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ABSTRACT

Motivation: RNA-seq has been widely used in transcriptome analysis

to effectively measure gene expression levels. Although sequencing

costs are rapidly decreasing, almost 70% of all the human RNA-seq

samples in the gene expression omnibus do not have biological rep-

licates and more unreplicated RNA-seq data were published than

replicated RNA-seq data in 2011. Despite the large amount of single

replicate studies, there is currently no satisfactory method for detect-

ing differentially expressed genes when only a single biological repli-

cate is available.

Results: We present the GFOLD (generalized fold change) algorithm

to produce biologically meaningful rankings of differentially expressed

genes from RNA-seq data. GFOLD assigns reliable statistics for

expression changes based on the posterior distribution of log fold

change. In this way, GFOLD overcomes the shortcomings of P-value

and fold change calculated by existing RNA-seq analysis methods and

gives more stable and biological meaningful gene rankings when only

a single biological replicate is available.

Availability: The open source C/Cþþ program is available at http://
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Contact: xsliu@jimmy.harvard.edu or yzhang@tongji.edu.cn

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on June 9, 2012; revised on August 13, 2012; accepted on

August 14, 2012

1 INTRODUCTION

In RNA-seq, high-throughput sequencing is applied to transcrip-

tome analysis to effectively measure gene expression levels, iden-

tify alternative splicing variants and reconstruct novel or fusion

transcripts. Since the first publications in a series of studies in

2008 (Cloonan et al., 2008; Lister et al., 2008; Marioni et al.,

2008; Morin et al., 2008; Mortazavi et al., 2008; Nagalakshmi

et al., 2008; Wilhelm et al., 2008), RNA-seq has quickly gained

popularity for use in transcriptome analysis (Haas and Zody,

2010; Morozova et al., 2009; Wall et al., 2009; Wang et al., 2009).

One fundamental use of transcriptome analysis is to measure

the level of gene expression and to identify genes that are differ-

entially expressed between conditions. For this purpose,

RNA-seq produces gene expression profiles with much smaller

technical variance (Bullard et al., 2010) than traditional micro-

array technologies. Specifically, in a typical RNA-seq experi-

ment, millions of short reads are sampled from expressed

transcripts and the expression level of a gene is then measured

by the number of reads mapped back to this gene.

The variance in the read count of a gene may be decomposed

into the variance due to the random sampling of reads and the

variance due to other sources of variation including technical and

biological noise. The variance due to read sampling can be clo-

sely approximated by a Poisson distribution (Jiang and Wong,

2009), which serves as the lower bound on the overall variance.

When biological variance is taken into consideration, the number

of reads mapped to a gene should resemble an over-dispersed

Poisson distribution. A natural distribution for modeling

over-dispersed count data is the negative binomial (NB) distri-

bution, which has been applied to build tools such as edgeR

(Robinson et al., 2010), DESeq (Anders and Huber, 2010) and

baySeq (Hardcastle and Kelly, 2010). Models other than the NB

have also been developed. For example, Wu et al. (2010) built a

tool, referred to as ASC, based on the observation that log fold

changes obey the normal distribution. The same assumption has

also been adopted by Huang et al. (2011). Wang et al. (2010)

proposed an MA-based method that approximates the distribu-

tion of the M value (log fold change) at given A value (log inten-

sity sum) with a normal distribution. Srivastava and Chen (2010)

adopted a two-parameter, generalized Poisson model to fit the

nucleotide-wise read distribution on each gene independently.

Cufflinks (Trapnell et al., 2010) adopts the delta method, a com-

monly used method in microarray expression analysis, to esti-

mate the variance of the log fold change.
When comparing RNA-seq data between two conditions,

existing methods calculate a P-value for the differential expres-

sion of each gene. These P-values, however, do not measure how

much a gene is expressed in one condition relative to the other.

