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ABSTRACT

Motivation: Gene regulatory networks, in which edges between
nodes describe interactions between transcriptional regulators
and their target genes, determine the coordinated spatiotemporal
expression of genes. Especially in higher organisms, context-specific
combinatorial regulation by transcription factors (TFs) is believed to
determine cellular states and fates. TF–target gene interactions can
be studied using high-throughput techniques such as ChIP-chip or
ChIP-Seq. These experiments are time and cost intensive, and further
limited by, for instance, availability of high affinity TF antibodies.
Hence, there is a practical need for methods that can predict TF–TF
and TF–target gene interactions in silico, i.e. from gene expression
and DNA sequence data alone. We propose GEMULA, a novel
approach based on linear models to predict TF–gene expression
associations and TF–TF interactions from experimental data. GEMULA
is based on linear models, fast and considers a wide range of
biologically plausible models that describe gene expression data as
a function of predicted TF binding to gene promoters.
Results: We show that models inferred with GEMULA are able to
explain roughly 70% of the observed variation in gene expression
in the yeast heat shock response. The functional relevance of
the inferred TF–TF interactions in these models are validated by
different sources of independent experimental evidence. We also
have applied GEMULA to an in vitro model of neuronal outgrowth. Our
findings confirm existing knowledge on gene regulatory interactions
underlying neuronal outgrowth, but importantly also generate new
insights into the temporal dynamics of this gene regulatory network
that can now be addressed experimentally.
Availability: The GEMULA R-package is available from
http://www.few.vu.nl/~degunst/gemula_1.0.tar.gz.
Contact: g.geeven@hubrecht.eu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Cell-type- and condition-specific interactions between transcrip-
tional regulators and their target genes are a primary mechanism
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for cells to accomplish spatiotemporal changes in gene expression.
Identification of such interactions is an important step in
modeling transcriptional regulatory networks. Regression methods
are valuable tools that can be used to address three important issues
in gene regulatory network building. First, they allow identification
of transcription factors (TFs) and synergistic interactions between
TFs that determine observed variation in gene expression. When two
TFs commonly regulate a set of target genes, the synergistic effect
of the TFs on target gene expression may not be just simply the sum
of the individual effects. By fitting regression models that contain
interaction terms that represent synergy between TFs, and comparing
these to simpler models without such interactions, regulatory
interactions between TFs can be inferred. Second, regression models
provide answers to the question of how much of the observed
variation in a single gene expression condition of interest can be
predicted or explained based on regulatory motifs occurring in gene
promoters. Since transcriptional gene regulation is time dependent,
it is of interest to get some quantitative measure of how much
of the observed variation in a specific biological context can be
attributed to TF activity. Finally, regression models can provide
insight into spatially and temporally dynamic interactions between
TFs and target genes by comparing models inferred from the sets
of genes regulated at successive time-points and/or under different
experimental conditions.

Pioneering work on constructing linear regression models for gene
expression analysis was performed by Bussemaker et al. (2001). Das
et al. (2004) subsequently suggested a non-parametric regression
approach that uses Multivariate Adaptive Regression Splines
[MARS, Friedman (1991)]. They demonstrated the importance of
generating and selecting among competing candidate models in a
systematic way in order to model interactions between synergistic
TFs. Model selection, however, is a major challenge in gene
expression analysis given the large number of potential model
terms. When interactions between predictors are considered, the
number of possible candidate predictor terms p is relatively large
compared with the sample size n (typically p≈n or even p>n). To
select and fit models that appropriately trade-off bias and variance
and that do not suffer from substantial overfit is not easy in this
context. If we assume that only a small subset of the candidate
predictors s<<p is really associated to the response of interest, we
can restrict ourselves to sparse models by considering penalized
regression methods such as the lasso. Statistical methods that
generate sparse models have already successfully been applied

214 © The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/2/214/198473 by guest on 19 April 2024



[17:33 20/12/2011 Bioinformatics-btr641.tex] Page: 215 214–221

Gene expression modeling using LAsso

in related but different contexts. For instance, Menéndez et al.
(2010) used the graphical lasso to infer regulatory relationships from
multifactorial perturbations, and Krämer et al. (2009) compared
different regularization methods for estimating large-scale gene
association networks modeled using graphical Gaussian models.
In this article, we present a new approach to identify networks of
TF–target gene and TF–TF interactions that underlie variation in
gene expression instead of gene–gene association or perturbation
networks.

