selected as
the background when generating the empirical P-values for the significance
of effects on binding affinity of each transcription factor. While applying
regSNPs to a BMD-related region, 51 promoter SNPs were analyzed.

The TRANSFAC 9.2 database (Wingender et al., 1996), which contains
information on experimentally validated human TFBSs, was used as the
source of binding information for known transcription factors. We selected
323 of the 459 human transcription factors for further study, because the rest
of them do not have detailed sequences for TFBSs. These yielded 301 TFBSs.
A negative control set of 10 000 promoter sequences in the human genome
was randomly selected to represent putatively non-binding sequences for
each TFBS.

The OMIM database (McKusick, 2007) and the HGMD 2009.1 database
(Stenson et al., 2009) provide disease-related genes and mutations,
respectively; both contain experimental validated data. For the purposes
of analysis, we selected 13 disease states with at least two related genes

in OMIM and at least nine promoter mutations documented in HGMD for
model evaluation.

2.2 Evaluating the effect of a SNP on the binding
affinity of a transcription factor

For a given SNP V , we estimated its effect on the binding of a particular
transcription factor tf, denoted by the matching score Stf (V ), by evaluating
the binding affinity differences between reference and alternative alleles; the
binding affinity was calculated using the position weight matrices (PWMs)
documented in the TRANSFAC database using previously published
methods (Wang et al., 2008).

Stf (V )=max
k
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where w is the width (base pair) of the binding site, k represents the index
of the 2w potential binding sites that contain the candidate variants on both
the positive and negative strands. Nt is the total number of experimentally
validated binding sequences for each TFBS in the TRANSFAC database; bij

is the number of counts of the i-th nucleotide at the j-th position in the PWM;
and di represents the percentage of the i-th nucleotide (A, C, G or T) in the
human genome.

For each TFBS, we calculated the distributions of matching scores for
both binding (fb,tf ) and non-binding (fn,tf ) events, based on the matching
scores with the experimentally determined binding sites (documented in
the TRANSFAC database) and randomly selected genomic sequences. The
potential for a specific variant to change binding affinity of a TF was
estimated as:

�Stf (V )= log2

(∫ +∞
SVA

fb,tf (X )dx/
∫ +∞
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fn,tf (X )dx∫ +∞
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∫ +∞
SVR

fn,tf (X )dx

)
(2)

where SVR and SVA denotes the matching scores [defined in Equation (1)]
of the specific transcription factor (tf ) binding sites on the reference
and alternative alleles, respectively. Equation (2) therefore represents the
logarithmic odds ratio that two alleles fell within different distributions
(binding or non-binding). A positive and negative �SV implies that the
alternative allele will result in a gain or loss of binding affinity, respectively.
For each TF binding site, a P-value Ptf (V ) was further calculated for each
variant, by calculating the percentage of 10 000 randomly selected HapMap
(Gibbs et al., 2003) promoter SNPs that have |�Stf | scores greater than the
variant |�SV | being evaluated.

2.3 Final ranking estimation for each variant
We combined the rankings from the previous two steps of regSNPs to derive
a final score, PS(V ), for each SNP; this score weights the likelihood that
the observed SNP affects the binding of a transcription factor as well as the
likelihood that the transcription factors are important in the corresponding
phenotype.

PS(V )=min
i

(1−(1−Ptfi (V ))∗(1−PE (tfi))) (3)

where i represents all the transcription factors in the TRANSFAC database,
Ptfi (V ) indicates the significance of effects on binding affinity of transcription
factor i, while PE (tfi) denotes the ranking scores, as the output of Endeavour,
a knowledge-learning tool for gene prioritization (Aerts et al., 2006), to
represent the significance of prioritized gene (transcription factor i). A lower
PS score implies a stronger relationship between the candidate SNP and the
disease/phenotype being studied.

