
Vol. 28 no. 24 2012, pages 3211–3217
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts611

Sequence analysis Advance Access publication October 15, 2012

SortMeRNA: fast and accurate filtering of ribosomal RNAs in

metatranscriptomic data
Evguenia Kopylova1,2,*, Laurent Noé1,2 and Hélène Touzet1,2

1LIFL (UMR CNRS 8022 Université Lille 1) and 2Inria Lille Nord-Europe, 59655 Villeneuve d’Ascq, France

Associate Editor: Ivo Hofacker

ABSTRACT

Motivation: The application of next-generation sequencing (NGS)

technologies to RNAs directly extracted from a community of organ-

isms yields a mixture of fragments characterizing both coding and

non-coding types of RNAs. The task to distinguish among these and

to further categorize the families of messenger RNAs and ribosomal

RNAs (rRNAs) is an important step for examining gene expression

patterns of an interactive environment and the phylogenetic classifi-

cation of the constituting species.

Results: We present SortMeRNA, a new software designed to rapidly

filter rRNA fragments from metatranscriptomic data. It is capable of

handling large sets of reads and sorting out all fragments matching to

the rRNA database with high sensitivity and low running time.

Availability: http://bioinfo.lifl.fr/RNA/sortmerna

Contact: evguenia.kopylova@lifl.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on May 16, 2012; revised on September 17, 2012; accepted

on October 9, 2012

1 INTRODUCTION

The application of next-generation sequencing (NGS) technolo-

gies for metatranscriptomic profiling has been a successful ven-

ture in practice. Scientists may now gain access to the full set of

coding and non-coding RNA in a community of organisms,

which becomes particularly important for samples that cannot

be cultivated outside their native environment (Bomar et al.,

2011; Shi et al., 2009; Stewart et al., 2011). The initial challenge

of metatranscriptomic sequenced data analysis is to sort apart

the RNA fragments based on their biological significance.

Messenger RNAs (mRNAs) cast a universal glimpse on the

gene expression patterns between interactive species. Likewise,

the ribosomal RNAs (rRNAs) disclose information on the com-

munity’s structure, evolution and biodiversity, and prevail in

classification and phylogenetic analyses. The rRNA can com-

prise up to 90% of total RNA. Various prior-to-sequencing pro-

cedures, such as mRNA amplification kits, can help to enrich the

yield of mRNA (Gilbert and Hughes, 2011). However, these kits

are not fully satisfactory, as secondary steps may be required to

verify if the resulting material is an accurate representative of the

initial samples (Nygaard et al., 2005). New software has been

recently developed to address this issue; this software can identify

and isolate rRNA fragments from a set of sequenced reads. The

first set of programs—Meta-RNA 3 (Huang et al., 2009), SSU-

ALIGN (Nawrocki et al., 2009) and rRNASelector (Lee et al.,

2011)—shares a common algorithmic approach to represent an

rRNA family database using a probabilistic model. Both

Meta-RNA and rRNASelector use prebuilt Hidden Markov

Models (HMM) and consequently sort reads against the data-

base with the HMMER3 package (Eddy, 1998), whereas

SSU-ALIGN uses covariance models to support secondary

structure information. An alternative algorithm outside the

domain of probabilistic models is riboPicker (Schmieder et al.,

2012), which uses a modified version of the Burrows-Wheeler

Aligner (Li and Durbin, 2009). Lastly, BLASTN (Altschul

et al., 1990) is used in numerous home-made workflows for

this problem. With BLASTN, however, reads should be com-

pared with all sequences of an rRNA database to achieve a good

sensitivity level. In all cases, computational time is still an issue to

handle large collections of reads.
In this article, we describe SortMeRNA, an efficient filter

requiring only a representative set for an rRNA database and

rapidly sorting through millions of reads. The underlying algo-

rithm is analogous to the seeding strategy, focusing on finding

many short regions of similarity between an rRNA database and

a read. SortMeRNA also takes advantage of redundancy be-

tween homolog sequences, as HMMs do, and builds a com-

pressed model of all rRNA sequences. The generated results

adhere to the accuracy of the HMM-based programs and are

computed in a fraction of the time.

