
Copyedited by: MANUSCRIPT CATEGORY:

[17:52 9/8/2012 Bioinformatics-bts374.tex] Page: i382 i382–i388

BIOINFORMATICS Vol. 28 ECCB 2012, pages i382–i388
doi:10.1093/bioinformatics/bts374

Evolution of gene neighborhoods within reconciled phylogenies
Sèverine Bérard1,2,∗, Coralie Gallien1, Bastien Boussau3,4, Gergely J. Szöllősi3, Vincent
Daubin3 and Eric Tannier3,5,∗
1Univ Montpellier2, UMR AMAP, Montpellier F-34000, 2LIRMM, CNRS, Univ Montpellier2, Montpellier F-34392,
France, 3LBBE, UMR CNRS 5558, Université de Lyon 1, Villeurbanne F-69622, France, 4Department of Integrative
Biology, UC Berkeley 4163A Valley Life Sciences Bldg Berkeley, CA 94720-3140, USA and 5INRIA Rhône-Alpes,
Montbonnot F-38322, France

ABSTRACT

Motivation: Most models of genome evolution integrating gene
duplications, losses and chromosomal rearrangements are computa-
tionally intractable, even when comparing only two genomes. This
prevents large-scale studies that consider different types of genome
structural variations.
Results: We define an ‘adjacency phylogenetic tree’ that describes
the evolution of an adjacency, a neighborhood relation between two
genes, by speciation, duplication or loss of one or both genes,
and rearrangement. We describe an algorithm that, given a species
tree and a set of gene trees where the leaves are connected
by adjacencies, computes an adjacency forest that minimizes
the number of gains and breakages of adjacencies (caused by
rearrangements) and runs in polynomial time. We use this algorithm
to reconstruct contiguous regions of mammalian and plant ancestral
genomes in a few minutes for a dozen species and several thousand
genes. We show that this method yields reduced conflict between
ancestral adjacencies. We detect duplications involving several
genes and compare the different modes of evolution between phyla
and among lineages.
Availability: C++ implementation using BIO++ package, available
upon request to Sèverine Bérard.
Contact: Severine.Berard@cirad.frorEric.Tannier@inria.fr
Supplementary information: Supplementary material is available at
Bioinformatics online.

1 INTRODUCTION
A phylogenetic tree describes the kin relationships between a set
of homologous objects. Non-homologous objects may have other
types of relationships, such as interactions, functional relationships,
co-expression or neighborhood between genes. Studying the
pattern of descent of these relationships can be used to define
homology between them, reconstruct ancestral relationships and
build phylogenetic trees.

The evolution of gene proximity or interaction has been the
subject of numerous recent studies. It is for example a way to assess
co-evolution between genes, even if often co-evolution is detected
by searching for similarities in gene trees, but without modeling
explicitly the relation that make the genes co-evolve (Rodionov
et al., 2011; Tuller et al., 2010).

Closer to our study, (Pinney et al., 2007) and (Dutkowski and
Tiuryn, 2009) or (Ma et al., 2008) propose methods to reconstruct

∗
To whom correspondence should be addressed.

ancestral protein–protein interactions or gene neighborhoods based
on a model of evolution allowing gene duplications. They, however,
assume that the chronology of duplications is known, which often
is not the case. (Patro et al., 2011) define a general problem of
network evolution without this assumption and give a heuristic
solution for the comparison of two species. Our model considers
the more specific problem of gene neighborhoods on chromosomes,
but generalizes (Patro et al., 2011)’s method in that it handles an
arbitrary number of species and provides an exact solution to a less
constrained problem.

Several methods are aimed at building ancestral chromosomes
(which can be seen as relationships between genes). Most of these
methods, however, ignore duplications and losses and are limited
to gene families which have exactly one representative in each
studied species (Alekseyev and Pevzner, 2009; Chauve and Tannier,
2008; Chauve et al., 2010; Ma et al., 2006; Ouangraoua et al.,
2011). The number of such gene families becomes smaller and
smaller as the number of species grows. Some methods take as
input gene trees allowing duplications and losses (Lajoie et al., 2010;
Muffato et al., 2010) but do not model these events and treat them
as noise that is removed for the construction of chromosomes by
traveling salesman-like optimization methods. (Chauve et al., 2010),
(Ouangraoua et al., 2011) or (Zheng and Sankoff, 2011) model
duplications only in the context of whole genome duplications.

Here, we propose a method that takes a species tree and a set
of gene trees as inputs, and models the gain and breakage of gene
adjacencies along a pair of trees, taking duplications and losses into
account. We consider two genes to be ‘adjacent’ if they are on the
same chromosome in the same genome and no other gene is located
between the two. We give an exact polynomial algorithm which
minimizes the number of gains and breakages of adjacencies, or
more generally, the gain/breakage cost of an evolutionary scenario
for gene adjacencies. The result consists of sets of ‘adjacency trees’,
which are phylogenetic trees describing the evolution of a family of
homologous adjacencies (adjacencies that share a common ancestor
and derived from it).

We assume that adjacencies evolve independently from each
other, so we do not model the rearrangement explicitly (inversions,
translocations etc.), but model their effect on adjacencies, which
thus can undergo gains and breakages.

Doing this, we solve a problem that fits in the methodological
program started by (Sankoff and El-Mabrouk, 2000), which
mixes rearrangements and reconciliations of phylogenetic trees (a
reconciliation is an annotation of gene tree nodes by duplication or
speciation events, according to a species tree).