We propose GEMULA, a method based on linear models that is
fast, and considers a wide range of biologically plausible models.
GEMULA is a four-stage method based on the lasso (Tibshirani, 1994)
and post hoc re-sampling (Meinshausen and Bühlmann, 2010) that
can be used to identify and prioritize synergistic interactions between
predictors that underlie observed variation in gene expression. On
yeast data, we compare models inferred by GEMULA and MARS
with different predictors by evaluating the amount of variation that
can be explained across genes. Moreover, we demonstrate that
prioritization identifies biologically important TF–TF interactions
that are supported by independent sources of experimental evidence.
Next, we analyzed a time course dataset of cultured neuronal cells
profiled at several time-points following induction of axon growth.
This identifies context-specific gene regulatory networks within
the complexity of the mammalian genome. We confirm existing
relationships between TFs and growth-associated gene expression,
and we generate new insights into the temporal dynamics of the
regulatory network underlying axon growth.

2 MODEL

2.1 GEMULA

Figure 1 contains a flowchart for GEMULA. DNA promoter
sequences and gene expression for a set of n genes are assumed
to be given, together with a collection of p TF binding motifs. Prior
to model building, we generate X1,...,Xp, where Xij represents the
in silico predicted affinity of TF j to bind the promoter of gene i. We
then use penalized regression to fit and evaluate models that relate
the observed variation in gene expression to predicted binding of
TFs. These models may include interaction terms to represent the
combinatorial effect of TFs on expression. An additional feature of
our method is the implementation of a stability selection procedure
to prioritize terms in the fitted models according to relevance.
Fitted models typically contain many terms and this allows a
principled selection of the most relevant terms. Below, we describe
the regression model, model selection and prioritization steps in
detail.

2.1.1 The regression model Let Y = (Y1,...,Yn) be a response
variable, that represents some gene expression response of interest
for a set of n genes, and X1,...,Xp, all vectors of length n, a set of
p predictor variables. We assume that Y and X1,...,Xp are related
through the following regression model

Y =Xβ+ε, (1)

where
X=[1 Z1 ···Zd ],

is an unknown n×(d+1) design matrix with columns Zj =
fj(X1,...,Xp), for j=1,...,d and polynomial functions f1,...,fd ,

Fig. 1. Outline of the proposed method. GEMULA is a four-staged method
that uses linear models to identify TF–gene and TF–TF interactions that are
associated to observed variation in gene expression.

β= (β0,...,βd ) is an unknown vector of regression parameters
and ε= (ε1,...,εn)∼N (0,σ2In). GEMULA evaluates and compares
many different candidate regression models M with Y as response
and different subsets of the predictor variables. We identify different
models M by their corresponding design matrices XM , where

XM =[1 ZM
1 ···ZM

dM
],

ZM
j = f M

j (X1,...,Xp) and f M
1 ,...,f M

dM
polynomial functions. Hence,

M consists of dM candidate terms, which are polynomial functions of
the input predictor variables. We let M0 denote the model with design
matrix XM0

=[1 X1 ···Xp]. Given Y and XM , GEMULA repeatedly
uses the lasso (Tibshirani, 1994) to select the predictors in model
M and to estimate βM . For t ∈R

+, the lasso estimate of βM is
determined by

min
βM

n∑
i=1

⎛
⎝Yi −βM0 −

dM∑
j=1

βMjZij

⎞
⎠

2

subject to
dM∑
j=1

|βMj|≤ t.

(2)
We use lars (Efron et al., 2004) repeatedly to solve the different
penalized least squares regression problems. The parameter t ∈R

+
indexes the entire lasso path. The lars algorithm proceeds in steps,
indexed by k, for k =0,...,K , where K is the number of steps needed
in order to reach the unpenalized ordinary least squares solution from
the intercept-only model, which roughly equals p. We identify the
lasso solution at step k by ŜM (tk). We denote the entire path by SM =
{ŜM (t) : t ∈R

+}. We let β̂k
M = (β̂k

M0,...,β̂k
MdM

) denote the estimate

of βM corresponding to the lasso solution at step k, μ̂k
M =XM β̂k

M ,

df (μ̂k
M ) the corresponding degrees of freedom, Bk

M ={j :βk
Mj �=0}

and bk
M =|Bk

M |. Initially, when k =0, Bk
M =∅ and bk

M =0.
To select a model along the path SM , GEMULA optionally uses

either Bayesian information criterion (BIC), Akaike information
criterion (AIC) orAICc [a modified small sample version ofAIC, see
Sugiura (1978)]. Motivated by the results from a simulation study
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(Geeven, 2010), we use the AICc criterion when we apply GEMULA
to analyze real gene expression data. Let AICc(ŜM (tk)) denote this
criterion, for ŜM (tk)∈SM . Then

AICc(ŜM (tk))= ‖Y −μ̂k
M‖2

nσ2
+ 2

n
df (μ̂k

M )+ 2df (μ̂k
M )(df (μ̂k

M )+1)

n−df (μ̂k
M )−1

.