Highly significant P-values can result from even miniscule rela-

tive differences in gene expression, if the number of sequencing

tags available for the comparison is large enough. This type of*To whom correspondence should be addressed.
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result is contrary to what is of fundamental biological interest. In
most studies of gene expression, the genes of highest interest are
those with large relative differences. The relative difference, or

fold change, is a basic and widely used measure for identifying
differential gene expression. Unfortunately, the raw fold change
is unreliable because it does not take into account the uncertainty

of gene expression measures under the two conditions being
compared. In particular, the fold changes of genes with low
read counts are less reliable than those of genes with high read

counts. In other words, fold changes based on read counts are
not comparable for genes with different expression levels or
genes of different lengths. In microarray analysis, a well-known

variance stabilization method is fold change with offset
(or start-log) (Durbin et al., 2002; Ritchie et al., 2007; Rocke
and Durbin, 2003), which adds an offset before calculating

fold changes. Researchers have also attempted to combine the
fold change and P-value to provide more meaningful results by
setting cutoffs for both the fold change and P-value as in the
well-known volcano plot (Cui and Churchill, 2003). However,

such an ad hoc technique does not result in meaningful gene
rankings.
Although sequencing costs are rapidly decreasing, experimen-

talists are reluctant to sequence replicate RNA samples without
pilot data that demonstrate the utility of the study. By comparing
single RNA-seq treatment samples from control conditions,

experimentalists can obtain valuable information that allows
them to adjust the experimental plan before scaling up to include
multiple replicates. That may partially explain why almost 70%

of all the human RNA-seq samples in the gene expression omni-
bus (Barrett et al., 2011) do not have biological replicates and
more un-replicated RNA-seq data were published than repli-

cated RNA-seq data in 2011 (Supplementary Fig. S1). Despite
the importance of single replicate studies, there is currently no
satisfactory method for detecting differentially expressed genes

when only a single biological replicate is available.
In this article, we describe a technique for estimating fold

change that takes into account the uncertainty of gene expression

measurement by RNA-seq. We argue that this new measure of
fold change is more informative for the biology of a perturbed
system than either P-values or raw fold change especially for

single biological replicate experiments. From a Bayesian perspec-
tive, our representation of fold change is derived from the pos-
terior distribution of the raw fold change. This representation,

denoted as GFOLD, balances the estimated degree of change
with the significance of this change. GFOLD is more reliable
than raw fold change for estimating the relative difference of

gene expression and facilitates the comparison of genes with dif-
ferent expression levels or of different lengths.
To validate its effectiveness, we applied GFOLD to several

datasets with biological replicates and compared it with edgeR,
DESeq, DEGseq, Poisson, Cufflinks and fold change with offset.
By comparing the results of different methods when biological

replicates are not available with the results when biological rep-
licates are available, we were be able to estimate the performance
of different methods using information from single replicates.

We also explored the biological significance of gene rankings
produced using different methods. Comparisons show that
GFOLD outperforms all other methods in most cases when

there is only a single replicate. We built a hierarchical model

for cases in which biological replicates are available. In such
cases, GFOLD provides comparable results to existing methods.

2 METHODS

We describe the single-replicate model in the main text and leave the

multiple-replicate model in the supplementary. Because the technical vari-

ance of RNA-seq is negligible (Bullard et al., 2010), the read count of a

gene can be effectively modeled by the Poisson distribution (Jiang and

Wong, 2009). Specifically, the probability of observing k short reads

associated with a gene is as follows:

PðkÞ ¼
�ke��

k!
, � ¼ n� l� x ð1Þ

where x is the expression level of this gene [(e.g. in RPKM (Reads Per

Kilo bases per Million reads) Mortazavi et al., 2008)], n is a normalization

constant reflecting the sequencing depth and l is the gene length. The

method proposed by Anders and Huber (Anders and Huber, 2010) was

used to calculate n. If this method fails, we simply treat n as the library

size (sequencing depth).

The observed read count k is based on the expression level x, which is

actually what we want to measure. From a Bayesian point of view, � and

therefore x can be treated as random variables, and the posterior distri-

bution of � is defined by

Postð�Þ /
�ke��

k!
ð2Þ

which is a gamma distribution with shape kþ 1 and scale 1. Here, the

uniform distribution is used as the prior for �.