Algorithmically, the dynamic programming principle we use
generalizes the Sankoff–Fitch (Fitch, 1971; Sankoff, 1975)

© The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/18/i382/244519 by guest on 19 April 2024

Severine.Berard@cirad.frorEric.Tannier@inria.fr
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts374/DC1

Copyedited by: MANUSCRIPT CATEGORY:

[17:52 9/8/2012 Bioinformatics-bts374.tex] Page: i383 i382–i388

Evolution of gene neighborhoods

parsimony algorithms on binary alphabets. Indeed, when there are no
duplications nor losses in gene trees, adjacencies may be described
by a binary character (presence or absence in a genome) evolving
along the species tree, as in (Tang and Wang, 2005) or (Feijao
and Meidanis, 2011). In our case, there is also a binary character
(presence or absence of an adjacency), but evolving along pairs of
reconciled gene trees.

The description of the method requires that we formally introduce
the three kinds of trees we handle (species, gene and adjacency
trees), as well as the definition of the optimization problem we
propose (Section 2). We detail some properties of the solutions,
pointing at the possible advantages and drawbacks of this approach
in Section 3. Then in Section 4, we describe the algorithm which
solves the problem. Proofs are provided in the Supplementary
Material.

We implemented the algorithm and applied it to mammalian and
plant genomes. We show that compared with other methods not
explicitly modelling evolutionary events, we have more precise and
less erroneous views at ancestral genome organization (Section 5).
In addition, we are able to detect segmental duplications including
several genes, and to visualize how much the modes of evolution
are different according to the considered clades or lineages.

2 MODEL
All the trees in this article have one or more vertices, they are rooted
and have maximum degree 3. A tree T induces a partial order on its
nodes, where descendants are lower than ancestors.

For a tree T , V (T) denotes its vertex set and L(T) is leaf set
(vertices with no descendants, L(T)⊆V (T)). For a node N of T ,
T (N) is the subtree of T rooted at N . P(N) is the parent of N (it is
defined only if N is not the root). L(N) is the set of leaves of T (N).

We consider all trees to be annotated, which means here that each
node N of a tree is labeled by

• A type of event E(N).

• A species S(N).

The events E(N) are taken from {Extant, Spec, GDup,

GLos, ADup, ALos, Break}. These are abbreviations for
‘Extant’, ‘Speciation’, ‘Gene duplication’, ‘Gene loss’, ‘Adjacency
duplication’, ‘Adjacency loss’ and ‘Adjacency breakage’. Together
with the ‘Adjacency Gain’ (abbreviated Gain, which never labels the
nodes of the trees as there is exactly one gain per adjacency tree),
they are all the evolutionary events we consider.1 Note that ALos
means the loss of an adjacency due to the concurrent loss of the two
involved genes, while Break means the loss of an adjacency due to
a rearrangement. In the objective function we only take Gain and
Break into account, so both are given a cost C(Gain) and C(Break).

All trees depend on a set of extant genomes, which are disjoint
sets of genes plus binary relations on these sets of genes called
‘adjacencies’. The two genes of an adjacency are called its
‘extremities’. There are three types of trees (illustrated in Fig. 1),
which have the following properties.

(1) A species tree TS describes the diversification of species. It is
binary, and verifies E(N)=Spec for all internal node N and

1Even if ‘Extant’ is not an evolutionary event, it is included because it
annotates some tree leaves.

Fig. 1. Examples of a species tree (left), two gene trees (middle) and an
adjacency tree (right). Blue dots are speciation nodes. Leaves are extant
(species, genes, adjacencies), except the one labeled by a red cross (gene loss)
or a red flash (breakage). Green squares are (gene or adjacency) duplication
nodes. Gene labels refer to the species they belong to. Every node of the
adjacency tree is labeled by a couple of nodes from gene trees

E(N)=Extant for all leaves N . All S(N) are distinct species
and if N is an internal node, S(N) defines an ancestral species.

(2) A gene tree TG describes the evolution of a family of
homologous genes along a species tree TS . All gene trees
here are ‘reconciled’ with the ‘LCA (Last Common Ancestor)
reconciliation’ (Goodman et al., 1979) where all gene losses
are represented by leaves, which means every node N verifies:

• If N is a leaf, then E(N)∈{Extant,GLos}, and if N is an
internal node, then E(N)∈{Spec,GDup}.

• If E(N)=Extant, then there is a gene G(N) that belongs
to S(N) and all such genes are distinct.

• If E(N)=GDup then the children N1 and N2 of N are
such that S(N1)=S(N2)=S(N)

• If E(N)=Spec then the children N1 and N2 of N are
such that there are two edges AA1 and AA2 of TS
such that P(A1)=P(A2)=A and S(N)=S(A), S(A1)=
S(N1), and S(A2)=S(N2).

• Let L be the set of leaves of TG(N); Let S(L) be the
set of all extant species which are descendants of some
S(l), l ∈L; Let now NS be the lowest node in TS such
that S(L)⊆∪l∈L(NS)S(l); Then, S(N)=S(NS).

