SANS: high-throughput retrieval of protein sequences allowing 50% mismatches

J. Patrik Koskinen and Liisa Holm

1 Department of Biosciences, Division of Genetics and 2 Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland

ABSTRACT

Motivation: The genomic era in molecular biology has brought on a rapidly widening gap between the amount of sequence data and first-hand experimental characterization of proteins. Fortunately, the theory of evolution provides a simple solution: functional and structural information can be transferred between homologous proteins. Sequence similarity searching followed by k-nearest neighbor classification is the most widely used tool to predict the function or structure of anonymous gene products that come out of genome sequencing projects.

Results: We present a novel word filter, suffix array neighborhood search (SANS), to identify protein sequence similarities in the range of 50–100% identity with sensitivity comparable to BLAST and 10 times the speed of USEARCH. In contrast to these previous approaches, the complexity of the search is proportional only to the length of the query sequence and independent of database size, enabling fast searching and functional annotation into the future despite rapidly expanding databases.

Availability and implementation: The software is freely available to non-commercial users from our website http://ekhidna.biocenter.helsinki.fi/downloads/sans.

Contact: liisa.holm@helsinki.fi.

1 INTRODUCTION

k-nearest neighbor classifiers are used widely and successfully to infer the function of newly sequenced proteins. Neighbors are commonly determined by sequence comparison. Protein sequence databases have grown so large that retrieving the neighbors of a query sequence is prohibitive in the exact mode and takes 1–2 min using popular heuristics [BLAST (Altschul et al., 1990)]. With several thousand proteins in each new genome, ‘blasting’ consumes considerable resources in contemporary bioinformatics research. Strategies for database searching fall into five categories:

1. All versus all pairwise comparisons using exact alignment [e.g. SSEARCH (Pearson, 1991)] or generating fast approximate alignments [e.g. FASTA (Pearson, 1991)].
2. Comparison against a representative subset rather than all proteins (e.g. Holm and Sander, 1998; Li and Godzik, 2006; Park et al., 2000).
3. Comparison against a library of profile models of protein families (e.g. Punta et al., 2012; Quevillon et al., 2005).
4. Using word filters to eliminate dissimilar sequences from comparison by exact alignment (e.g. BLAST).
5. Ranking database sequences using a simple feature vector distance [e.g. USEARCH (Edgar, 2010); this work].

The speed of the methods increases toward the bottom of the list. USEARCH is orders of magnitude faster than BLAST, and we report here a novel method which is 10 times faster than USEARCH. The fast methods are based on word filters. Conserved amino acids are often ‘clumped’ in homologous protein sequences so that there is a good probability of finding identical k-mers (Table 1). Many practical tools combine word filters with explicit alignment of a filtered subset of the database (Fig. 1).

Very short words obviously occur by chance in unrelated sequences. Unique occurrences are expected when 2^d is greater than the size of the database, k being the length of the word. On the other hand, the sensitivity of a word filter decreases with longer words. Spaced (k,l)-seeds are a special class of word filters with length l and the selectivity of a k-mer (Bie and Bie, 2007; Ma et al., 2002; Mak and Benson, 2009).

We show experimentally that k = 6 is the sweet spot with respect to the current Uniprot database and that sensitivity/selectivity drop either side of this value. The choice of k is thus critical for the performance of a word filter. In this work, we test a novel idea which dynamically adjusts word size. It is based on suffixes (substrings starting at position I in a sequence and continuing to the terminator). A suffix array is a data structure which orders the suffixes of a text (protein sequence database) in lexicographic order. Neighboring suffixes share the longest common prefixes. The suffix array is a one-dimensional representation of sequence space. Our idea is to select a window around a query suffix from the suffix array to identify neighbors. The suffix array neighborhood has a constant size. In contrast, neighborhoods defined in terms of k-mer word vectors grow larger as the database grows larger.

Suffix arrays are used a lot in the analysis of nucleotide sequences (short read mapping, contig assembly, genome alignment, EST clustering) (e.g. Burkhard et al., 1999). The analysis of protein sequences differs from that of nucleotide sequences in that the range of interesting similarities extends to much higher levels of mismatches. Suffix trees/arrays and related indices have been used previously to organize (Gomez et al., 1992), search (Califano and Rigoutsos, 1993) and align (Bejerano and Yona, 1999) protein sequences, but they have not supplanted popular tools like BLAST.