2 SYSTEM AND METHODS

2.1 Algorithm overview

We assume having a collection of unassembled reads and a data-

base of rRNA sequences, and we want to sort out reads that

match to the database. The general principle behind our algo-

rithm is to search for many short similarity regions between each

read and the rRNA database. We scan each read with a sliding

window, and the accepted reads are those that have more than a

threshold number of windows present in the database. For a

given read and a given window on the read, we authorize one

error (substitution, insertion or deletion) between the window

and the rRNA database.
To achieve this task in an efficient manner, the rRNA data-

base is stored in a Burst trie coupled with a lookup table that

speeds up the access to the Burst trie and takes advantage of

conserved regions in the rRNA sequences. For a given read and

a given window on the read, we find the set of windows present*To whom correspondence should be addressed.

� The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3211

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3211/246053 by guest on 13 M
arch 2024

in Burst trie using the universal Levenshtein automaton. This

comparison is done by performing a parallel traversal between

the Levenshtein automaton and the Burst trie.
Figure 1 globally illustrates this framework. The length s of the

sliding window is a parameter of the algorithm, further discussed

in Section 2.5. The acceptance of a read depends also on the ratio

of matched windows. Let r be this parameter. This choice will

also be discussed in Section 2.5.

2.2 The Burst trie to store an rRNA database

The Burst trie (Heinz et al., 2002) is a fast and versatile data
structure that effectively stores a large number of strings such as

an rRNA database. Unlike the standard trie, the binary search

tree or other variants, which often adopt an equal rate of
memory access among the cache or main memory, the Burst

trie can exploit the modern cache architecture by addressing
memory closest to the CPU. It is capable of reducing the

Fig. 1. SortMeRNA algorithm overview. The set of representative rRNA sequences is preprocessed in the following way: (1a) The lookup table stores all

of the s 2mers and their number of occurrences that exist in the rRNA database. (1b) The Burst trie is a data structure that stores the rRNA database.

(2a) The algorithm takes as input a collection of reads provided by the user, and for each read, a sliding window w of even length s 2 ½14, 20� moves

across the read. (2b) For each window w, the prefix w½1:: s2� and suffix w½s:: s2þ 1� are translated into a decimal value between 0 and 2s � 1. (3) If the value

exists in the lookup table with a high frequency (see Section 1.1 of the Supplementary File), the remaining part of the window is searched in the Burst trie.

This is done with a cyclic traversal between the universal Levenshtein automaton and the Burst trie, which determines whether the subpattern is present

in the rRNA database with at most one error. For every letter traversed in the Burst trie, a bitvector is passed to the universal Levenshtein automaton to

verify whether the number of encountered errors remains �1. (4) After all windows have been traversed, if the number of accepted windows exceeds a

certain threshold (see in Section 2.5), then the read is accepted and classified as rRNA

3212

E.Kopylova et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3211/246053 by guest on 13 M
arch 2024

number of trie nodes by 80% while maintaining performance

similar to a hash table (Askitis and Zobel, 2010). Given a se-

quence vz, the Burst trie can store the prefix v as a link of trie

nodes and the suffix z as an array of characters appended to the

last trie node. Normally, subtrees become more sparse in the

depth of a trie, and representing them as reduced ‘buckets’ of

contiguous memory preserves space and boosts cache efficiency.

When the number of sequences sharing a common prefix v

reaches a fixed threshold, the appended bucket of suffixes

bursts to form a new trie node and smaller sub-buckets. To op-

timize memory access during subtree traversal, the threshold size

of a bucket should be less than the lower-level cache. A system-

atic use of this trie can be observed in the fastest sorting algo-

rithm for large sets of strings, the Burstsort (Sinha and Zobel,

2004).

Following a similar method of an array-structured trie as

described in Sinha et al. (2006), our Burst trie is assembled

exactly on the nucleotide alphabet {a, c, g, u}. As illustrated in

Figure 2, the trie stores every unique (sþ 1)mer substring in an

rRNA database, as we look at windows of length s with at most

one error between any two words. The information on whether

the (sþ 1)mer belongs to a forward strand, the reverse comple-

ment or both (strand), and its origin (hashid) follows each entry

in a bucket. When the exact location of the (sþ 1)mer needs to be

found in an rRNA database, the hashid value serves as an index

in a complementary table storing this information. Nearly

one-quarter of the 16S rRNA positions are 99–100% conserved

(Cannone et al., 2002; Mears et al., 2002), and this moderates the

size of the trie, as many identical or closely similar substrings are

shared between sequences.