2.4 ROC curve of each disease
One thousand iterations, using a different negative set of randomly sampled
regulatory SNPs were generated for each of the 13 disease states (e.g.
diabetes) under study. For each iteration, we first ranked all candidate variants
(both experimentally validated and randomly selected) by their final PS
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scores [Equation (3)]. Then, we used a range of different thresholds, ranking
SNPs/mutations from the lowest to highest PS scores, to select the positive
mutations (scores lower than the threshold) which are recognized by regSNPs
as being causally related to disease as well as negative mutations (scores
higher than the threshold). In this way, one threshold can generate one pair
of specificity–sensitivity values which we then used to plot the ROC curve.
The AUC of the ROC is an average derived from those 1000 iterations.

2.5 FDR calculation
A P-value was calculated for each of the 51 promoter SNPs based on their
priority score PS(V ) [Equation (3)], using permutation analysis of 1000
iterations. In each iteration, priority scores PSr(V ) of 51 randomly selected
promoter SNPs were calculated. This composes a priority score distribution
for non-functional SNPs. A P-value was calculated for each of the 51 SNPs
by using the percentile of their priority scores in the null distribution. FDR
was further calculated using Benjamini–Hochberg methods (Benjamini and
Hochberg, 1995).

2.6 Luciferase reporter assay
The 2-kb region upstream of SLC39A1 exon 1 was amplified from
International HapMap Project DNA samples NA07345 (AA at rs6661009)
and NA12248 (CC at rs6661009) (TT and GG in the orientation of the
gene), using primers tagged with restriction sites (underlined) [forward:
5′-GATC GAATTCCTTGAGCCCAAGATGTTGAGG (EcoRI) and reverse:
5′-GATCGAGCTCGAACAGCCAAACTGTCTCCG (SacI)]. The amplicons
were then cloned into the EcoRI/SacI restriction sites of the pGLuc-
Basic vector (New England Biolabs, Ipswich, MA, USA). The 2-kb region
upstream of TPM3 exon 1 was amplified from NA12874 (GG at rs11265251),
using nested PCR. First, a 2.3-kb fragment harboring the 2-kb region was
amplified, using primers [forward: 5′-GATC GAATTCTCGTGATCCACC
TGCCTCAG (EcoRI) and reverse: 5′-GATCGAGCTCGTGCCCACCCAG
CTACTGCT (SacI)]. Then, this first reaction was used to amplify the 2-
kb region, using nested primers [forward: 5′-GATC GAGCTCCAGGTGT
GCACCACCACACCCG (SacI) and reverse: 5′-GATC GAGCTCGTCCCT
CTGCCGCGCCCT (SacI)]. The amplicons were then cloned into the SacI
restriction site of the pGLuc-Basic vector. The A allele of rs11265251
was created by site-directed mutagenesis, using the PCR overlap extension
method (Higuchi et al., 1988; Ho et al., 1989). All inserts were sequenced to
confirm that the nucleotides at rs6661009 and rs11265251 were the only
differences introduced between the two SLC39A1 and TPM3 constructs,
respectively.

Human embryonic kidney cells (HEK-293, American Type Culture
Collection, Manassas, VA) were cultured in DMEM/F12 (1:1) (Invitrogen,
Carlsbad, CA, USA) supplemented with 10% FBS (Sigma-Aldrich, St Louis,
MO, USA), sodium pyruvate (1 mM), l-Glutamine (2 mM), Penicillin
(100 U/ml) and Streptomycin (100 μg/ml). 4 × 105cells were plated into
each well of a 24-well plate and after 24 h, transfected with 800 ng
pGLuc-Basic vector, SCL39A1 or TPM3 constructs. In addition, 80 ng
pSV40-CLuc control plasmid (New England Biolabs) was co-transfected to
allow normalization of transfection efficiency. Transfections were performed
in triplicate, using Lipofectamine 2000 (Invitrogen). Media collected at 24-h
post-transfection (20 μl) were assayed in triplicate for luciferase activity
in Centro LB 960 Luminometer (Berthold Technologies, Oak Ridge, TN,
USA), using the BioLux Cypridina Luciferase Assay Kit and the BioLux
Gaussia Luciferase Assay kit (New England Biolabs). Data from three
independent experiments were analyzed by paired Student’s t-tests. P<0.05
were considered statistically significant.