(3)
It was shown by Zou et al. (2007) that the optimal model in SM
according to the selection criterion can be found by minimizing (3)
over all tk , k =0,...,K and therefore we let

kAICc
M =arg min

tk

AICc(ŜM (tk)).

2.2 Stages of GEMULA
GEMULA is composed of four stages, i.e. a predictor pre-selection
stage, a candidate model generation stage, a model evaluation stage
and a stability selection stage. Although the lasso performs predictor
selection, we do a pre-selection in Stage I to control computational
complexity, as the number of candidate model terms grows super-
exponentially as a function of the number of predictors.

GEMULA—Stage I: in Stage I, GEMULA determines the order
in which the input predictors may enter the candidate models by
applying the lars algorithm to M0. Since at each step k of the
algorithm, the index of exactly one predictor enters the set Bk

M0
,

GEMULA uses the mapping

r(j)=min {k : j∈Bk
M0

}, j∈{1,...,p},

and its inverse r−1 defined by

r−1(s)= j ⇔r(j)=s j∈{1,...,p},s∈{1,...,K}

to define the order number s for the predictor Xj .

GEMULA—Stage II: in Stage II, GEMULA uses the lasso to generate
candidate models confined to Q different candidate model subspaces.
The different model subspaces are identified by 3D parameters γq =
(γq1,γq2,γq3), for q=1,...,Q, where γq1 represents the maximum
allowed order of interactions between terms in the models, γq2
the maximum power to which candidate predictors are raised
in candidate terms and γq3 represents the maximum number of
candidate terms allowed in the model. The complete collection of
models that are considered by GEMULA is M=Mγ1 ∪···∪MγQ .
For the model subspace Mγq defined by γq, Xγq denotes the design
matrix of the model in Mγq with the largest possible number
of predictors confined by the order determined in Step I. When
interactions between predictors are considered, the restrictions on
the maximum number of allowed terms imposed by γq3 force
GEMULA to limit the number of predictors. In a model with
main terms and pairwise interactions between p variables, there
are p+(p

2

)
terms. When three-way interactions are also included,

this increases to p+(p
2

)+(p
3

)
. For instance, suppose we set Q=3,

γ1 = (1,1,150),γ2 = (1,1,150) and γ3 = (1,1,150), then

Xγ1 = [1 Xr−1(1) ···Xr−1(150)].
Xγ2 = [1 Xr−1(1) ···Xr−1(16)

Xr−1(1)Xr−1(2) ···Xr−1(15)Xr−1(16)]
Xγ3 = [1 Xr−1(1) ···Xr−1(9)

Xr−1(1)Xr−1(2) ···Xr−1(8)Xr−1(9)]
Xr−1(1)Xr−1(2)Xr−1(3) ···Xr−1(7)Xr−1(8)Xr−1(9)],

For each matrix Xγq , GEMULA fits the entire path of lasso
solutions Sγq and selects the optimal lasso-AIC shrinkage parameter

kγq =kAICc
γq

. We denote the selected candidate model, i.e. the

selected subset of model terms identified by Bkγq
γq

, by Mq and the

corresponding fitted response values by ŶMq = μ̂
kγq
γq

. For results
reported in Section 3.1, we used γ1 = (1,1,500), γ2 = (2,1,500),
γ3 = (3,1,500) and γ4 = (2,2,500) and in Section 3.2 we used γ1 =
(1,1,500), γ2 = (2,1,500), γ3 = (3,1,500) for the early responsive
genes and γ1 = (1,1,700), γ2 = (2,1,700), γ3 = (3,1,700) for the
late responsive genes (which is a bigger set).

GEMULA—Stage III: in Stage III, GEMULA uses cross-validation
to evaluate the fit of the Q candidate models. As goodness-of-
fit measure, we use the R2 statistic, because it has an intuitive
interpretation that is of interest also biologically. Recall that for a
candidate model Mq and corresponding fitted response values ŶMq ,
the R2 is given by

R2(Mq)=1−
∑n

i=1(Yi −ŶMq )2
∑n

i=1(Yi − Ȳ )2
.