(3) An adjacency tree TA describes the descent pattern of
adjacencies. As adjacencies are pairs of genes, they follow
the evolution of genes: if an adjacency AB descents from
an adjacency CD, then A descents from C and B from D.
So adjacency trees are defined given a set of reconciliated
gene trees TG and have to follow their LCA reconciliations.
Formally, every node N of an adjacency tree verifies

• If N is a leaf, then E(N)∈{Extant,GLos,ALos,Break}
and if N is an internal node, then E(N)∈
{Spec,GDup,ADup}

• If E(N) �=Break, then there is a couple A(N)=XY of
gene tree nodes X and Y (possibly from two different
gene trees) such that S(N)=S(X)=S(Y).

• If E(N)=Extant, then G(X)G(Y) is an adjacency.

• If E(N)=GLos, then E(X)=GLos or E(Y)=GLos (and
not both).

• If E(N)=ALos, then E(X)=E(Y)=GLos.

• If E(N)=Spec, then E(X)=E(Y)=E(N). In addition,
N has two children N1 and N2 and either E(N1)=Break
(respectively, E(N2)=Break)) or A(N1) (respectively,
A(N2)) is a couple of children of X and Y .

i383

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/18/i382/244519 by guest on 19 April 2024

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts374/DC1

Copyedited by: MANUSCRIPT CATEGORY:

[17:52 9/8/2012 Bioinformatics-bts374.tex] Page: i384 i382–i388

S.Bérard et al.

• If E(N)=ADup, then E(X)=E(Y)=GDup. In addition,
N has two children N1 and N2 either E(N1)=Break
(respectively, E(N2)=Break)) or A(N1) (respectively,
A(N2)) is a couple of children of X and Y .

• If E(N)=GDup, then E(X)=GDup or E(Y)=GDup
(suppose it is Y). In addition, N has only one child N1
and either E(N1)=Break or A(N1) is a couple of genes
composed of X and one child of Y .

An ‘adjacency forest’ is a set of adjacency trees, such that for two
nodes N1 and N2 in this forest, A(N1) �=A(N2), and such that for
each adjacency A from any species, there exists a leaf L in the forest,
which verifies A(L)=A.

The cost of an adjacency tree TA, is

C(TA)=|{v∈V (TA),E(v)=Break}|∗C(Break)+Gain(TA),

where Gain(TA) is computed in this way: if the root R of TA is such
that A(R)=XY and either

• P(X)=P(Y) or

• X is the root of a gene tree, and either Y is also a root, or
S(P(Y)) �=S(Y)

then Gain(TA)=0, else Gain(TA)=C(Gain). The cases where
Gain(TA)=0 are those arising from tandem duplications or those
where the adjacency can have been gained earlier in the evolution.

The cost of an adjacency forest is the sum of the costs of all
adjacency trees.

The problem we address is to take as input a species tree, a set
of gene trees and a set of extant adjacencies, and to compute an
adjacency forest of minimum cost. We give a polynomial algorithm
which gives one optimal solution.

3 PROPERTIES

3.1 The cost of a duplication or loss event
The optimization focuses only on breaks and gains of adjacencies.
The dynamic programming technique we use does not allow to count
duplication and loss events in the objective function. This is because
we make the hypothesis of independent evolution of couples of
genes, and as long as one gene has its own events and belongs
to several couples, this independence is broken.

Nevertheless, duplication events have an importance for the
solutions. The duplication of an adjacency has the same cost as
the independent duplication of two genes, but the events can still
be discriminated because the two do not have the same effect: the
independent duplications propagate only one adjacency, and the joint
duplication propagates two. It is thus possible to catch the places
where a joint duplication is advantageous in terms of gains and
breaks.

3.2 The linearity of genomes
In extant genomes, one gene can participate in at most two
adjacencies. We have not required this property in the input of the
program because it is not used, and in this way we could easily adapt
the problem to other kinds of relationships. The drawback of this is
that there is no need that in ancestral genomes, genes participate to
at most two adjacencies.

(Feijao and Meidanis, 2011) prove that in a duplication-free
framework, where Fitch’s algorithm is applied on the presence and
absence of adjacencies, choosing the absence whenever there is a
choice to make ensures that the resulting genomes are linear. When
there are duplications, it is not necessarily the case and it can be
seen in the data, where some conflicts remain. But as we will see
in the last section, the amount of conflict is reduced compared with
other kinds of algorithms, and can be used to assess the quality of
the gene trees, as well as the quality of the model.

3.3 The chronology of duplications
No chronology of duplications is required in the input as in (Pinney
et al., 2007), (Dutkowski and Tiuryn, 2009) or (Ma et al., 2008). But
a chronology can be derived from the output. Indeed an adjacency
duplication means that two genes are duplicated together, while two
nodes of an adjacency tree such that one is the descendant of the
other and both are gene duplication events define a directed relation
between the two duplications, even if they are not comparable from
the gene trees (not in the same tree or not comparable in one tree). But
this relation is not necessarily an order relation. There are examples
where temporal relationships defined by adjacency trees contradict
the partial order of the nodes of one gene tree: see such an example in
Figure S1 in Supplementary Material. (Patro et al., 2011) proscribe
this kind of conflict and propose a heuristic principle to get rid of it
when it happens.

3.4 Tandem duplications
Tandem duplications are special types of duplications, where the two
duplicates are adjacent. Here, tandem duplications are not modeled
explicitly as a different event from ordinary duplications. However,
tandem duplications of one gene are indirectly taken into account:
they cost zero (as the gain of an adjacency between two children of
a duplication node is costless; see Section 2), while a non-tandem
duplication of one gene can cost one breakage plus two gains when
one duplicate is inserted between two other genes.