For a gene, given the observed read counts under two conditions, the

posterior distribution of expression levels x1 and x2 under the two con-

ditions can be calculated as above. Furthermore, the posterior distribu-

tion of log2 fold change log2ðx2=x1Þ can also be calculated. Note that the

calculation involves l, which can be avoided by calculating the posterior

distribution of yi ¼ l� xi, i 2 f1, 2g and z ¼ log2ðy2=y1Þ instead. It is ob-

vious that log2ðy2=y1Þ and log2ðx2=x1Þ have the same distribution.

To utilize the variance information of the posterior distribution of fold

change, we define the generalized fold change of a gene as follows:

GFOLDðcÞ ¼
maxðt, 0ÞjPZðz � tÞ ¼ c, if meanðZÞ � 0
minðt, 0ÞjPZðz � tÞ ¼ c, if meanðZÞ50

�
ð3Þ

where PZ is the posterior distribution of z ¼ log2ðy2=y1Þ and c is a par-

ameter with default parameter 0.01. If the gene is up-regulated, i.e.

meanðZÞ � 0, the probability of the log2 fold change (2nd/1st) being

larger than t is 1� c. In this case, t is less than meanðZÞ with default

value of c. GFOLD(c) takes maxðt, 0Þ to truncate negative t to zero. If

GFOLD(c) is 0, then the expression level of this gene does not show

significant change. The case for meanðZÞ50 is symmetric to the case of

meanðZÞ � 0. Genes can be ranked by their GFOLD values in descending

order such that top ranked ones are differentially up-regulated and

bottom ranked ones are differentially down-regulated.

Figure 1 shows examples of the posterior distributions of log2 fold

change and the calculated GFOLD values for three up-regulated genes.

The figure also compared the gene rankings based on the naive read

count fold change, GFOLD value and P-value for the three genes.

According to the P-value we would consider the black gene to be the

most significant one, followed by green then red. The ranking of black

above green is problematic because the true fold change of the green gene

is very likely to be much greater than that of the black. If we used the

naive fold change to rank genes, green would be the most significant one,

followed by red then black. Although the red gene has a greater naive fold

change than the black gene, the read counts for the red gene are low and

the estimate of fold change is unreliable. GFOLD strikes a balance be-

tween fold change and P-value, ranking green first, followed by black and
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then red. GFOLD not only measures the fold change but also captures

the small variance of the posterior distribution of log2 fold change for the

highly expressed genes.

If the fold change based on the read count is fixed and c5 0.5, then

GFOLD(c) penalizes genes with low expression levels because the pos-

terior distribution of the fold change from such genes has a large vari-

ance. This trend is clearly demonstrated in Figure 1. Setting c to a smaller

value shifts the preference from genes with higher fold changes at lower

expression values to genes with lower fold changes at higher expression

levels. By default, we set c ¼ 0.01, which means that in 99% of cases, the

fold change of a gene is above the absolute GFOLD(0.01) value for this

gene.

To better understand the properties of the posterior distribution of

fold change and GFOLD, we compared several posterior distributions

of fold change with normal distributions in Supplementary Figure S2.

When read counts are high, the posterior distributions of fold change are

similar to normal distributions; but the similarity disappears when read

counts are low.

It might be possible to describe the posterior distribution of log2 fold

change with a closed-form formula based on the distribution of the ratio

of two gamma variables (Kwan and Leung, 2005). However, the close

form calculation is too time consuming to be practical because it involves

the inverse of the distribution function. Therefore, in this work, the cal-

culation is done by sampling. Specifically, we first sample

yi ¼ l� xi, i 2 f1, 2g according to Equation (2), then estimate the poster-

ior distribution of z ¼ logðy2=y1Þ based on sampled values of yi, i 2 f1, 2g,

and last calculate GFOLD(c) according to Equation (3). The whole pro-

cess is very efficient. For example, to calculate GFOLD values for all the

genes given a pair of samples used in this work, it costs less than 30 s on a

typical desktop PC.