For comparison, we always use the same data splits to cross-validate
the different candidate models and we used 5-fold cross-validation
throughout. For each model q, in Stages I and II, all n observations
are used to select and fit the candidate model. In Stage III, we
randomly partition the observations into five mutually disjunct sets
of (almost) equal size and quote R2(Mq)’s averaged over these five
validation sets as R̄2

cv, where for each set the ŶMq ’s are determined
by re-estimating the parameters on data with the observations from
the corresponding validation set left out.

GEMULA—Stage IV : we give a brief outline of the method
of Meinshausen and Bühlmann (2010) that we implemented to
assess the significance of terms in candidate models generated
by GEMULA. Let a model M with candidate model predictors
Z1,...,ZdM

, generated by GEMULA in the first two stages, be given.
The lasso produces the estimate β̂t

M = (β̂0,β̂t
1,...,β̂t

dM
) based on a

shrinkage parameter t =kAICc
M , but provides no formal inference.

The stability selection procedure is based on resampling and allows
us to compute ‘selection probabilities’ for the candidate predictors.
We iteratively resample for b=1,...,B, uniformly at random, subsets
of {1,...,n} of size [n/2], and recompute the regularization paths and
corresponding coefficients on the subsample. For t ∈R

+, let β̂tb∗
M =

(β̂b∗
0 ,β̂tb∗

1 ,...,β̂tb∗
dM

) denote the lasso solution obtained in iteration b.
Then, for each candidate predictor j, its selection probability can
be computed as the proportion π̂t

j of the B iterations in which the
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coefficient of Zj does not equal zero:

π̂t
j =

1

B

B∑
b=1

I{β̂tb∗
j �=0}. (4)

For any t ∈R
+, the π̂t

j given by (4) define a ranking of the variables
according to selection probability. We use the selection probabilities
to prioritize the predictor terms in models generated by GEMULA,

for a fixed t =kAICc
M .

Multivariate-responses: the univariate model presented above, does
not quantify explained variation across experiments. For general
applicability, we suggest an extension to the case where gene
expression is obtained under a set of k different conditions and Yij
represents the expression of gene i in condition k. We equip GEMULA
with a feature extraction procedure based on principal component
analysis (PCA). This allows for the extraction of strong signals
across experiments [which may be modeled using a common set of
predictors, see e.g. (Bonneau, 2007)] without having to deal with
a mathematically and computationally more complex regression
problem (Obozinski et al., 2011). Let Y=V�W′ be a singular value
decomposition, where V=[v1 ···vk] is a matrix of score vectors, �

a diagonal matrix and W the k×k matrix containing the loadings
of the k principal vectors. Score vectors vj can be used as input
to GEMULA to discover interesting regulatory interactions across
experiments.

Outer cross-validation: another option in our GEMULA-package
is the use of an outer loop of cross-validation to reduce selection
bias in the R̄2

cv estimates in Stage III, which will cause these to
be overly optimistic. Since this will at the same time increase the
variability (and reduce the power) of the whole fitting procedure,
this is only recommended when selection bias is expected to be a
serious problem, e.g. when p is large with respect to n. We provide
a comparison of the results obtained with both ordinary and nested
CV in Supplementary Table S3.

3 RESULTS

3.1 Yeast response to environmental stress
To compare the competitive predictive strength of different sets
of predictor variables and to compare GEMULA to MARS on data
from a well-characterized biological system, we applied GEMULA
to gene expression data from the yeast Saccharomyces cerevisiae.
Gasch et al. (2000) published genome-wide expression patterns in
yeast cells that were exposed to various changes in environmental
conditions, including heat shock, nitrogen depletion and amino acid
starvation. Approximately 900 genes show a comparable and strong
transcriptional response to almost all stress conditions examined
(Gasch et al., 2000). The term ‘environmental stress response’(ESR)
was coined to describe this phenomenon. The heat shock expression
dataset contains time course profiles of all ESR genes at different
different time-points, ranging from 5 to 80 mins post-shock. Here,
we consider the observed gene expression at 20 mins as our response
variable Y . Analysis of the other time-points yielded similar results.