This article is organized as follows. We present comprehensive benchmark tests using real-world data from metagenome samples (6 million proteins), a bacterial genome (4000 proteins) and the uniprot database (18 million proteins). We compare BLAST, USEARCH and many variants of word filters. We characterize...
Table 1. Longest run of identically aligned amino acids in optimal alignment

<table>
<thead>
<tr>
<th>Pairwise identity (%)</th>
<th>95th percentile</th>
<th>90th percentile</th>
<th>50th percentile</th>
<th>Number of pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td><30</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>23 383 124</td>
</tr>
<tr>
<td>30–50</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>15 795 276</td>
</tr>
<tr>
<td>50–70</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>1 405 454</td>
</tr>
<tr>
<td>70–90</td>
<td>12</td>
<td>14</td>
<td>26</td>
<td>633 947</td>
</tr>
<tr>
<td>>90</td>
<td>19</td>
<td>27</td>
<td>58</td>
<td>88 588</td>
</tr>
</tbody>
</table>

Pairs with e-value <1 from the genome benchmark dataset were categorized based on the sequence identity in optimal pairwise alignment by SSEARCH. Longer word lengths increase the selectivity of a filter at the cost of a drop in sensitivity. For example, 12-mers would detect 95% of all pairs with 70–90% overall sequence identity but only half of those with 50–70% identity.

2 SYSTEM AND METHODS

2.1 Protein datasets

We selected real datasets to get a realistic distribution of protein lengths, composition and protein family sizes (Table 2).

<table>
<thead>
<tr>
<th>Name</th>
<th>Proteins</th>
<th>Total length</th>
<th>Average length</th>
<th>Maximum length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome</td>
<td>4 173</td>
<td>1 405 725</td>
<td>337</td>
<td>6078</td>
</tr>
<tr>
<td>Swissprot</td>
<td>533 049</td>
<td>189 597 274</td>
<td>356</td>
<td>35 213</td>
</tr>
<tr>
<td>Metagenome</td>
<td>6 050 065</td>
<td>1 219 427 250</td>
<td>202</td>
<td>7557</td>
</tr>
<tr>
<td>Uniprot</td>
<td>18 748 263</td>
<td>6 165 066 274</td>
<td>329</td>
<td>36 805</td>
</tr>
</tbody>
</table>

The genome dataset contains the proteins predicted in a newly sequenced bacterium of the family Dickeya. It was chosen as a query set because it belongs to a small clade of Dickeya and Pectobacteria. Although thousands of bacterial genomes have been sequenced, other bacteria typically have ~50% or lower sequence identity to Dickeya. Thus, we get a representative distribution of sequence pairs at different ranges of sequence identity (Table 1).

2.2 Evaluation

The benchmarks test the ability of tested methods to retrieve acceptable hits to proteins in the query set from the protein database. Our methods are designed to output the top-H hits. The metagenome benchmark evaluates the best hit ($H=1$) and the genome benchmark evaluates 1000 best hits ($H=1000$).

We used SSEARCH to compare ‘genome versus uniprot’ and generate a reference of truth for the genome benchmark. True (T) hits are those pairs that have an e-value <1 by SSEARCH. We assume that method X returns a ranked list of hits (ordered by the method’s native score, best hits at the top). TP is the number of true hits in the top-P hits by method X. We define precision = TP/P and recall = TP/T. Both precision and recall range from 0 to 1. Plotting precision against recall yields a curve. The area under that curve is AUC and its maximum value is 1. We compute AUC separately for each query protein and use the average to compare the performance of different methods.

The benchmark set has 41 million TRUE pairs (e-value <1) of which 3.6 million rank in the top-1000 by SSEARCH. Different methods need not report identical sets of top-1000 hits. The largest family is ABC transporters (59,988 hits to one query) and the average number of hits per query is 9991.

The metagenome benchmark compares ‘metagenome versus swissprot’. We used BLAST to compute a reference of truth for the metagenome benchmark. Comparison of BLAST to SSEARCH on the genome benchmark showed that BLAST gives a very good approximation of SSEARCH. The whole metagenome dataset consists of 6 million queries. Of these, 3.6 million queries belong to...
A suffix array is an array of integers giving the starting positions of suffixes of a text in lexicographic order. The suffix array SA and inverse suffix array ISA are in the lexically ordered suffix array small families for which BLAST reported the complete set of TRUE hits (\(e\text{-value} < 1\)). Small families have less than 250 members. The evaluation tests whether the top hit reported by method X belongs to the TRUE set.