3 RESULTS

3.1 Principles of SNP prioritization by regSNPs
We propose a novel, integrative approach that employs a
combination of existing bioinformatics tools to prioritize known

SNPs found in or around the promoters (defined as −3000 to +1000
bp from the transcriptional start site, see Section 2) of high priority
candidate genes related to a specific phenotype or disease. Our
strategy contains three major steps (Fig. 1):

3.1.1 Test whether the SNP is within a target sequence of a known
transcription factor and prioritize its effect on binding affinity If
a SNP falls within a TFBS, we computed the binding affinities
of both the reference and alternative alleles to the transcription
factor, as measured by the matching scores (SVR andSVA) calculated
as Equation (1) (Section 2), based on the sum of the logarithmic
transformations of the frequencies of each nucleotide in a known
binding site that was documented as a PWM in the TRANSFAC
database (Wingender et al., 1996). This is a standard estimation of
protein–DNA binding affinity. For each TFBS, we calculated the
distributions of matching scores for both binding and non-binding
events (Fig. 2A and Section 2). Intuitively, if one specific SNP
were predicted to cause the matching score to shift from within
the non-binding distribution to within the binding distribution, or
vice versa, then this SNP could contribute to the gain or loss of
binding affinity, respectively. Based on this principle, we calculated
the effect of a SNP on the binding affinity of a transcription factor
(�S(V ) calculated as Equation (2) in Section 2), and subsequently
compared the effect to 10000 randomly selected negative SNPs,
which are not known to influence transcription factor binding, to
calculate a P-value (see Section 2) for quantifying the likelihood that
the observed SNP would change the protein-DNA binding affinity
of a particular transcription factor (Fig. 2B).

3.1.2 Prioritize transcription factors that are related to a specific
disease/phenotype In this step, we used Endeavour (Aerts et al.,
2006), a knowledge-learning tool for gene prioritization, to rank

Fig. 1. Procedures of prioritization by regSNPs. In the first step (A), the
candidate SNPs are prioritized by their effects on the binding affinity of
each transcription factor. Second (B), a set of training genes, collected from
OMIM or Ingenuity, is used to prioritize the genome-wide transcription
factors with respect to the studied phenotype/disease, using Endeavour. In the
third step (C), overall rankings, characterizing the transcription regulatory
roles of candidate SNPs in phenotype/disease, are calculated based on the
integration of ranks of SNPs in each transcription factor (step 1) and ranks of
transcription factors to phenotype/disease (Step 2). In principle, if one SNP
highly alters the binding of one transcription factor which is highly related
to the phenotype/disease being studied, the SNP should be prioritized as one
regulatory SNP with strong confidence. TSS: transcription start site
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Fig. 2. The effect of one SNP on the binding affinity of a specific
transcription factor. (A). Binding patterns of TFBS M00803 for E2F1. The
red distribution represents matching scores from binding events and the
blue distribution represents matching scores from non-binding events. For a
candidate SNP, SVR and SVA characterize the binding affinities of the reference
and alternative alleles to the transcription factor, respectively. Then, four
intersects from these binding patterns corresponds to the candidate SNP,
including fn,tf (SVR), fn,tf (SVA), fb,tf (SVR) and fb,tf (SVA). And the SNP’s effect
on the binding affinity of the transcription factor (�Sv) can be calculated
based on the two binding patterns and four intersects, as characterized in
Equation (2). (B) Distribution of �Stf score from 10 000 random SNPs
which may or not take influence on M00761 binding. A two-tail P-value
calculation method is used to calculate candidate SNPs’ significant P-value

transcription factors by their relevance to the phenotype being
investigated. Endeavour prioritizes candidate genes on the basis
of how similar a candidate gene was to a profile derived from
genes already known to be involved in the specific biological
process (training set). Here, human transcription factors selected
from the TRANSFAC database (Supplementary Data 1) were
treated as candidate genes. Genes known to be involved in certain
biological disease/phenotype features were collected from OMIM
(Online Mendelian Inheritance in Man) (McKusick, 2007) and/or
Ingenuity Pathway Analysis (IPA) software (http://www.ingenuity.
com/), and were then used as the training set. The Endeavour
program assigned a rank to each transcription factor based upon
how likely it was to be involved in the disease/phenotype being
studied.