We consider two different sets of predictor variables. From the
experimentally derived DNA binding sites published by Macisaac
et al. (2006), we extracted 123 different position frequency matrices
(PFMs) representing models of the DNA sequences bound by yeast

Table 1. Comparison of selected models fitted using GEMULA and MARS on
yeast heat shock gene expression data with different sets of predictors

Pred Model GEMULA MARS

N.P N.T R̄2
cv 95% C.I R2

cv 95% CI

MRM M1 42 42 0.39 0.34–0.44 0.27 0.17–0.32
MRM M2 31 71 0.48 0.43–0.53 0.11 0.00–0.19
MRM M3 14 16 0.39 0.33–0.44 0.05 0.00–0.15
NUC M1 18 18 0.51 0.34–0.57 0.64 0.63–0.65
NUC M2 19 49 0.64 0.56–0.68 0.56 0.02–0.65
NUC M3 14 91 0.61 0.40–0.69 0.49 0.01–0.64
Both M1 41 41 0.61 0.51–0.65 0.55 0.45–0.61
Both M2 31 61 0.65 0.42–0.72 0.31 0.00–0.50
Both M3 14 63 0.70 0.66–0.73 0.15 0.00–0.39

The M1 models contain only main effects, whereas M2, and M3 also contain interactions
(Section 2.2). The column ‘N.P’ lists the number of predictors in the fitted GEMULA
models and ‘N.T’denotes the number of model terms. R̄2

cv is the goodness-of-fit criterion
of the selected model (Section 2.2), together with a 95% bootstrap confidence interval.

TFs. We used the TRAP (TRanscription factor Affinity Prediction)
method developed by Roider et al. (2007) to calculate TF–DNA
binding affinities for binding of TFs to the genomic DNA sequences
from 1 to 1000 bp directly upstream of yeast open reading frames.
The resulting predictors are referred to as MRM.

Variation in rates of transcription can result from factors other
than TF binding. For instance, several studies have pointed out that
there is a clear relationship between patterns of histone acetylation
and observed gene expression [Karlić et al. (2010), Markowetz
et al. (2010), Yuan et al. (2006)]. Ramsey et al. (2010) have
shown that indeed such data can be used to improve prediction of
transcription factor binding sites (TFBS)s. Therefore, we included
experimental data from the genome-wide map of nucleosome
acetylation and methylation (Pokholok et al., 2005) as an additional
set of predictors. This second set of predictors consist of 19 extra
variables, including eight sets of histone modifications, measured
under both normal conditions and following oxidative stress. We
refer to these predictors as NUC.

Fitted GEMULA models contain TFBS motifs of TFs that are well
known to be crucial for the transcriptional regulation of heat shock
responsive genes. For instance, the GEMULA M2 model fitted using
the MRM + NUC predictors contains the predictors MSN2, MSN4,
ROX1, HSF1 and CST6. These 5 are among the 12 TFs that regulate
gene regulatory modules of heat shock genes identified by Wu and
Li (2008). Furthermore, we find that GEMULA models containing
interactions between predictors outperform models with only main
effects (Table 1, models M2,M3). In contrast, R̄2

cv of MARS models
decreases when interactions are included, likely due to overfitting.
Another noteworthy conclusion is that inclusion of the additional
NUC predictors consistently leads to models with higher R̄2

cvs. This
supports the hypothesis that both chromatin structure dynamics
and TF binding play an important role in the regulation of gene
expression.

3.1.1 Identification of TF–TF interactions An additional
powerful feature of GEMULA is that we can include interaction
terms and model context-specific interactions between TFs. The
experiments performed by Gasch et al. include several different
stress conditions. Here, we consider three of these: Amino
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Fig. 2. Graphical representation of condition-specific TF regulatory networks inferred by GEMULA for yeast gene expression in response to different stress
conditions: (a) Hydrogen peroxide treatment (b) Amino acid starvation (c) Nitrogen depletion. Green nodes correspond to TFs
with a positive effect on expression, whereas red nodes indicate repressors. Node size is proportional to regression coefficients. Edge width is determined by
selection probability (Section 2.2). Edges that correspond to TF–TF pairs with a CC >1 are colored black. The CCs, taken from an independent study on
combinatorial regulation in the literature Balaji et al. (2006), measure the significance of overlap in target genes and hence high CCs correspond to functionally
interacting TFs. Dotted edges correspond to TF–TF pairs not present in the study by Balaji et al. (2006).

acid starvation, Nitrogen depletion and Hydrogen
peroxide treatment. We fit models using GEMULA and focus
on the selected TFs and their interactions in the inferred models.

Results are presented as context-specific TF regulatory networks
in Figure 2. GEMULA correctly predicts important roles for the
major regulators of the general stress response MSN2 and MSN4,
the regulator of ribosomal protein genes FHL1, the osmotic and
oxidative stress response TF SKO1 and SFP1, a TF that controls
expression of ribosome biogenesis genes in response to nutrients
and stress. Of particular interest are condition specific changes in
TF activity suggested by the networks in Figure 2. For instance,
GEMULA predicts interactions between GAT1, DAL80 and GZF3,
all TFs known to mediate nitrogen-responsive expression, in the
amino acid starvation network.