2.3 Database search programs

We compare three published programs to two methods implemented in this work (Fig. 1). SSEARCH computes the optimal alignment between every sequence in the query set and every sequence in the database. BLAST uses a sophisticated set of word filters to eliminate dissimilar sequences from comparison and computes the optimal alignment. The results of SSEARCH and BLAST are sorted on \(e\text{-value}\). USEARCH (Edgar, 2010) sorts database sequences by the \(e\text{-value}\) \(< 1\). Small families have less than 250 members. The evaluation tests whether the top hit reported by method X belongs to the TRUE set.

3 ALGORITHM

3.1 Database indexing

A suffix array is an array of integers giving the starting positions of suffixes of a text in lexicographic order. The suffix array SA and inverse suffix array ISA enable jumping between the lexicographic order (\(l\)) and sequential order (\(s\)) as follows: \(\text{SA}[i] = s\) and \(\text{ISA}[s] = l\) (Fig. 3). In this work, the text TXT is a concatenation of protein sequences in alphabet S. The implementation uses FASTA files as input. These are stripped of annotation to create sequence text files (TXT, TXTQ) and protein pointers (START, STARTQ). Subscript Q refers to the query set, the database is without subscript. Using Python-like syntax, the sequence of the \(i^{th}\) protein is the substring \(\text{TXT}[\text{START}[i]:\text{START}[i] + 1]\). Suffix arrays (SA, SAQ) are created on the texts using the recursive sais-lite algorithm (Nong et al., 2009). The inverse index ISA is generated by a linear scan of SA using the relation \(\text{ISA}[\text{SA}[i]] = l\). We generate an auxiliary index SAP that holds the protein labels of suffixes in lexicographic order. SAP is generated using the relation \(\text{SAP}[\text{ISA}[s]] = \text{sprot}\) where \(\text{START}[\text{sprot}] < z \leq \text{START}[\text{sprot} + 1]\). In order to compare TXTQ to TXT, we determine the places in SA where suffixes from TXTQ should be inserted. Let \(q\) be a query suffix starting at position \(q_0\) in TXTQ. We find \(\text{ISA}_\text{mapped}[q_0] = l\) such that \(\text{TXT}[\text{SA}[i]] \leq q < \text{TXT}[\text{SA}[i] + 1]\). SA and SAQ are combined using the merge-sort algorithm knowing that SA and SAQ are already sorted which results in a linear-time algorithm.

3.2 Sequence comparison

SANS and KSEARCH use simple scores to sort the list of database proteins and return the top H hits or all hits with a score above a threshold. SANS estimates similarity using a SANS, introduced here [Equation (1)]. KSEARCH estimates similarity based on \(k\)-mer composition [Equation (3)].

The SANS gives a positive score to those database proteins \(\text{sprot}\), which have the longest common prefixes with a query suffix. The score is accumulated over all suffixes of the query protein \(\text{qprot}\) as follows:

\[
\text{SANS}(\text{qprot}, \text{sprot}) = \sum_{z=\text{START}(\text{sprot})}^{|\text{START}(\text{qprot})|} \sum_{i=-w}^{w} \text{id}(\text{sprot}, \text{SAP}) \\
\times [\text{ISA}_\text{mapped}[z+i] = 1],
\]

where the width of the window \(W\) is a parameter and the identity function \(\text{id}(a, b)\) is

\[
\text{id}(a, b) = \begin{cases}
1, & \text{if } a = b \\
0, & \text{if } a \neq b
\end{cases}
\]

The top \(H\) matches with the highest SANS scores are output. We set \(W = H\) by default. Whether the best matching suffixes are lexically smaller or greater than the query suffix, at least \(H\) such matches will be included in the window.

KSEARCH score is the dot product of the feature vectors \(F:\)

\[
\text{KSEARCH}(\text{qprot}, \text{sprot}) = \sum_{m=2}^{|\text{SA}|} \text{F}(\text{sprot}, n)\text{F}(\text{qprot}, n)
\]

where the feature vectors \(F(x, n)\) say how many times a given \(k\)-mer \(n\) occurs in the protein \(x\). \(|S|\) is the size of the alphabet. We note that the use of suffix arrays allows the user to freely set the word length parameter \(k\).