3.5 The orientations of the genes
It is possible to take the orientation of the genes into account
by duplicating each gene into two gene extremities and define
adjacencies as relations between gene extremities instead of genes
(the extremities of an adjacency are gene extremities in that case).
The current implementation can be used in this way, it is just a matter
of formatting the input. In this case, one gene extremity is supposed
to participate in only one adjacency, and tandem duplications are
not handled anymore, because there are no duplications of only one
gene extremity.

4 ALGORITHM

4.1 Restriction to two gene trees
We first restrict the problem to the comparison of two gene trees,
without loss of generality. To do this, the extant adjacencies are
clustered according to the following relation between two distinct
adjacencies AB and CD:

1). A and C are in the same gene tree, noted G1, as well as B and
D, in a tree noted G2 (the roles of A and B and of C and D
may be exchanged).

i384

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/18/i382/244519 by guest on 19 April 2024

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts374/DC1

Copyedited by: MANUSCRIPT CATEGORY:

[17:52 9/8/2012 Bioinformatics-bts374.tex] Page: i385 i382–i388

Evolution of gene neighborhoods

2a). if G1 �=G2, then there are two nodes N1∈G1,N2∈G2 such
that S(N1)=S(N2) and A and C are descendants of N1, while
B and D are descendants of N2.

2b). if G1=G2, then the lowest common ancestor of A and B is
the same node as the lowest common ancestor of C and D (it
is necessarily a duplication node).

This relation between adjacencies satisfying all conditions is
an equivalence relation (reflexive, symmetric and transitive).
Equivalence classes are treated independently. This is justified by
the following lemma, whose proof stands in the Supplementary
Material.

Lemma 1. If there is a tree of adjacencies which contains
adjacencies AB and CD, then AB and CD are in the same
equivalence class.

In other words, if AB and CD are not in the same class they cannot
be homologous. The converse is not true however. Solutions for one
class may consist of several adjacency trees.

This clustering allows to divide the problem into equivalence
classes, which concern one or two gene trees. If in an equivalence
class, adjacencies have extremities in the same tree, by definition of
the classes, there is a common ancestor to all pairs of extremities
of adjacencies. By removing this vertex, we get two trees rooted at
its children, and all adjacencies have one extremity in each of these
two trees.

So we may restrict ourselves to this case where we have exactly
two gene trees and all adjacencies are between these two trees.
Moreover, we may suppose that each tree is rooted at the lowest
common ancestor of all genes involved in adjacencies of the chosen
class, because we may simply consider the subtree rooted at this
vertex. This yields that the two roots are necessarily assigned to the
same species.

4.2 Recurrence formulas
Formally, we have two gene trees T 1

G and T 2
G , extant adjacencies

have one extremity in each tree, and if R1 and R2 are the respective
roots of T 1

G and T 2
G , then S(R1)=S(R2).

For a pair of nodes (v1,v2)∈V (T 1
G)×V (T 2

G) such that S(v1)=
S(v2), we compute two values, c1(v1,v2) and c0(v1,v2) by
recurrence formulas described in the sequel. Remark that we only
consider pairs of nodes annotated with the same species because an
adjacency is always linking genes from the same genome. We prove
that these numbers have the following properties (proofs are in the
Supplementary Material, Appendix 2).

Theorem 1. • c1(v1,v2) is the minimum cost of an adjacency
forest F for the adjacencies between two gene trees T 1

G(v1)

and T 2
G(v2), such that there is a node N in F with A(N)=v1v2.

• c0(v1,v2) is the minimum cost of an adjacency forest F for
the adjacencies between two gene trees T 1

G(v1) and T 2
G(v2),

such that there is no node N in F with A(N)=v1v2.

In consequence, the minimum cost of an adjacency forest will
be given by computing the minimum between c1(R1,R2) and
c0(R1,R2).

The recurrence for the computation of c1(v1,v2) and c0(v1,v2)
follows a case analysis, according to the type of event associated to
v1 and v2. The roles of v1 and v2 are symmetrical. We note ca(v)
and cb(v) the two children of a node v.

Case 1. E(v1)=Extant and E(v2)=Extant.
If v1v2 is an adjacency then c1(v1,v2)=0 and c0(v1,v2)=∞;
else c1(v1,v2)=∞ and c0(v1,v2)=0.

Case 2. E(v1)=GLos and E(v2) �=GLos.
In this case c1(v1,v2)=0 and c0(v1,v2)=0.

Case 3. E(v1)=GLos and E(v2)=GLos.
In this case c1(v1,v2)=0 and c0(v1,v2)=0. This case has to be
distinguished from the previous one for the backtracking procedure
described in the following subsection.