To assess the functional relevance of the TF–TF interactions
identified by GEMULA, we use results of an independent study on
combinatorial regulation from the literature. Balaji et al. (2006)
computed co-regulatory coefficients (CCs) of 5622 pairs of TFs in
the yeast transcriptional network. The CC measures the significance
of overlap in target genes shared between pairs of TFs and thus
high CC values correspond to pairs of TFs that co-regulate common
sets of targets. We tested whether TF–TF interactions with high
selection probability (Section 2.2) have higher CCs on average,
using a Wilcoxon rank sum test. Hence, we test for a significant
change in location of the distribution of CCs for TF–TF pairs with
high selection probability relative to all candidate TF–TF pairs
considered by GEMULA. Table 2 contains the results and shows
that, on average, the interactions with a high selection probability
correspond to TF–TF pairs with significantly higher CCs and hence
suggests their functional relevance.

3.2 TF regulatory networks underlying axon growth
We next used GEMULA to infer TF–TF interactions in the gene
regulatory network underlying neuronal outgrowth. As a cellular
model, we used F11 cells (Platika et al., 1985). Upon stimulation
with Forskolin, F11 cells acquire a neuronal phenotype, which
results in the outgrowth of neurites (Ghil et al., 2000). We
reanalyzed previously published genome-wide gene expression

Table 2. Assessment of functional relevance of context specific TF–TF
interactions identified by GEMULA in three different stress conditions in yeast
on independent literature evidence

Condition TF pairs Mean CC P-value

Hydrogen peroxide treatment All 1.59 NA
Hydrogen peroxide treatment π̂j >0.5 4.01 0.010
Hydrogen peroxide treatment π̂j >0.75 6.03 0.004
Amino acid starvation All 2.08 NA
Amino acid starvation π̂j >0.5 2.16 0.542
Amino acid starvation π̂j >0.75 4.11 0.001
Nitrogen depletion All 3.06 NA
Nitrogen depletion π̂j >0.5 4.25 0.019
Nitrogen depletion π̂j >0.75 5.60 0.021

On average, TF–TF interactions j with a high selection probability π̂j have a significantly
higher CCs, based on a Wilcoxon rank sum test. NA, not applicable.

time course profiles of F11 cells measured at four time-points
following Forskolin stimulation (MacGillavry et al., 2011). Using
Bayesian Analysis of Time Series [BATS, Angelini et al. (2008)], we
identified a set of Forskolin responsive genes, i.e. genes that show
differential expression in Forskolin stimulated F11 cells compared
with unstimulated control cells. BATS is a Bayesian method for
analysis of gene expression data, specifically tailored to handle short,
replicated time series.

Initially, we analyzed the entire group of Forskolin responsive
genes at all four time-points separately (Supplementary Table S2).
We observed rather low R̄2

cvs for the fitted models, but interestingly,
the amount of ‘explained’ expression variation seemed to vary
in time. We then further examined the expression profiles of the
regulated genes using PCA and noticed clear differences between
the expression at the first two time-points immediately following
Forskolin stimulation and the two ‘late’ time-points. We performed
PCA on the gene expression matrix to see if the observed variation
in expression could be further divided into biologically meaningful
patterns. For each gene, we used the signs of the coefficients
corresponding to the first and second principal component to define
four gene sets of interest (Supplementary Table S1). The first
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Fig. 3. Plot of average gene expression of clusters of Forskolin-responsive
genes in F11 cells at several time-points following Forskolin stimulation.

principal component seems to identify the main direction of the
induced gene expression changes and can be used to distinguish
between predominantly up- versus predominantly downregulated
genes, whereas the second principal component discriminates
between early genes and late genes. Based on these observations, we
named these four expression clusters ‘early up’, ‘late up’, ‘late down’
and ‘early down’. Figure 3 shows a plot of the average expression
of genes in these clusters.