3.3 Complexity analysis

Sais-lite is a light-weight suffix array construction algorithm that takes linear time and space (Nong et al., 2009). The merge-sort step is also linear \(O(|\text{TXT}| + |\text{TXTQ}|)\). Treating the width of the window as a constant, the search step of SANS does \(O(|\text{TXT}| + |\text{TXTQ}|)\) lookups in the suffix array SA. The overall time complexity of the SANS algorithm is thus \(O(|\text{TXT}| + |\text{TXTQ}|)\). The KSEARCH algorithm checks all instances of \(k\)-mers in the database, and the number of these instances grows proportionally to the size of the database. The overall time complexity of the KSEARCH algorithm is thus \(O(|\text{TXT}| + |\text{TXTQ}|)\).
3.4 Greedy approximate alignment

Sequence alignment is slow. We implemented a greedy procedure which processed a few million pairwise alignments per hour. The procedure is faster for highly similar sequences. It starts similarly to BLAST looking for diagonals with two hits of closely spaced 3-mers (at distances up to 40 amino acids). If a two-hit is found, the algorithm tries to extend the alignment without gaps, resulting in a high-scoring segment pair (HSP). HSPs are scored using BLOSUM62 substitution scores. The query sequence is scanned for two hits from beginning to end. If an HSP is detected, the scan jumps to the end of the HSP. In other words, potential 3-mer seeds already within an HSP are not tested. When the end of the query sequence has been reached, all HSPs are sorted based on their scores. A compatible set is selected so that the HSPs form a sequential alignment. Gap penalties are not used. Greedy alignments can be generated optionally for the hits detected by the SANS or KSEARCH algorithms.

4 IMPLEMENTATION

Suffix arrays were computed using the recursive SAIS algorithm (Nong, 2009). The in-house programs were written in Fortran-95 and compiled using gfortran. Evaluations were done using Perl scripts. All computations were done on Linux computers with 64 or 500 Gb RAM.

5 RESULTS AND DISCUSSION

Traditionally, word filter heuristics are used to speed up database searches. The suffix array gives access to seed words of arbitrary length. We performed a comprehensive set of benchmark tests to evaluate both fixed size patterns and suffix array neighborhoods.

5.1 Metagenome benchmark

The metagenome benchmark is chosen to represent new sequences not yet present in the database. When a mapping exists, the median identity between the metagenomic and the closest database proteins is ∼50%. This is suitably challenging, as detecting exact matches is trivial and exact filters can be formulated for very high levels, i.e. >90% of sequence identity (Holm and Sander, 1997).

We compared SANS and KSEARCH to USEARCH on the metagenome versus swissprot benchmark (Fig. 4). The 32-bit version of USEARCH, which is available academically, ran out of memory on larger databases than swissprot (a 64-bit version is available commercially). We evaluate a mapping as successful if the top hit is found in the BLAST list for the query. KSEARCH shows the worst performance. The performance of SANS is close to the performance of USEARCH although SANS is 10 times faster and USEARCH has the advantage of multiple testing. USEARCH generates explicit alignments of the top hits until it finds an ‘accept’ with e-value < 1 or eight ‘rejects’ (Edgar, 2010).

SANS generated top-hit mappings of the metagenome set against swissprot in 2 h compared to 20 h by USEARCH (Table 4). SANS also scales well to the larger Uniprot database. We note that the time taken to generate greedy alignments actually went down. This is because there are more close hits to be found in Uniprot which are quicker to align.

5.2 Genome benchmark

SSEARCH was used to generate a reference of truth for the genome benchmark, enabling the evaluation of selectivity and sensitivity in different ways. Precision and recall are used synonymously with selectivity and sensitivity.

Word filters are as sensitive as BLAST in the 50–100% regime of sequence identity (Holm and Sander, 1997). Sensitivity is calculated for different bins of sequence identity. Sensitivities within each bin are scaled linearly so that BLAST sensitivity is one. Sequence identities of the TP hits were taken from SSEARCH. SSEARCH and BLAST hits are sorted by e-value. SANS was run with W = H = 1000. SANS+greedy was run with W = H = 2000 and the top-2000 hits were reranked by greedy alignment score, keeping the top-1000. KSEARCH(x) were run with word length k.

Sensitivity is calculated for different bins of sequence identity. Sensitivities in the genome benchmark, enabling the evaluation of selectivity and sensitivity in different ways. Precision and recall are used synonymously with selectivity and sensitivity.

Word filters are as sensitive as BLAST in the 50–100% regime of sequence identity (Fig. 5). The best method (SANS+greedy) has relative sensitivities of 96–100% in this regime. k = 6 consistently gives the optimum performance for KSEARCH. The largest differences between methods emerge in the 30–50% regime. We tried a number of variations but only reached ∼70% sensitivity relative to BLAST in the 30–50% regime. The tested variations included (i) rescoring hits according to an alignment score, (ii) varying the width of the window in SANS, (iii) hybrids combining the SANS and KSEARCH scores (sum performed best), (iv) a two-hit filter like that in BLAST and (v) distance-dependent id function (cf. Equation 2). The best method (SANS+greedy) took the top-2000
The proliferation of suffix tree/suffix array applications has been a section of the indices need to be loaded in memory at one time. The database and by searching the database in sections so that only is achieved by computing the suffix arrays separately for sections of implementation of SANS is light-weight in terms of memory. This hampered by their excessive memory usage in the past. Our performance (Table 3).