Case 4. E(v1)∈{Extant,Spec} and E(v2)=GDup.

c1(v1,v2)=min

⎧⎪⎪⎨
⎪⎪⎩

c1(v1,ca(v2))+c0(v1,cb(v2))
c0(v1,ca(v2))+c1(v1,cb(v2))
c1(v1,ca(v2))+c1(v1,cb(v2))+C(Gain)
c0(v1,ca(v2))+c0(v1,cb(v2))+C(Break)

c0(v1,v2)=min

⎧⎪⎪⎨
⎪⎪⎩

c0(v1,ca(v2))+c0(v1,cb(v2))
c0(v1,ca(v2))+c1(v1,cb(v2))+C(Gain)
c1(v1,ca(v2))+c0(v1,cb(v2))+C(Gain)
c1(v1,ca(v2))+c1(v1,cb(v2))+2∗C(Gain)

Case 5. E(v1)=Spec and E(v2)=Spec.
Suppose without loss of generality that S(ca(v1))=S(ca(v2))
and S(cb(v1))=S(cb(v2)).

c1(v1,v2)=min

⎧⎪⎪⎨
⎪⎪⎩

c1(ca(v1),ca(v2))+c1(cb(v1),cb(v2))
c1(ca(v1),ca(v2))+c0(cb(v1),cb(v2))+C(Break)
c0(ca(v1),ca(v2))+c1(cb(v1),cb(v2))+C(Break)
c0(ca(v1),ca(v2))+c0(cb(v1),cb(v2))+2∗C(Break)

c0(v1,v2)=min

⎧⎪⎪⎨
⎪⎪⎩

c0(ca(v1),ca(v2))+c0(cb(v1),cb(v2))
c1(ca(v1),ca(v2))+c0(cb(v1),cb(v2))+C(Gain)
c0(ca(v1),ca(v2))+c1(cb(v1),cb(v2))+C(Gain)
c1(ca(v1),ca(v2))+c1(cb(v1),cb(v2))+2∗C(Gain)

Case 6. E(v1)=GDup and E(v2)=GDup.
In this case c1(v1,v2)=min(D1,D2,D12) where
D1 is the cost in the case the v1 duplication comes first,
D2 is the cost in the case the v2 duplication comes first,
D12 is the cost in the case where the v1 and v2 duplications are
simultaneous.

D1=min

⎧⎪⎪⎨
⎪⎪⎩

c1(ca(v1),v2)+c0(cb(v1),v2)
c0(ca(v1),v2)+c1(cb(v1),v2)
c1(ca(v1),v2)+c1(cb(v1),v2)+C(Gain)
c0(ca(v1),v2)+c0(cb(v1),v2)+C(Break)

D2=min

⎧⎪⎪⎨
⎪⎪⎩

c1(v1,ca(v2))+c0(v1,cb(v2))
c0(v1,ca(v2))+c1(v1,cb(v2))
c1(v1,ca(v2))+c1(v1,cb(v2))+C(Gain)
c0(v1,ca(v2))+c0(v1,cb(v2))+C(Break)

D12=min (over all 16 following cases)

i385

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/18/i382/244519 by guest on 19 April 2024

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts374/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts374/DC1

Copyedited by: MANUSCRIPT CATEGORY:

[17:52 9/8/2012 Bioinformatics-bts374.tex] Page: i386 i382–i388

S.Bérard et al.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1) c1(ca(v1),ca(v2)) + c1(cb(v1),cb(v2)) +
c0(ca(v1),cb(v2)) + c0(cb(v1),ca(v2))

(2) c1(ca(v1),ca(v2)) + c1(cb(v1),cb(v2)) +
c0(ca(v1),cb(v2)) + c1(cb(v1),ca(v2)) +
C(Gain)

(3) c1(ca(v1),ca(v2)) + c1(cb(v1),cb(v2)) +
c1(ca(v1),cb(v2)) + c0(cb(v1),ca(v2)) +
C(Gain)

(4) c1(ca(v1),ca(v2)) + c1(cb(v1),cb(v2)) +
c1(ca(v1),cb(v2)) + c1(cb(v1),ca(v2)) +
2∗C(Gain)

(5) c1(ca(v1),ca(v2)) + c0(cb(v1),cb(v2)) +
c0(ca(v1),cb(v2)) + c0(cb(v1),ca(v2)) +
C(Break)

(6) c1(ca(v1),ca(v2)) + c0(cb(v1),cb(v2)) +
c0(ca(v1),cb(v2)) + c1(cb(v1),ca(v2)) +
C(Gain) + C(Break)

(7) c1(ca(v1),ca(v2)) + c0(cb(v1),cb(v2)) +
c1(ca(v1),cb(v2)) + c0(cb(v1),ca(v2)) +
C(Gain) + C(Break)

(8) c0(ca(v1),ca(v2)) + c1(cb(v1),cb(v2)) +
c0(ca(v1),cb(v2)) + c0(cb(v1),ca(v2)) +
C(Break)

(9) c0(ca(v1),ca(v2)) + c1(cb(v1),cb(v2)) +
c0(ca(v1),cb(v2)) + c1(cb(v1),ca(v2)) +
C(Gain) + C(Break)

(10) c0(ca(v1),ca(v2)) + c1(cb(v1),cb(v2)) +
c1(ca(v1),cb(v2)) + c0(cb(v1),ca(v2)) +
C(Gain) + C(Break)

(11) c0(ca(v1),ca(v2)) + c0(cb(v1),cb(v2)) +
c1(ca(v1),cb(v2)) + c1(cb(v1),ca(v2))

(12) c0(ca(v1),ca(v2)) + c1(cb(v1),cb(v2)) +
c1(ca(v1),cb(v2)) + c1(cb(v1),ca(v2)) +
C(Gain)

(13) c1(ca(v1),ca(v2)) + c0(cb(v1),cb(v2)) +
c1(ca(v1),cb(v2)) + c1(cb(v1),ca(v2)) +
C(Gain)