We use an additional optimization to improve access into the

Burst trie. Because we consider at most one error between the

window and the database, we have this simple property: for every

two words such that the edit distance between them is bounded

by 1, there exists a common substring of length s 2, which is

either a prefix or a suffix of the two words. We apply this

property to construct a lookup table storing all s 2mers existing

in the rRNA database. Note that for s in [14, 20], transposing

the nucleotide alphabet onto a binary equivalent, such that {a, c,

g, u}¼ {00, 01, 10, 11}, we can represent each s 2mer in s bits,

which maps to a unique integer value. On completion of the

forward and reverse Burst tries, a scan of each trie is performed

to record the existence of all s 2mers and, if present, associated

pointers to the trie node representing the immediate letter fol-

lowing the prefix. The precomputed lookup table quickly deter-

mines whether an exact match of the prefix or suffix exists in the

Burst tries, and furthermore it provides us with direct access to

the remaining part of the word in the Burst trie.

The lookup table also allows us to take into account distribu-

tion of s 2mers in the rRNA database. A multiple sequence

alignment of an rRNA database can clearly define areas of

high nucleotide conservation and emphasize the evolutionary

origins shared between organisms. In a similar manner, the

lookup table defines highly conserved areas by keeping only fre-

quent s 2mer occurrences in the rRNA database. Before a

window is traversed in the Burst trie, its prefix or suffix must

exist in the lookup table. This notion enforces that a read

matches closely to one region in a database rather than multiple

scattered ones leading to a false alignment (see Section 1.1 of the
Supplementary File).

2.3 The universal Levenshtein automaton

The classical non-deterministic Levenshtein automaton for a pat-

tern p and a number of errors k recognizes the set of strings that
are at most edit distance k to p (Fig. 3). This automaton is not
suitable for computation because of the presence of multiple

active states and epsilon transitions. This may be overcome by
transforming the automaton into an equivalent deterministic
form. However, the resulting automaton may be exponential in

the length of p and likewise dependent on it. In studies by Schulz
and Mihov (2002) and Mihov and Schulz (2004), a universal
Levenshtein automaton was characterized based on insightful

observations of the classical one. The term universal conveys its
one-time construction and independency of p. The intuition
arises from the symmetry of the non-deterministic automaton,

which applies the same set of transition rules to every new input
character, and each new set of active states is a subset of a known
bounded superset. A set of bitvectors symbolizing the homology
of p and a candidate string serve as input to the automaton. In

full generality, the size of the automaton is exponential in a func-
tion of k (Mitankin, 2005). In our case, as k¼ 1, it remains suf-
ficiently small. The set of bitvectors representing the similarity of

two strings is precomputed using the following definition.

Definition 2.1. (Mihov and Schulz, 2004) The characteristic

vector ~�ðw,VÞ of a symbol w 2
P

in a word V ¼ v1 . . . vn 2
P�

is the bitvector of length n where the ith bit is set to 1 iff w ¼ vi.

The technical details of n � 2kþ 2 and the prefix of k symbols
of ‘$’ appended to the pattern p can be found in the article by
Mihov and Schulz (2004).

Example 2.1. Let k¼ 1, the input word W¼ acaga and the pat-

tern p¼ $acuaga, then �1ða, $acuÞ ¼ 0100, �2ðc, acuaÞ ¼ 0100,
�3ða, cuagÞ ¼ 0010, �4ðg, uagaÞ ¼ 0010, �5ða, agaÞ ¼ 101 are
the computed characteristic bitvectors. It follows that
f�1, . . . ,�5g is the characteristic bitvector array carrying the simi-

larity information of x and p.

Beginning from �1 to �jsj, the bitvectors are sequentially
passed into the universal Levenshtein automaton. Each bitvector
leads to a transition between states (in constant time) corres-
ponding to the number of errors encountered thus far. If some

�i reaches a failure state, greater than k errors exist between s
and p, and the strings are rejected. The automaton only recog-
nizes two strings if the input of the last bitvector �jsj leads to a

final state.