3 APPLICATIONS

3.1 Datasets

We assessed the effectiveness of our approach on the following

five publicly available RNA-seq and GRO-seq datasets that

contain biological replicates. For each dataset, we merged tech-
nical replicates to form a single biological replicate. The five

datasets are as follows: human brain dataset downloaded from
DDBJ (Kaminuma et al., 2011) with accession number

SRA009447, mouse brain dataset (Polymenidou et al., 2011)
downloaded from DDBJ with accession number SRA030347,

Type I latency B-cell line dataset (Xu et al., 2010) downloaded
from DDBJ with accession number SRP001880, ENCODE data-

set (Birney et al., 2007) downloaded from UCSC Genome
Browser (Kent et al., 2002) and estrogen response dataset con-

taining GRO-seq data (Hah et al., 2011) and ERa-binding data
(Welboren et al., 2009). The detailed description of each dataset

is in the Supplementary Material.

3.2 Methods compared

In the following comparison, we compared GFOLD with the

following methods: edgeR (Robinson et al., 2010), DESeq
(Anders and Huber, 2010), Cufflinks (Trapnell et al., 2010),

DEGseq (Wang et al., 2010), Poisson test and fold change with
offset. Because GFOLD value depends on the cutoff c, we use

GFOLDX to denote GFOLD with c ¼ X/1000 (i.e. GFOLD10
means cutoff 0.01). The method edgeR has an option of whether

to estimate the tag-wise dispersion. We denote the version of
edgeR that estimates tag-wise dispersion as edgeRT. For

DEGseq, there are two MA-based methods: MA-plot-based
method with Random Sampling model (MARS) and MA-plot-

based method with Technical Replicates (MATR). MARS deals
with replicates by summing up read counts for every gene and

then treating the data as if there were no replicates, whereas
MATR estimates the variance based on replicates. When repli-

cates were available we found the MATR results to be less ac-
curate than those produced by MARS (results now shown);

therefore, we used MARS method for DEGseq. Because
Poisson test (Poisson) is the simplest method considered for de-

tecting differentially expressed genes, it was included in the com-
parison. For fold change with offset, because the optimal offset is

unknown, we tried different offsets: 1, 5, 10, 20, 30, 40, 50 and
60. Fold change with offset X is denoted as FCX.

3.3 MA plot comparisons

MA plot is a convenient way to display differentially expressed
genes. We applied MA plot to compare the results from nine

methods (GFOLD5, GFOLD10, FC20, Cufflinks edgeRT,
DESeq, edgeR, DEGseq and Poisson) on a pair of samples

(one control and one TDP-43 depleted sample) selected from
the mouse brain dataset.
Supplementary Figure S3 showed the distribution of the vari-

ance and signal strength for the top 1000 differentially expressed
genes identified by different methods. DEGseq and edgeR show

similar results as Poisson. They are biased towards genes with
larger read counts. Such a bias would cause less biological mean-

ingful results as shown in the following sections. GFOLD5,

GFOLD10, DESeq and FC20 show less bias.
Although all of the methods except for GFOLD and

FC20 adopt P-values for testing significance, the P-values of

different methods are not comparable (as shown in
Supplementary Fig. S4). DESeq tends to overestimate the vari-

ance and, as a result, identifies fewer differentially expressed

Fig. 1. Rankings of example genes by GFOLD, fold change and P-value.

The figure illustrates the idea of GFOLD by comparing gene rankings

defined by GFOLD (0.01), fold change and P-value on three example

genes. The read counts of the black, red and green genes are (1000, 2500),

(5, 20) and (50, 250) under two biological conditions with the same

sequencing depth, respectively. The three curves are the corresponding

posterior distributions of log fold change. ‘G’ stands for GFOLD value

and ‘p’ stands for P-value calculated using Poisson test
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genes using the same P-value cutoff. The high similarity between

Poisson, edgeR and DEGseq indicates that the later two meth-

ods essentially calculate the Poisson variance introduced by ran-

dom sampling in the sequencing step and thus omit biological

variance. Therefore, none of the nine methods properly estimate

the biological variance when no biological replicate is available.