Table 3. Average AUC values per query in genome benchmark

<table>
<thead>
<tr>
<th>Score for sorting</th>
<th>KSEARCH</th>
<th>SANS</th>
<th>BLAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 5</td>
<td>0.51</td>
<td>0.56</td>
<td>0.54</td>
</tr>
<tr>
<td>k = 6</td>
<td>0.55</td>
<td>0.56</td>
<td>0.60</td>
</tr>
<tr>
<td>k = 7</td>
<td>0.49</td>
<td>0.44</td>
<td>0.62</td>
</tr>
<tr>
<td>k = 8</td>
<td>0.44</td>
<td>0.44</td>
<td>0.95</td>
</tr>
<tr>
<td>w = 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w = 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The amount of memory used by the program can be set by the user (MEMORY parameter). The minimum requirement is one byte per amino acid. The current Uniprot database is ~8 Gb. The program runs comfortably on Uniprot with MEMORY set to 10–16 Gb. The ISAmapped and SAP indices used by the search step occupy 8m + 4n bytes of disk space, where n is the total length of database sequences and m is the total length of query sequences.

5.5 Conclusions

We have investigated the use of word filters to speed up protein sequence database searches. The principal conclusions from our extensive benchmarking can be summarized as follows:

1. word filters are as sensitive as BLAST in the feasible regime of 50–100% sequence identity.
2. many variants of word filters perform about equally well in the feasible regime but SANS is the most robust to parameter variation,
3. suffix array supports the fastest known word filter algorithm,
4. methods incorporating explicit alignment are necessary <50% identity.

We introduced the SANS which has attractive scaling properties. It processes millions of queries in a matter of hours and scales to large protein sequence databases with billions of amino acids. It supports alignment-free mapping and is 10 times faster than the fastest known program for protein mapping. SANS makes the database comparison problem local which gives it good speed. In comparison to traditional word filters, we found that SANS behaves more robustly with respect to parameter variation. For example, varying window width had little effect on SANS, whereas varying word size had a large effect on KSEARCH (Fig. 5). The complexity of the SANS algorithm is O(n+m). The program is the more efficient, the larger the batch of query sequences is. For single queries, BLAST remains the best option.

BLAST is a widely used, general purpose homology search tool. SANS has more restricted use. It is designed for the comparison of protein sequences and it only reports a user-specified number of nearest neighbors. It provides useful input to any KNN classifier, including applications in EST mapping, ortholog mapping, protein function assignment and family membership assignment.

We observed that word filters get very close to the sensitivity of BLAST when sequence identity is 50–100%. Similar observations have been made previously on simulated data and domain segments (Edgar, 2010). The feasible regime of protein sequence retrieval by word filters coincides with the regime of reliable function transfer. Minimum sequence identities above the 40% to 70% level have been
Comparison of running times

Table 4. Comparison of running times

<table>
<thead>
<tr>
<th>Query set</th>
<th>Database</th>
<th>Program</th>
<th>Parameters</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniprot</td>
<td>uniprot</td>
<td>SANS</td>
<td>W = 100</td>
<td>3 h 22 m</td>
</tr>
<tr>
<td>Metagenome</td>
<td>swissprot</td>
<td>BLAST</td>
<td>a = 1 r = 8</td>
<td>30 h 4 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USEARCH</td>
<td>W = 1</td>
<td>30 h 4 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SANS</td>
<td>W = 1</td>
<td>30 h 4 m</td>
</tr>
<tr>
<td>Genome</td>
<td>uniprot</td>
<td>SSEARCH</td>
<td>-s BL62 -f -11 -g -1 -E 1.0 -m 9C -x 3 -d 0</td>
<td>3 h 57 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLAST</td>
<td>-b 1000</td>
<td>640 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>parallel BLAST</td>
<td>10 processors, -b 1000</td>
<td>max 13 h / processor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SANS</td>
<td>W = 100</td>
<td>12 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W = 1000</td>
<td>23 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W = 2000</td>
<td>33 m</td>
</tr>
</tbody>
</table>

Conflict of Interest

The authors thank Pasi Korhonen and Kimmo Mattila for technical assistance.

Acknowledgement

The authors thank Pasi Korhonen and Kimmo Mattila for technical assistance.

Funding: Biocentrum Helsinki.

Conflict of Interest: none declared.

References