2.4 Match of a read with the dynamic bitvector table

At this point, matching a window w of length s on the read

against the rRNA database amounts to first checking whether
the prefix or the suffix of length s 2 of w is present in the lookup
table, then determining whether the universal Levenshtein au-

tomaton for w recognizes some word in the Burst trie. For the
second step, we have to implement a rapid traversal of the
Levenshtein automaton, which relies on the precomputation of
bitvectors for w. At every depth of the Burst trie, we assume that

the symbol q in �iðq,VÞ appears as one of {a, c, g, u} with equal

3213

SortMeRNA

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3211/246053 by guest on 13 M
arch 2024

probability. Ultimately during traversal, the bitvector of the

actual residing nucleotide is chosen. Figure 4 shows the precom-

putation of bitvectors for p¼ $acuaga in Example 2.1. If the

string x¼ acaga existed in the trie, then the highlighted set of

bitvectors {0100, 0100, 0010, 0010, 101} would form the bitvector

array (see Section 1.2 of the Supplementary File for a graphic

example).

When the window is shifted by one position, the subsequent

pattern p changes simply by the removal of the first character in

the prefix and the addition of a new character in the suffix.

Hence, rather than recomputing the bitvector table for each

new window, a series of bitwise operations is taken to modify

it, as demonstrated in Figure 5.
Following a preorder path, the traversal of the Burst trie

begins at the root node. Through knowledge of the nucleotide

letter and the depth of the node being visited, the coinciding

bitvector is accessed in the precomputed bitvector table, indiffer-

ent to whether the node is a trie node or a character in the

bucket. Subsequently, the bitvector is passed to the universal

Levenshtein automaton, which decides whether to continue tra-

versal of the current subtree or backtrack to the first branching

point with a non-failure Levenshtein state and recommence tra-

versal of a new substree. In this manner, a complete traversal of

the Burst trie remains unlikely, as backtracking occurs each time

the edit distance between the pattern and a traversed branch

exceeds k. To further speed up Burst trie traversal for every

window, a ‘backwards dictionary’ approach as described in

Mihov and Schulz (2004) was implemented. The original algo-

rithm builds two dictionaries, one for the forward strings and the

second for their reverse equivalents. In this manner, the same

window can be traversed quickly from both ends.

2.5 Parameter setting

The algorithm depends on two parameters: the length s of the

sliding window, and the minimal proportion r of accepted win-

dows in a read. To find a robust choice for s and r, we ran the

algorithm for several values of s and r on several rRNA data-

bases and for several sets of reads.

We purposely designed four databases with distinctive fea-

tures: small 16S and large 23S subunit, varying identity percent-

age and from distinct phylogeny tree subparts,

Set 1: 16S, 80% identity (2262 rRNA)

Set 2: 16S, 80% identity, truncated phylogeny tree (2187

rRNA)

Set 3: 23S, 95% identity (1969 rRNA)Set 4: 23S, 95% identity,

truncated phylogeny tree (1906 rRNA).

Fig. 2. Let s¼ 16, the Burst trie below is constructed on the first six 17mers of an rRNA sequence. The ‘char flag’ describes whether a pointer is set to a

trie node ‘1’, a bucket ‘2’ or neither ‘0’. Additional information on the origin of the 17mer directly follows each element, as shown in the dashed bucket

Fig. 3. The non-deterministic Levenshtein automaton for p¼ acgu and

k¼ 1. The s#e notation for each state corresponds to s number of char-

acters read in the pattern p and e number of errors recorded. The initial

state is 0#0, and the three final states are 3#0, 4#0 and 4#1. Each non-final

state has three outgoing arcs, one for each type of edit operation

Fig. 4. The precomputed bitvector table for pattern p¼ $acuaga covering

all possibilities of q for k¼ 1. The first bit in each entry of column i¼ 0

represents the $ symbol and is always set to ‘0’

3214

E.Kopylova et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3211/246053 by guest on 13 M
arch 2024

These databases were constructed by applying the ARB package

(Ludwig et al., 2004) and UCLUST (Edgar, 2010) to sequences

from SILVA (Pruesse et al., 2007) (see Section 2.1 in the

Supplementary File). Next, we constructed datasets of simulated

rRNA and non-rRNA reads using the software MetaSim

(Richter et al., 2008). We used two sequencing error models,

Roche 454 and Illumina, because the errors for Roche 454

mainly originate as indels and for Illumina as substitutions.