3.4 Ranking comparisons

Although we do not know the true levels of gene expression

under different conditions, in theory, estimates of the gene

expression levels improve with the increase of replicate

number. We therefore can evaluate the performance of a

method on single replicate against a proxy for the truth in

which multiple biological replicates are used. As the different

statistics results from different algorithms are not directly com-

parable, we compared the rankings of the gene differential

expression statistics to evaluate the performance of the different

approaches while avoiding setting arbitrary cutoffs for different

methods.
Specifically, given two top N up-regulated (or N down-

regulated) gene rankings, we took the top k5N genes in each

ranking and then calculated the number of genes in common

(denoted as k) in the two top gene sets. Then, k̂=k, ranging

from 0 to 1, measured the similarity of the two top k genes.

After all ks were considered, we were able to draw a curve

with k/N as the x-axis and k̂=k as the y-axis. We further defined

rank area as the area below the curve, similar to the calculation

of the area based on an ROC curve. If the rank curve reached the

top left corner of the plot, i.e. the rank area was 1, then the two

gene rankings were identical. The rank area is a direct measure of

the similarity of the two rankings. We set N ¼ 1000 in the com-

parisons. Figure 2 illustrates an example that compares the re-

sults produced by DESeq on all replicates (as benchmark) with

the results by all methods on only a pair of single replicates on

Type I B-cell dataset. GFOLD in general gives the better overlap

with the benchmark, with the default GFOLD10 giving the best

results. Compared with FC, GFOLD is less sensitive to the par-

ameters as shown in Supplementary Figure S5.

Of all the methods we compared, six (Cufflinks, GFOLD,

DEGseq, edgeR, DESeq and edgeRT) accepted replicates.

Theoretically, results produced by each of them on all replicates

could be used as benchmark, but we did not know which derived

benchmark was the most reliable one. Therefore, we compared

the results of each method on every possible pair of single rep-

licates with all derived benchmarks from six methods separately.

The comprehensive comparison on human brain datasets is given

in the heatmaps illustrated in Supplementary Figure S6. Except

for using DEGseq as benchmark, GFOLD in general performed

better than any given method even when the benchmark was

produced by that method. When the benchmark by DEGseq

was used, DEGseq, edgeR and Poisson gave better results than

GFOLD. We looked into details of the results and found that the

MARS method adopted by DEGseq summed up read counts

from replicates and behaved similar to Poisson and edgeR, as

shown in Supplementary Figure S3(G–I). Therefore, edgeR,

DEGseq and Poisson performed better when the benchmark

by DEGseq was used. Supplementary Figure S6 also shows

that the performance of FC10 was comparable to that of

GFOLD10. To better understand the difference between

GFOLD and fold change with offset, we further evaluated the

performance of different methods on other datasets. For each

method on each dataset, Table 1 shows the average rank area

which was calculated by averaging over all possible sample pairs,

all benchmarks and the up-/down-regulated gene lists. In the

table, methods are ranked by their average rank areas over all

datasets. For each dataset, fold change with the optimal offset

was comparable with GFOLD10. However, the optimal offset

for fold change varied for different datasets. For example, FC10

performed better than other offsets in the human brain and the

ENCODE dataset but not on the other three datasets.

Furthermore, the selection of the optimal offset for fold

change seems uncorrelated with the sequencing depth. To the

contrary, GFOLD with parameter 0.005 or the default param-

eter 0.01 performs well on all five datasets.

3.5 In-group and out-group comparisons

Given a dataset with biological replicates under two conditions,

an in-group comparison consists of all possible comparisons be-

tween two biological replicate samples. An out-group compari-

son consists of all possible comparisons between two samples

from different conditions. A commonly used strategy to assess

the specificity of a method is to do an in-group and out-group

comparison and to identify differentially expressed genes using

the same cutoff. If a method reports fewer differentially ex-

pressed genes in the in-group comparison but reports more dif-

ferentially expressed genes in the out-group comparison, then

such a method is considered to achieve better specificity.
In previous studies, the in-group and out-group comparisons

were conducted by setting a default cutoff for the P-value.