(14) c0(ca(v1),ca(v2)) + c0(cb(v1),cb(v2)) +
c1(ca(v1),cb(v2)) + c0(cb(v1),ca(v2)) +
C(Break)

(15) c0(ca(v1),ca(v2)) + c0(cb(v1),cb(v2)) +
c0(ca(v1),cb(v2)) + c1(cb(v1),ca(v2)) +
C(Break)

(16) c0(ca(v1),ca(v2)) + c0(cb(v1),cb(v2)) +
c0(ca(v1),cb(v2)) + c0(cb(v1),ca(v2)) +
2∗C(Break)

c0(v1,v2)=min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cases where the v1 duplication comes first
c0(ca(v1),v2)+c0(cb(v1),v2)
c0(ca(v1),v2)+c1(cb(v1),v2)+C(Gain)
c1(ca(v1),v2)+c0(cb(v1),v2)+C(Gain)
c1(ca(v1),v2)+c1(cb(v1),v2)+2∗C(Gain)
Cases where the v2 duplication comes first
c0(v1,ca(v2))+c0(v1,cb(v2))
c0(v1,ca(v2))+c1(v1,cb(v2))+C(Gain)
c1(v1,ca(v2))+c0(v1,cb(v2))+C(Gain)
c1(v1,ca(v2))+c1(v1,cb(v2))+2∗C(Gain)

We do not examine the case E(v1)=Extant and E(v2)=Spec
because in this case S(v1) �=S(v2).

The algorithm implements these recurrence formulas in an
iterative way following a dynamic programming technique, by
computing the costs in a post-order traversal of the couples of tree
nodes.

4.3 Backtracking
The recurrence formulas allow the construction of a cost matrix
which rows are the nodes of the first gene tree, and columns are the
nodes of the second gene tree. The nodes of the adjacency forest
are constructed while backtracking on the cost matrix starting at
min(c1(R1,R2),c0(R1,R2)). The backtracking procedure classically
follows each cost on the chosen line in the recurrence formulas,

creating adjacency trees from root to leaves. A node N with A(N)=
v1v2 is created each time c1(v1,v2) is chosen. The event labeling
this node depends on the events labeling v1 and v2 : Extant for
Case 1, GLos for Case 2, ALos for Case 3, GDup for Cases 4 and 6.
(D1&D2), Spec for Case 5 and ADup for Case 6 (D12). A node N
with E(N)=Break is created each time there is a C(Break) in the
chosen formula.

Edges between the nodes follow the pattern of descent between
adjacencies:

• Break nodes are leaves, and their parent are the nodes
constructed in the formula where C(Break) occurs;

• In Cases 4 and 6 (D1&D2), there is an edge between v1v2 and
one of v1ca(v2), v1cb(v2), ca(v1)v2, cb(v1)v2, if c1 is chosen
for either of them.

• In Cases 5 and 6 (D12), there is an edge between v1v2

and one or two of ca(v1)ca(v2), cb(v1)cb(v2), cb(v1)ca(v2),
ca(v1)cb(v2) if c1 is chosen for either of them (there can be
arbitrary choices for equivalent solutions).

Recurrence formulas imply that the backtracking procedure does
not create twice the same node: each formula computes the cost for
v1v2 between pairs of nodes where at least one is a descendant of
v1 or v2.

An example of an algorithm input and output is drawn on Figure 2.

4.4 Complexity
The algorithm takes as input a dataset composed by a species tree,
several gene trees and a list of adjacencies. It first computes the
equivalence classes of adjacencies. Then for each class it constructs
two subtrees to compute c0 and c1 costs on their roots and applies
the backtracking procedure. The algorithm outputs the adjacency
forest resulting from the union of all adjacency forests built on each
class.

Let n be the number of gene trees and k be the maximum size
of a tree. The algorithm runs in O(n2 ×k2). Indeed, the maximum
number of adjacency equivalence classes is bounded by O(n2), while
for each equivalence class, every couple of node is examined with
a constant-time case analysis.

In practice, the number of equivalence classes is much closer to
n than to n2 and trees are small compared with the total number of
genes. For all datasets we tested, including dozens of species and
thousand of genes, the execution time was under 10 min.

5 IMPLEMENTATION AND APPLICATION
We implemented the algorithm using the Bio++ platform (Dutheil
et al., 2006). The program, named DeCo (Detection of Co-evolution
or DeCoration of trees), takes as input a species tree, a set of genes
along with the species they are in, a set of adjacencies and a set of
gene trees.

We tested it on four datasets, with costs C(Gain)=C(Break)=1.
The first and second datasets are based on 5039 gene trees from the
Ensembl database (release 57) restricted to mammalian assembled
genomes (11 species).2 The first set of trees are those provided in this

2The parsimony framework practically makes it necessary to work with only
assembled genomes, since we would count to many breaks for unassembled

i386

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/18/i382/244519 by guest on 19 April 2024

Copyedited by: MANUSCRIPT CATEGORY:

[17:52 9/8/2012 Bioinformatics-bts374.tex] Page: i387 i382–i388

Evolution of gene neighborhoods

Fig. 2. Example of the application of the algorithm on two genes trees, G1

and G2, a species tree S and an adjacency list shown on the line Input.
The costs are C(Gain)=C(Break)=1. All the costs cb(Ei,Ej) are computed
for b∈0,1, E ∈A,B,C, i,j∈[1..8], with Ei in G1 and Ej in G2. As a result
c0(C5,C8)=2 while c1(C5,C8)=1. Therefore, the adjacency forest on the
line Output contains C5C8. The left tree has cost 0 while the right one costs
C(Gain)=1 for the gain of the adjacency B1B3

database, made according to the TreeBeST pipeline (Vilella et al.,
2009). The second consists of the trees reconstructed by the PhylDog
method (Boussau et al., 2012), with an explicit model of duplication
and losses of trees. Both sets of trees were reconciled according to
the LCA method (Goodman et al., 1979), which gives gene trees
with the properties written in Section 2).