The definition of these gene sets allowed us to investigate the
possible underlying time-dependent activity of TFs and the presence
of an ‘early’ and a ‘late’ transcriptional response. This separation
into early and late genes makes sense from a computational point
of view, because inclusion of background genes, i.e. genes that
are not actually regulated under the experimental condition of
interest, may adversely affect the overall fit of the models, as the
measured gene expression for such genes constitutes only noise
(Das et al., 2004). From a biological point of view, it makes
sense to distinguish between ‘early’ and ‘late’ genes, because
interactions between TFs and their target genes are expected to be
condition-specific and time-dependent. The yeast ESR set that we
analyzed in Section 3.1 consists of genes that show a remarkably
consistent transcriptional response to different stress conditions. In
contrast, the set of Forskolin-responsive genes displays strong time-
heterogeneity, which is why a further subdivision is necessary. We
applied GEMULA again, but this time we distinguished between early
responsive genes, consisting of the union of genes in the ‘early up’
and ‘early down’ sets, and late responsive genes, consisting of all
genes in the ‘late up’ and ‘late down’ sets. If the early genes are
transcriptionally regulated at the early, but not the late time-points,
we expect the models fitted at the late time-points using data from
the early responsive genes to have considerably lower R̄2

cvs and vice
versa. We indeed find that this is the case (Table 3). Moreover, this
time the fitted models have notably higher R̄2

cvs than the models
fitted on the entire group of genes (Supplementary Table S2). These
results suggest that indeed the experimental data arise from two
separate waves of transcriptional changes. Of particular interest
biologically are the sets of TFs that are associated to these early
and late gene expression changes, the interactions between them and
their effects on axon outgrowth. To this end, we made a subselection
of genes based on informative GO-terms (Supplementary Material)

and calculated selection probabilities for candidate terms in the
models generated by GEMULA. This allowed us to prioritize terms
in the models and focus on the most significant predictors. The
resulting TF networks are shown in Figure 4. Note that the network
inferred for the early, but not the late changes, contains the predictors
V.CREB.01 and V.CREBATF.Q6, among others. These motifs
represent the TFBSs for CREB, a cAMP-inducible TF. Activation of
CREB is known to be induced by Forskolin stimulation of F11 cells
(MacGillavry et al., 2009) and Gao et al. (2004) have shown that
activated CREB is sufficient to promote spinal axon regeneration.

Interestingly, many TFs binding to the DNA binding motifs
in Figure 4a such as V.CEBPDELTA.Q6, V.PPARA.02 and
V.PBX.Q3 were previously found to have a significant effect on
axon growth upon knockdown in F11 cells (Geeven et al., 2011).
In contrast, the network that was inferred from the late time-
points (Fig. 4b) contains no known transcriptional regulators of
neurite outgrowth, suggesting that these cells indeed have entered a
different stage of differentiation. Together, these observations show
that GEMULA can be used to detect important context-specific
regulatory interactions in gene networks that underlie transitional
changes in cell fates.

4 DISCUSSION
The success of a regression-based approach to modeling gene
expression and DNA sequence data depends on appropriate choices
for the type of model and the predictors used as input. This was
first demonstrated by Das et al. (2004) who proposed a strategy
that uses the non-parametric MARS method as core regression
routine (Das et al., 2004, 2006). Das et al. (2004) claim that
their MARSMOTIF algorithm, which allows modeling of synergistic
interactions between predictors, is approximately 1.5 to 3.5 times
more accurate than the method of Bussemaker et al. (2001), which is
based on a linear model. The comparison is based on an R2-like �χ2

statistic and no cross-validation was performed. A comprehensive
comparison is lacking. The results we present in this article show
that similar synergistic interactions as in Das et al. (2004, 2006)
can be modeled using linear models. In fact, GEMULA produces
biologically plausible models with superior fit compared with MARS
when applied to the same data. Typically, models contain a rather
large number of predictors, whereas not all of these are equally
relevant for the underlying biological processes. We demonstrate
that GEMULA identifies synergistic pairs of TFs that are likely to be
functionally relevant, i.e. on average the overlap in target genes of
such identified TF–TF pairs is significantly higher than expected by
chance.

In order to build models that are biologically useful and
interpretable, the availability of relevant biological predictors used
as input are crucial. The TRAP predictors we consider in this
article represent in silico predicted binding affinities of TFs. Using
yeast data, we showed that GEMULA in combination with TRAP
predictors successfully identifies interactions between known heat
shock regulating TFs such as MSN2, MSN4, HSF1, CST6 and ROX1
that underlie the observed variation in expression of yeast genes
in response to hypothermic shock. The TRAP predictors are real-
valued and have an interpretation that is closer to experimentally
measured TF–DNA binding profiles as obtained, for instance,
with ChIP-chip assays than other motif representations, which
use exact words. Models that use TRAP predictors have a clear
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Table 3. Comparison of models fitted using GEMULA and MARS for early and late Forskolin-responsive genes in F11 cells at all four time-points