However, as we stated above, P-values used by different methods

are not comparable. Furthermore, GFOLD and fold change

with offset do not rank genes by P-values. To make a fair com-

parison of different methods using the in- and out-group com-

parisons, we adopted a strategy similar to the calculation of

FDR mentioned above. For a method generating a P-value,

we first applied this method to all possible in- and out-group

Fig. 2. An example of the rank area comparison. The up-regulated gene

rankings of different methods on a sample pair are compared with the

gene ranking by DESeq given all replicates on the Type I B-cell dataset.

A curve that gives larger area under the curve is considered better
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comparisons and determined all of the P-values assigned to every

gene. Then, we drew a curve with the x-axis representing the

percentage of genes with P-values below a certain cutoff in the

in-group comparison and the y-axis representing the percentage

of genes with P-values below the same cutoff in the out-group

comparison. This approach was similar for GFOLD and fold

change with offset, except that we calculated the percentage of

genes with absolute fold changes or GFOLD values above cer-

tain cutoffs.
Figure 3 and Supplementary Figure S7 represent the results

for the human brain dataset. The figures show that GFOLD

achieved the best specificity when a large GFOLD value

cutoff was used, which is a desired property because we are

more interested in these genes. Supplementary Figure S7

also shows that GFOLD is not sensitive to the parameter.

DEGseq, edgeR and Poisson produced similar curves, which is

consistent with the previous analysis that DEGseq and edgeR

give similar results with those by Poisson. Although fold change

with offset performed better than GFOLD on the Type I B-cell

dataset and edgeRT performed slightly better than GFOLD

on the estrogen response dataset, GFOLD generally performed

well and is not sensitive to the cutoff (as shown in Supplementary

Figure S8).

In general, the difference between two biological replicates is

expected to be smaller than that between two samples from dif-

ferent conditions. If the variance is not overestimated, as in the

Poisson model, under the same P-value cutoff, we expected to

observe more genes with more significant P-values when compar-

ing two samples from different conditions. The fact that the

curves for edgeR, DESeq and Cufflinks are close to the reverse

diagonal line indicates that under the same P-value cutoff the

three methods give similar number of differential genes for both

in- and out-group comparisons, demonstrating that edgeRT,
DESeq and Cufflinks overestimated the variance for out-group
comparison. Therefore, for those three methods, more stringent

cutoffs could be selected to identify more differently expressed
genes. In practical data analysis, the gene ranking is often of
greater importance that the P-values themselves; in many down-

stream data analyses, such as gene set enrichment analysis, a
ranking of genes is the only required input (Subramanian

et al., 2005).

3.6 The biological significance of gene rankings

on ENCODE datasets

Although previous comparisons were concerned with consistency

within datasets these comparisons do not address the main
reason for using GFOLD that it provides a useful measure of
biologically relevant changes. This section focuses on the biolo-

gical significance of gene rankings given by different methods
using the functional annotation service provided by DAVID

(Dennis et al., 2003).
We first checked the functional annotations produced by

DAVID given the top 1000 genes up-regulated in K562 using

all biological replicates in both K562 and GM12878 by six dif-
ferent methods. Generally, the top-ranked functional annota-
tions are very similar for results from GFOLD, DESeq, edgeR

and edgeRT both in ranking and significance. Except for
DEGseq, the first functional annotation clusters by the other

methods contain the same four Gene Ontology (GO) terms:
angiogenesis, vasculature development, blood vessel develop-
ment and blood vessel morphogenesis. For GFOLD, DESeq,

edgeR and edgeRT, the enrichment scores of this cluster are all
over 5 and the Benjamini P-values for every GO term are all

below 0.01. High enrichment of the angiogenesis related cluster is
an expected result, because increased angiogenesis is one of the
characteristics of chronic myelogenous leukemia cell line like

K562 (Vidović et al., 2009; Zhelyazkova et al., 2008).