Then, we computed ancestral adjacencies according to the method
described here, and compared with the ‘pairwise alternative’, an
implementation of the principles used by (Chauve and Tannier,
2008), (Muffato et al., 2010), (Bertrand et al., 2010) or (Boussau
et al., 2012), in which adjacencies are constructed by comparing
couples of species (the method is described in the Supplementary
Material, Appendix 3) instead of all genomes together.

We computed the degree of each ancestral gene, that is, the number
of adjacencies which has it as an extremity. As shown in Figure 3,
most ancestral genes have degree 2, which means the signal of
linearity of the ancestral genomes is recovered. We can observe
the gain obtained by using PhylDog trees instead of TreeBeST trees
(red plain versus blue dotted line), and the gain obtained by using
DeCo instead of the pairwise alternative (red plain versus green
dashed line). These two gains are nearly equivalent, showing that
to get better ancestral genomes, we need good trees as well as good
adjacency inference algorithms. Better trees tend to give a better
estimate of the ancestral gene content, minimizing the degree 0
(probably wrong) genes, while the adjacency inference algorithm
may minimize the number of genes with degree >2: convergent
evolution can yield false ancestral adjacencies, which add to the
two true ones. Convergent evolution is impossible to handle in a
pairwise method.

The third and fourth datasets are constructed from the Ensembl
(release 65) and EnsemblPlant (release 12) databases, restricted
to some assembled mammalian (11 species, 19 217 gene trees

ones, preventing the reconstruction of some ancestral adjacencies. It is
possible to envisage branch specific costs, where unassembled genomes
would have low breakage cost, and then could be used in a dataset.

Fig. 3. Proportion of genes having k neighbors, function of k. Red plain
line is obtained with DeCo and PhylDog trees. Green dashed line is obtained
with PhylDog trees and the pairwise alternative. Blue dotted line is obtained
with TreeBeST trees and DeCo

with an average of 10 genes) and angiosperm (9 genomes, 35 182
gene trees, with an average of 9 genes) species. We chose these
two clades for a phylogenetic comparison because the estiated
divergence times are similar, and there are approximatively as many
assembled genomes in both. We compared the number of segmental
duplications involving more than one gene in these two datasets.
In Figure 4, phylogenetic trees of mammals and angiosperms are
drawn, in which branch length is the number of pairs of genes
duplicated together over the total number of ancestral genes found in
the same branch. We find that on average branch lengths are more
than three times longer in plants, indicating genome architectures
rapidly evolving compared with slow mammalian ones. Angiosperm
genomes have been shaped by several whole genome duplications:
at the basis of monocots, a triplication at the basis of dicots, plus one
event on the Maize and Poplar lineages, and two on the Arabidopsis
one. These events probably create a long branch in Poplar, or
Glycine, but are not always visible (e.g. in Arabidopsis) due to
differentiated losses which blurred the synteny signal. The difference
in branch length can partly be due to whole genome duplications. But
measuring the average size of the duplicated segments by computing

#GDup

#GDup−#Adup
.

we found no significant difference between the two phyla (=1.08
on average among all branches for both), indicating that the changes
in genome architectures following a whole genome duplication are
not fully accessible to this method. The long branch at the basis of
eutheria would deserve more studies to know to which extend it is
artifactual and due to the quality of gene trees.

6 PERSPECTIVES
The algorithm can easily be extended to handle other relations
than adjacencies (interactions, regulations, co-expression or any
functional relation which can evolve by gain or breakage like
adjacencies). It can be seen as even more adapted to less constrained
relations (without a linear organization). Indeed, if a gene is lost,

i387

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/18/i382/244519 by guest on 19 April 2024

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts374/DC1

Copyedited by: MANUSCRIPT CATEGORY:

[17:52 9/8/2012 Bioinformatics-bts374.tex] Page: i388 i382–i388

S.Bérard et al.

Fig. 4. Angiosperm and mammalian phylogenies, where branch lengths are
proportional to the number of adjacency duplications normalized by the
number of genes. The scale is indicated at the bottom left of the two figures

no adjacency is automatically and freely gained between its two
neighbors in this model. But the computation time should be higher
for other relations, as the possible number of relations is a quadratic
function of the number of genes, while the number of adjacencies
only grows linearly.

Possible extensions can be to include transfers (Doyon et al.,
2011), incomplete lineage sorting or gene conversion (Rasmussen
and Kellis, 2012) to the possible events.And also to allow other types
of reconciliations than the LCA one. More flexible cost functions for
duplications may also be desirable, but in this case the independent
evolution between adjacencies is lost, and the use of dynamic
programming does not seem generalizable.