3.1.3 Identify a subset of SNPs that are likely to affect the binding
of transcription factors important to the phenotype/disease In this
step, we defined a score for each SNP that weighted the likelihood
that the observed SNP affected the binding of a transcription factor
as well as the likelihood that the transcription factors were important
to the phenotype/disease of interest [PS calculated as Equation (3)
in Section 2]. The lower the score is, the higher the likelihood that
the SNP in question would affect transcriptional regulation related
to the disease/phenotype. To evaluate the statistical significance of
candidate SNPs, we performed permutation analysis by randomly
selecting HapMap SNPs (Gibbs et al., 2003) within promoter regions
of human protein coding genes, and by randomizing the ranking of
the transcription factors with respect to phenotypes (Section 2). This
allowed calculation of the FDR for each candidate SNP.

3.2 Evaluation of regSNPs using promoter mutations
in the HGMD

The HGMD (Stenson et al., 2009) documents known mutations
causing human inherited disease, as well as disease-associated
and/or functional polymorphisms reported in the literature. It does

Table 1. Validated diseases in OMIM and HGMD

Disease Related Related Promoter
genes mutations region
in OMIM in HGMD mutations

Diabetes 57 60 40
Thalassaemia 5 56 43
Obesity 24 30 18
Hemophilia 2 28 25
Hypertension 19 25 16
Alzheimer disease 14 23 19
Schizophrenia 20 22 17
Hypercholesterolemia 9 20 19
Myocardial infarction 14 19 12
Lung cancer 22 16 13
Prostate cancer 17 14 10
Colorectal cancer 31 14 10
Breast cancer 25 12 9

not include mutations that lack phenotypic consequences. To
evaluate the performance of our strategy for prioritizing regulatory
SNPs, we tested the ability of regSNPs to select disease-causing
regulatory SNPs/mutations (positive set) from an equal number of
randomly selected regulatory HapMap SNPs (negative set).

We selected for evaluation 13 different disease states (Table 1),
based on having ≥9 disease-causing mutations from promoter
regions recorded in HGMD and with at least two disease-associated
genes in OMIM. For each disease state, we extracted the disease-
causing promoter regulatory SNPs/mutations from HGMD and
constructed a negative dataset of an equal number of randomly
selected regulatory SNPs from the HapMap database. For example,
in the case of diabetes, 40 SNPs/mutations in promoter regions
that have been reported (in HGMD) to be associated with diabetes
were the positive dataset, while 40 randomly selected regulatory
SNPs from HapMap were used as the negative set. It should be
appreciated that it is conceivable, albeit rather unlikely, that some
of the selected SNPs in the negative set may have exert a functional
effect in the development of diabetes. Then, the balanced evaluation
set (positive set + negative set) for each respective disease state was
assessed using regSNPs. A PS score [Equation (3) in Section 2] was
calculated for each variant, where lower values corresponded to a
more significant relationship with the disease. Then, a ROC curve
was constructed based upon the true positives, true negatives, false
positives and false negatives, calculated at different score thresholds.
For each disease state, we performed 1000 iterations with a different
negative set randomly sampled from the HapMap promoter SNPs
(Section 2). The average AUC of ROCs from the 1000 iterations
was plotted as shown in Figure 3A. The precision of the proposed
methodology varied among the 13 diseases. Breast cancer showed
the highest precision (AUC = 77.9%), whereas schizophrenia had
the lowest (AUC = 53.7%).