Table 1. Average rank area of different methods on all five datasets

Methods

(Depth M)

HB

7.8–26.4

EN

11.1–18.4

MB

4.7–9.7

TIB

8.4–28.9

ER

4.8–10.9

Ave

GFOLD5 0.584 0.712 0.513 0.470 0.692 0.594

GFOLD10 0.585 0.710 0.515 0.470 0.687 0.593

FC20 0.567 0.707 0.505 0.442 0.693 0.583

GFOLD50 0.584 0.703 0.508 0.449 0.661 0.581

FC30 0.552 0.695 0.510 0.453 0.694 0.581

FC40 0.538 0.683 0.509 0.457 0.688 0.575

FC50 0.527 0.672 0.506 0.456 0.681 0.568

FC10 0.583 0.714 0.478 0.398 0.663 0.567

GFOLD100 0.580 0.696 0.493 0.419 0.638 0.565

FC60 0.516 0.662 0.503 0.454 0.673 0.561

DESeq 0.559 0.645 0.496 0.401 0.627 0.546

FC5 0.579 0.703 0.428 0.321 0.599 0.526

Poisson 0.354 0.453 0.419 0.369 0.539 0.427

edgeR 0.348 0.440 0.426 0.376 0.544 0.427

DEGseq 0.345 0.410 0.420 0.370 0.537 0.416

Cufflinks 0.468 0.523 0.398 0.251 N/A 0.410

FC1 0.505 0.598 0.238 0.098 0.366 0.361

edgeRT 0.235 0.393 0.166 0.089 0.474 0.271

For each dataset, the abbreviation and the range of the number of mappable reads

(in million reads) for each sample are as follows. HB: human brain (7.8–26.4); EN:

ENCODE (11.1–18.4); MB: mouse brain (4.7–9.7); TIB: Type I B-cell (8.4–28.9);

ER: estrogen response (4.8–10.9); Ave: average.

Fig. 3. The in-out-group comparison on the human brain dataset.

The x-axis is the percentage of genes above (for GFOLD and fold

change with offset) or below (for other methods) a certain cutoff in the

in-group comparison. The y-axis is the percentage of genes above/blow a

certain cutoff in the out-group comparison. A curve that is closer to the

top left corner of the plot is considered to achieve better specificity
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We then evaluated the performance of all methods on pairs of

single replicates. The top 1000 up-regulated genes produced by

each method were used to do functional annotation analysis as

above. We checked whether the angiogenesis-related set could be

identified with high significance (enrichment scores 45 and

Benjamini value50.01) by DAVID given the results from each

method. The DAVID results, summarized in Supplementary

Table S1, showed that only results produced by GFOLD5,

GFOLD10, GFOLD50, GFOLD100 and FC5 could pass the

test on both pairs of single replicates simultaneously.

Furthermore, in most of the cases, the angiogenesis-related set

is ranked top for GFOLD and fold change with offset.

Therefore, when only a single replicate is available, GFOLD

and fold change with offset could give more biological meaning-

ful gene rankings, and results by GFOLD were more stable and

less sensitive to the parameter than that by fold change with

offset.
We further redid the GO analysis using GOseq (Young et al.,

2010) to avoid possible bias due to over-detection of differential

expression for long and highly expressed transcripts. Similar to

the results of DAVID, the GOseq results, summarized in

Supplementary Tables S2–S4, show that blood vessel develop-

ment and blood vessel morphogenesis are ranked top given the

gene lists produced by GFOLD, DESeq, edgeR, edgeRT and

Cufflinks when all biological replicates are used. When single

replicate is used, GFOLD, FC and Cufflinks give these two

GO terms much higher and more consistent ranks than the

other methods do, and GFOLD is less sensitive to the parameter

compared with FC.

3.7 The biological significance of gene rankings on

estrogen response dataset

We further discuss the biological significance of gene rankings

based on the estrogen response dataset. Using the breast cancer

cell line MCF7, Hah et al. (2011) performed a GRO-seq experi-

ment that measures the rate of transcription, different from the

cellular concentration of mRNA that is measured by RNA-seq.