ACKNOWLEDGEMENT
The authors thank Cedric Chauve and Vincent Ranwez for useful
discussions.

Funding: Ancestrome project, ANR-10-BINF-01 (to S.B., B.B.,
G.S., V.D. and E.T.). Univ Montpellier2 and INRIA (to C.G.).
Postdoctoral fellowship from the Human Frontier Science Program
and the CNRS (to B.B.)

Conflict of Interest: None declared.

REFERENCES
Alekseyev,M.A. and Pevzner, P.A. (2009) Breakpoint graphs and ancestral genome

reconstructions. Genome Res., 19, 943–957.

Bertrand,D. et al. (2010) Reconstruction of ancestral genome subject to whole genome
duplication, speciation, rearrangement and loss. In Proceedings of WABI’10,
Algorithms in Bioinformatics, Lecture Notes in Bioinformatics, Springer, Berlin
Heidelberg, pp 78–89.

Boussau,B. et al. (2012) Genome-scale coestimation of species and gene trees, in
revision.

Chauve,C. and Tannier,E. (2008) A methodological framework for the reconstruction of
contiguous regions of ancestral genomes and its application to mammalian genomes.
PLoS Comput. Biol., 4, e1000234.

Chauve,C. et al. (2010) Yeast ancestral genome reconstructions: the possibilities of
computational methods II. J. Comput. Biol., 17, 1097–1112.

Doyon,J.-P. et al. (2011) Models, algorithms and programs for phylogeny reconciliation.
Brief. Bioinform., 12, 392–400.

Dutheil,J. et al. (2006) Bio++: a set of c++ libraries for sequence analysis, phylogenetics,
molecular evolution and population genetics. BMC Bioinformatics, 7, 188.

Dutkowski,J. and Tiuryn,J. (2009) Phylogeny-guided interaction mapping in seven
eukaryotes. BMC Bioinformatics, 10, 393.

Feijao,P. and Meidanis,J. (2011) SCJ: a breakpoint-like distance that simplifies
several rearrangement problems. IEEE/ACM Trans. Comp. Biol. Bioinf., 8,
1318–1329.

Fitch,W. M. (1971) Toward defining the course of evolution: minimum change for a
specified tree topology. Sys. Zool., 20, 406–416.

Goodman,M. et al. (1979) Fitting the gene lineage into its species lineage, a parsimony
strategy illustrated by cladograms constructed from globin sequences. Syst. Zool.,
28, 132–163.

Lajoie,M. et al. (2010) Inferring the evolutionary history of gene clusters from
phylogenetic and gene order data. Mol. Biol. Evol., 27, 761–772.

Ma,J. et al. (2006) Reconstructing contiguous regions of an ancestral genome. Genome
Res., 16, 1557–1565.

Ma,J. et al. (2008) Dupcar: reconstructing contiguous ancestral regions with
duplications. J. Comput. Biol., 15, 1007–1027.

Muffato,M. et al. (2010) Genomicus: a database and a browser to study gene synteny
in modern and ancestral genomes. Bioinformatics, 26, 1119–1121.

Ouangraoua,A. et al. (2011) Reconstructing the architecture of the ancestral amniote
genome. Bioinformatics, 27, 2664–2671.

Patro,R. et al. (2011) Parsimonious reconstruction of network evolution. In Proceedings
of WABI’11, Vol. LNBI 6833, p. 237249.

Pinney,J.W. et al. (2007). Reconstruction of ancestral protein interaction
networks for the bzip transcription factors. Proc. Natl. Aca. Sa. USA, 104,
20449–20453.

Rasmussen,M.D. and Kellis,M. (2012) Unified modeling of gene duplication, loss, and
coalescence using a locus tree. Genome Res., 22, 755–765.

Rodionov,A. et al. (2011) A new, fast algorithm for detecting protein coevolution using
maximum compatible cliques. Algorithms Mol. Biol., 6, 17.

Sankoff,D. (1975) Minimal mutation trees of sequences. SIAM J. Appl. Math.,
28, 35.

Sankoff,D. and El-Mabrouk,N. (2000) Duplication, rearrangement and reconciliation.
In Sankoff, D. and Nadeau, J.H. (eds), Comparative Genomics: Empirical and
Analytical Approaches to Gene Order Dynamics, Map alignment and the Evolution
of Gene Families, Vol. 1 of Computational Biology. KluwerAcademic Press, Kluwer
Academic publishers Dordrecht/Boston/London, pp 537–550.

Tang,J. and Wang,L. (2005) Improving genome rearrangement phylogeny using
sequence-style parsimony. In Proceedings 5th IEEE Conference on Bioinformatics
and Bioengineering (BIBE 2005), pp. 137–144.

Tuller,T. et al. (2010) Reconstructing ancestral gene content by coevolution. Genome
Res., 20, 122–132.

Vilella,A.J. et al. (2009) Ensemblcompara genetrees: Complete, duplication-aware
phylogenetic trees in vertebrates. Genome Res., 19, 327–335.

Zheng,C. and Sankoff,D. (2011) On the pathgroups approach to rapid small phylogeny.
BMC Bioinformatics, 12 (Suppl. 1), S4.

i388

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/18/i382/244519 by guest on 19 April 2024

	Evolution of gene neighborhoods within reconciled phylogenies
	1 Introduction
	2 Model
	3 Properties
	4 Algorithm
	5 Implementation and Application
	6 Perspectives