A major advantage of regSNPs is that it not only selects the
DNA variants that are associated with a specific phenotype, but also
identifies the transcription factors whose DNA binding affinities are
putatively affected by the variant in question. Supplementary Data
2 lists the 69 different transcription factors whose DNA binding
affinity was predicted to be affected by the 251 selected HGMD
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Fig. 3. The AUC of the ROC for prioritization of 13 diseases and
predicted associations between transcription factors and selected diseases.
(A) ROC area (horizontal axis) of different diseases as well as the numbers
(vertical axis) of tested promoter mutations in diseases. Thirteen diseases as
alphabetical ranked in vertical. (B) Sixty-nine gene symbols of transcription
factors, 13 diseases and 147 associations are included in this network, where
solid small circles represent TFs and rounded rectangles represent diseases.
Transcription factors associated with more than two diseases are inside the
circle area of disease rectangles, those with fewer are outside

regulatory SNPs/mutations from the 13 different disease states under
study. A bipartite graph was created to describe the network of
147 distinct relationships between the 13 disease states and the
69 transcription factors (Fig. 3B), where circles and rectangles
represented transcription factors and diseases, respectively. An
association (represented by an edge in the network in Fig. 3B)
was placed between a transcription factor and a disease if the
binding of that transcription factor was potentially affected by
one of the mutations held to be responsible (HGMD) for the
disease. Interestingly, HNF4α (hepatocyte nuclear factor 4, alpha)
was predicted to be important in 9 of the 13 selected disease
states, including breast cancer, diabetes, hemophilia, prostate
cancer, Alzheimer disease, obesity, thalassaemia, hypertension and
myocardial infarction. In addition, a total of 10 transcription factors

were found to be associated with more than 3 of the 13 disease
states, including E2F1 (7), p300 (7), SOX-9 (6), p53 (6), PPARα

(peroxisome proliferator-activated receptor α, 5), VDR (vitamin D
receptor, 5), C/EBPβ (4), FoxO3A (Forkhead box O3, 4), RXRα

(Retinoic acid receptor α, 4) and YY1 (4).

3.3 Prioritizing SNPs in the genetic regions associated
with BMD

We applied regSNPs to prioritize regulatory SNPs within the genetic
regions known to be associated with BMD from a list of candidate
SNPs in the HapMap database. We previously reported that a linkage
disequilibrium block on chromosome 1q is associated with BMD
(Ichikawa et al., 2008). This region was initially identified through
linkage analysis using spine BMD as the phenotype of interest
(Econs et al., 2004). Later, SNPs were genotyped across the linkage
region and evidence of association with both spine and femoral
neck BMD was identified in a 230 kb LD block (Ichikawa et al.,
2008). Due to the extensive LD within the region, we could not
determine which of the 11 candidate genes within this region was
contributing to the variation in BMD. According to the HapMap
CEU population records, 51 SNPs were in gene promoter regions
within this block. We then used regSNPs to ascertain which of
these SNPs would be most likely to affect transcription factor
binding affinities, our tacit assumption being that SNPs which affect
transcription factor binding would also have a high likelihood of
altering gene expression/regulation.

First, all 51 promoter SNPs within the 230 kb LD block in
chromosome 1q were evaluated for their potential to affect the
binding affinities of known human transcription factors. In this study,
we focused on 323 human transcription factors, whose PWMs, a
commonly used representation of the DNA binding motifs, were
available in the TRANSFAC database version 9.2 (Wingender et al.,
1996). The empirical P-value (Section 2) was calculated for each
SNP-transcription factor pair.

Second, existing bioinformatics tools, including the IPA software
(http://www.ingenuity.com/) and Endeavour (Aerts et al., 2006)
were used to evaluate the potential impact of individual transcription
factors based upon their relevance to bone biology. We used IPA
software to compile a list of genes whose functions are related to
bone biology. A total of 869 genes were retrieved using IPA software
by querying bone-related genes in the system (Supplementary
Data 3). We then used Endeavour software to rank the 323
transcription factors according to how relevant a transcription factor
was to the 869 genes that are related to biology, based upon
prior information including functional annotations, protein–protein
interactions, expression data and other information in literature
(Aerts et al., 2006). Endeavour provided a score that evaluated
the relationship between different transcription factors and bone
biology. Top ranking transcription factors include p53, STAT1, p65
and E2F1 etc.; the full ranking of these transcription factors is listed
in Supplementary Data 4.