Comparing transcription rates before and after estrogen stimu-

lation, they found that genes with estrogen induced transcription

rates tended to have estrogen receptor (ER) binding sites near

their transcription start sites (TSSs). This is consistent with the

biological mechanism in which ER binding at enhancers interacts

with the transcriptional machinery at the TSS to induce tran-

scription. Gene rankings that have the largest proportion of

ER binding near the top of the list could be said to be of the

greatest biological relevance. In Supplementary Figure S9 (A–C),

we compare, as a function of ranking, the proportion of genes

having at least one ER binding site within 10 kb of the TSS.

Here, for a better visualization, we used the default cutoff for

GFOLD and selected 30 as the optimal offset for fold change

based on Table 1. When two biological replicates are used

[Supplementary Fig. S9 (A)], all methods achieve a similar per-

formance except for DEGseq. DESeq and edgeRT exhibit a clear

drop when the top 100–200 genes are considered. When a pair of

single replicates is used [Supplementary Fig. S9 (B and C)],

GFOLD10, FC30 and DESeq have similar behavior, clearly out-

performing the other methods.

4 DISCUSSION

An experiment with multiple treatment and control replicates

should be considered better designed and more informative

than one that has single treatment and control samples.

However, it is common for experimental groups to have biolo-

gical material that is sufficient for only single replicate RNA-seq

experiments. The data from such experiments provide imperfect

information which is nevertheless far better than no information

at all. In many experimental settings when it is not clear which

downstream experiment is better, single replicate experiments are

efficient for collecting useful knowledge that allows informed

decisions to be made. In this study, we have shown that

GFOLD provides a more consistent and more biologically

meaningful approach to ranking differentially expressed genes

than other commonly used methods for RNA-seq data without

biological replicates, Although raw fold change does not take the

variance of gene expression into account, and many P-value es-

timation methods rely too much on variance estimates, GFOLD

seeks a balance between estimates of expression change and vari-

ability. The GFOLD value for each gene can be considered as a

robust fold change, which measures primarily the relative change

of the expression level instead of the significance (i.e. P-value) of

differential expression. The evaluation results conducted on real

datasets showed that in the analysis of a single pair of replicates,

the gene ranking by GFOLD is better than other methods in

terms of consistency with rankings based on multiple replicate

data. The results from the ENCODE and GRO-seq dataset sug-

gest that when using single replicate data the rankings produced

by GFOLD are more biologically meaningful than the gene

rankings by other methods. We stress that while useful informa-

tion can be obtained from single replicate experiments, an ana-

lysis of variation between samples is necessary to draw sound

conclusions, especially on the individual gene level.

In comparison with other methods, besides fold change with

offset, GFOLD is simple and intuitive. If there is no biological

replicate, GFOLD is based on only one assumption that the read

count of a gene follows a Poisson distribution. On the contrary,

P-value is likely to be inaccurate without reliable measurements

and modeling of gene expression variation because it is in the

tails of the null distribution. Even if the biological variance has

been captured accurately, P-values from other methods tell only

of whether a gene is differentially expressed and not directly of

the relative difference in expression. In comparison with

GFOLD, fold change with offset is even simpler and could

give comparable results if the optimal offset is selected; however,

it is hard to select the optimal offset. Furthermore, the optimal

offset seems uncorrelated with the sequencing depth. In contrast,

GFOLD with the default cutoff performed well on all five data-

sets we have tested.
GFOLD is generalizable to isoform-level analysis of differen-

tial expression. The main challenge is that a system of linear

equations has to be solved before calculating the posterior dis-

tribution of log fold change (Jiang andWong, 2009), which is out

of scope of this study. In general, we believe that the ranking of

gene expression changes by GFOLD, using a reliable measure of

fold change, is more biologically meaningful than ranking by P-

value. This concept can be broadly applied, beyond RNA-seq or

GRO-seq, to other types of genomic data, including ChIP-seq.
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