Time (h) Model Early responsive genes Late responsive genes

GEMULA MARS GEMULA MARS

N.P N.T R̄2
cv 95% CI R̄2

cv 95% CI N.P N.T R̄2
cv 95% CI R̄2

cv 95% CI

2 M1 30 30 0.19 0.12–0.27 0.08 0.05–0.11 8 8 0.04 0.02–0.06 0.02 0.01–0.03
2 M2 31 72 0.33 0.23–0.44 0.01 0.00–0.04 36 53 0.11 0.07–0.16 0.01 0.00–0.08
2 M3 14 47 0.25 0.12–0.38 0.00 0.00–0.03 16 27 0.09 0.04–0.15 0.00 0.00–0.01
4 M1 16 16 0.11 0.06–0.18 0.06 0.04–0.10 0 0 0 0–0 0.02 0.01–0.03
4 M2 31 75 0.21 0.13–0.32 0.01 0.00–0.04 36 53 0.04 0.01–0.07 0.00 0.00–0.01
4 M3 14 39 0.13 0.05–0.24 0.00 0.00–0.02 16 16 0.02 0.00–0.04 0.00 0.00–0.01
24 M1 50 50 0.06 0.02–0.13 0.03 0.01–0.05 39 39 0.25 0.20–0.29 0.13 0.10–0.15
24 M2 31 80 0.08 0.02–0.19 0.00 0.00–0.02 36 63 0.25 0.21–0.30 0.04 0.00–0.09
24 M3 14 20 0.05 0.01–0.09 0.00 0.00–0.01 15 27 0.22 0.18–0.27 0.02 0.00–0.06
48 M1 5 5 0.02 0.00–0.05 0.05 0.03–0.08 44 44 0.23 0.19–0.28 0.16 0.14–0.18
48 M2 31 85 0.14 0.06–0.27 0.00 0.00–0.02 35 52 0.25 0.20–0.30 0.06 0.00–0.11
48 M3 14 60 0.09 0.03–0.21 0.00 0.00–0.01 16 37 0.22 0.18–0.27 0.03 0.00–0.08

Columns 3–10 correspond to models fitted for the early responsive genes and columns 11–18 to models for the late responsive genes.The column ‘N.P’ lists the number of predictors
in the fitted GEMULA models and ‘N.T’ denotes the number of model terms. R̄2

cv is the goodness-of-fit criterion of the selected model (Section 2.2), together with a 95% bootstrap
confidence interval.

Fig. 4. Graphical representation of the network of TF–TF interactions that are associated to early (a) and late (b) changes in gene expression in F11 cells
after Forskolin stimulation. Node size is proportional to regression coefficients. The edges represent interactions between predictors in models inferred by
GEMULA with a selection probability >0.25. Thicker edges indicate higher selection probabilities.

interpretation, which facilitates the step toward biological validation.
Our analysis of yeast stress response gene expression data shows
that GEMULA can identify context-specific TF–TF interactions that
underly observed variation in gene expression under different
physiological conditions.

We demonstrate that our method can also be used to analyze
mammalian gene expression data. We applied GEMULA to identify
TFs associated to observed variations in early and late gene
expression changes in F11 cells in response to Forskolin stimulation.
The observed fit in terms of R̄2

cv of the resulting models is
considerably less than for GEMULA models inferred from yeast
heat shock data where additional predictors are available. However,
we show that GEMULA identifies several crucial TFs with a
well-established role in the regulation of neuronal outgrowth-
associated gene expression and additionally provides new insights
into the temporal dynamics of the regulatory network underlying
axon growth. The strength of our approach is the combination

of l1-penalization and re-sampling methods to fit and select
appropriately regularized models. A current limitation is that
the linear models we discuss in this article are not capable of
quantifying contributions of TFs to variation in gene expression
across experiments. To extend the penalized regression framework
to the multivariate case of multiple experiments would require
fitting a model that includes parameters representing TF activity
in each condition separately [see e.g. Bonneau (2007)], resulting
in a computationally more complex problem. How to induce the
right amount of sparsity and solve the corresponding optimization
problem would be an interesting direction for further research.

5 CONCLUSION
Linear models are valuable tools for inference of transcriptional gene
regulatory interactions and synergistic pairwise interactions between
predictors that underlie observed changes in gene expression under
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a given condition of interest. We believe that in the near future,
as more accurate experimental data based on ultra high-throughput
RNA sequencing (RNA-Seq) technology will become available,
GEMULA will prove to be an even more useful method for modeling
transcriptional networks of complex mammalian systems.
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