Third, the regSNPs scores were calculated by jointly considering
the capabilities of the 51 SNPs to affect transcription factor
binding and the relevance of the affected transcription factors
to bone biology (Section 2). Three SNPs received lowest scores
with FDR ≤25%. These three SNPs, rs34612917, rs11265251 and
rs6661009, reside in the regulatory regions of the following genes:
SLC39A1 (solute carrier family 39, zinc transporter, member 1),
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Table 2. Top SNPs in a bone-related LD block in chromosome 1q

SNP PS(v) Gene Location TFBS TF FDR

rs34612917 0.00062 SLC39A1 −1692 M00761 p53 0.25
rs11265251 0.00098 TPM3 −1365 M00054 p65 0.25
rs6661009 0.00110 SLC39A1/CREB3L4 −551/+342 M00803 E2F1 0.25

Three SNPs are significant at FDR <25%. Score is the final PS score of prioritization; location is relative to transcription start
site (TSS), while negative location indicates upstream of TSS and positive location indicates downstream of TSS; TFBS is the
identity of the TFBS in TRANSFAC database; TF is the name of the transcription factor; FDR is FDR based on permutation
analysis.

Fig. 4. Top prioritized SNPs in BMD and luciferase reporter assay
validation. (A) Detailed binding alterations by three top prioritized SNPs
in BMD. Three transcription factors, with detailed disrupted positions in
their binding sites, are shown in the form of sequence logos. The names
of transcription factors, rsID of SNPs and allele frequencies of SNPs are
marked. For each SNP, the left allele and right allele with an arrow separated,
are the reference and alternative alleles, respectively, based on Caucasian
population in HapMap. (B) Relative promoter strengths determined by
luciferase reporter assay. RU: relative units. *P<0.01 compared with
alternative alleles that are predicted to disrupt binding of transcription factors

TPM3 (tropomyosin 3) and CREB3L4 (cAMP responsive element
binding protein 3-like 4) (Table 2). These SNPs are predicted to
affect the binding affinities of p53 (tumor protein p53), p65 (v-rel
reticuloendotheliosis viral oncogene homolog A) and E2F1 (E2F
transcription factor 1), respectively. The sequence logos, a form of
graphical representation of nucleic acid multiple sequence alignment
(Schneider and Stephens, 1990), for the binding sites of these three
transcription factors are shown in Figure 4A. Clearly, all three SNP
sites are located at positions that allow less degeneracy (i.e. larger
letters), and therefore have the potential to dramatically alter the
binding affinities of their cognate transcription factors. The allele
frequencies of these three sites vary quite markedly. Thus, with
rs34612917, only 0.5% of the Caucasian population contains the T
allele, a variant that may cause the loss of binding of p53. The other
two SNPs, rs11265251 (60.6% A, 39.4% G) and rs6661009 (58.8%
A, 41.2% C) exhibit much higher minor allele frequencies, which
may give rise to gain of binding of p65 and E2F1, respectively.

3.4 Biological validation of selected SNPs
To verify the ability of the predicted SNPs to modulate
transcription, SLC39A1 and TPM3 promoters harboring rs6661009
and rs11265251 were cloned upstream of a luciferase reporter gene
(Section 2). SNP rs34612917 was excluded from this validation

because of its very low minor allele frequency in the general
population. The luciferase activities for both alleles of rs11265251
(residing in the TPM3 promoter) were lower than the basic pGLuc
vector (background) activity. This may be due to the low activity
of the TPM3 promoter in HEK293 cells, the cell system used to
test the promoter activity. Consistent with this interpretation, the
expression level of the TPM3 gene was found to be low in kidney
cells and in all fetal tissues, as documented in the microarray gene
expression database at the UCSC Genome Browser website (Fujita
et al., 2011). In contrast, luciferase assays demonstrated that SNP
rs6661009 significantly altered the activity of the SLC39A1 promoter
(Fig. 4B). Our original prediction by regSNPs was that the A allele
of rs6661009 would disrupt the binding of E2F1 to the SLC39A1
promoter; however, in vitro the A allele induced 58% higher
luciferase activity (P =0.00075; Fig. 4B). It has been reported that
E2F1 can serve as both positive and negative regulator on their target
genes (Crowe et al., 2001; Croxton et al., 2002; Stanelle et al., 2002).

4 DISCUSSION
In this study, we proposed a three-step bioinformatics approach to
identify functional SNPs within the regulatory regions following
GWAS. Promoter regions were used as an example of regulatory
regions to illustrate the procedures involved. First, we tested whether
the identified variant is within the target sequence of a known
transcription factor and hence could affect its binding affinity.
Second, we prioritized those transcription factors that are related
to a specific phenotype. Third, we identified a subset of sequence
variants that are likely to affect the binding of a transcription
factors important to the disease/phenotype under study. We tested
the performance of regSNPs in identifying the promoter mutations
in 13 diseases, using experimentally validated SNPs from HGMD.
The results of this analysis showed that the prioritization was
sufficiently high and could be useful, at least in some disease
states (e.g. breast cancer: 77.9%). Our analysis also shows that
some transcription factors (e.g. HNF4α) may play a key role in
multiple disease states. Finally, our model identified three putative
functional promoter SNPs, with a FDR estimated to be 25%, in
a region that influences BMD. We demonstrated that one of these
SNPs, rs6661009, significantly altered luciferase activity between
the A and C alleles, suggesting that regSNPs has identified a causal
SNP associated with BMD. The direction of effect, in which the
variant predicted to reduce binding of a transcription factor increased
promoter activity, could be due to assembly of an alternative
promoter complex in the cells used. It is also reported that the E2F1
binding can be associated with both positive and negative regulation
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on the target genes (Crowe et al., 2001; Croxton et al., 2002; Stanelle
et al., 2002).

regSNPs offers several major improvements over other methods
used for SNP prioritization. First, it is a phenotype-specific approach
to prioritize functional regulatory variants, while most existing
methods (Conde et al., 2006; Lee and Shatkay, 2009; Pico et al.,
2009; Yuan et al., 2006) only generate putative candidates based on
the sequence composition of the TFBSs, irrespective of whether
the specific transcription factor is functionally important in the
disease or phenotypic status. By integrating different bioinformatics
tools and databases (Endeavour and IPA/OMIM), regSNPs has the
advantage of narrowing the search to those transcription factors that
are likely to influence the phenotype of interest. Second, unlike the
previous methods, which only yield the putative SNPs, regSNPs
identifies SNPs as well as the transcription factors which are most
likely to influence the phenotype. The identified transcription factors
associated with specific phenotypes provide candidate proteins for
further research. Third, statistical evaluation is included in the
regSNPs output that allows quantification of the false positive rate
that can be placed in the prioritizations. Thus, at each step, a P-value
indicates the likelihood that a given SNP will alter transcription
factor-binding affinity, the likelihood of an association between a
transcription factor and a specific phenotype, and the likelihood of a
particular SNP exerting a regulatory role in the context of a specific
phenotype. This statistical information will enable investigators to
prioritize particular genes/SNPs for more in depth molecular study.

When we used regSNPs to analyze promoter mutations from
HGMD to test the program, we found variable utility across disease
states, ranging from 53.7% (schizophrenia) to 77.9% (breast cancer).
One reason for this variability may be that some disease genes
are more heavily reliant upon genetic regulation, and are therefore
likely to be more sensitive to the influence of polymorphic variation
within promoter regions. Breast cancer is a widely studied disease,
reported to be highly associated with gene regulation (Dunning et al.,
1999). Thus, when ranking validated disease-associated promoter
mutations (positives) with randomly selected SNPs (negatives),
reasonably high precision can be achieved. In contrast, in the case
of complex traits, such as hypertension, their pathophysiological
mechanisms involve multiple genetic factors together with a potent
environmental influence (Kosugi et al., 2009; Rahmouni et al., 2005;
Riserus et al., 2009; Sesso et al., 2008); in such cases, the ability of
regulatory variant identification may be limited.

Limitations of regSNPs include its reliance on existing knowledge
(e.g. disease/phenotype-related genes, and binding models for
transcription factors). Despite these, regSNPs provides an important
strategy for prioritizing causal regulatory DNA variants with respect
to specific disease/phenotype of interest. It is especially valuable for
prioritizing candidate SNPs identified by the GWAS, or novel or rare
variants discovered from the direct human genome sequencing.
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