The length of the reads differs as well: �200nt for Roche 454

and 100 nt for Illumina technology. To test the sensitivity on Sets

1 and 3, we constructed 300 000 Roche 454 reads and 1 million

Illumina reads on the entire SILVA database minus the se-

quences used for the representative rRNA database. To measure

the sensitivity for discovering new species with Sets 2 and 4, the

same number of reads was simulated only on the truncated sec-

tions of the bacteria phylogeny tree. To test the selectivity, the

non-rRNA reads were simulated using the NCBI bacterial gen-

omes library with rRNAs masked (see Section 2.2 in the

Supplementary File).

The parameter values were varied as: s 2 ½14, 20� and r 2 ð0, 1Þ.

The main conclusion is that s¼ 18, r¼ 0.15 for Roche 454 reads

and s¼ 18, r¼ 0.25 for Illumina reads give best sensitivity/select-

ivity balance for all rRNA databases. Moreover, varying r within

short ranges does not significantly affect the results (see Section

2.3 of the Supplementary File). We use these values as default

settings in all subsequent analyses.

3 IMPLEMENTATION

SortMeRNA is implemented in Cþþ and freely distributed

under the GNU general public license. It can be downloaded

from http://bioinfo.lifl.fr/RNA/sortmerna. The software uses

OpenMP functions to parallelize filtering of the reads. The
input criteria are a fasta/fastq file of letter space reads produced

by Roche 454 or Illumina technologies, and a fasta file of rRNA
sequences. There are eight rRNA databases included in the soft-

ware package covering the small (16S/18S), large (23S/28S) and
5/5.8S ribosomal subunit rRNAs, which were all derived from

the SILVA and RFAM databases. Additionally, the user can

work with his or her own RNA databases.

4 EXPERIMENTAL EVALUATION

The performance of SortMeRNA was measured in terms of sen-

sitivity, selectivity and real-data analysis compared with the soft-

ware SSU-ALIGN (Nawrocki et al., 2009), Meta-RNA (Huang
et al., 2009), rRNASelector (Lee et al., 2011), riboPicker

(Schmieder et al., 2012) and BLASTN (Altschul et al., 1990).
All tests were performed on an Intel(R) Xeon(R) CPU W3520

2.67 GHz machine with 8 GB of RAM, L1 cache size of 32 KB,
L2 cache size of 256 KB and L3 cache size of 8192 KB. Because

riboPicker and SSU-ALIGN do not provide a direct option for

multithreading, all tests were carried out using one thread.

4.1 rRNA databases

We created two new representative databases: 16S rRNA with

85% identity (7659 sequences) and 23S rRNA with 98% identity
(2811 sequences) (see Section 3.2 of the Supplementary File). The

16S rRNA database was used by SortMeRNA, riboPicker,
BLASTN and SSU-ALIGN, and the 23S rRNA database was

used by SortMeRNA, riboPicker and BLASTN. SSU-ALIGN

was written for aligning small ribosomal subunits and does not
provide models for 23S rRNA. riboPicker was also tested with a

more comprehensive database made available from their web
site: all 16S and 23S rRNA sequences taken from SILVA,

RDP-II, Greengenes, NCBI archaeal and bacterial genomes
and HMP (3232 371 16S and 1 960 223S unique sequences).

The results for this larger database are indicated by

riboPicker* in all subsequent tables. For Meta-RNA and
rRNASelector, we used the HMMs provided with the software.

4.2 Simulated reads

4.2.1 Sensitivity for 16S rRNA In all, 300 000 Roche 454

and 1 million Illumina 16S rRNA reads were simulated in the
same manner as described in Section 2.5. The performance results

can be viewed in Table 1. All software programs except
riboPicker and SSU-ALIGN have a sensitivity level497%, and

499% for BLASTN and SortMeRNA. The sensitivity for
riboPicker is low (56%) because BWA-SW works well with

error rates 2–3% for 100–200nt reads, and loses sensitivity for

new species. As expected, the sensitivity increases with a larger
database (indicated riboPicker*). Considering the computation

time, SortMeRNA runs in52 min, or 72� faster than the next
fastest tool with proportionate sensitivity (Meta-RNA). Note also

that BLASTN executes at a slow speed (several hours) because
reads should be compared with all sequences in the representative

database.

4.2.2 Selectivity for 16S rRNA One million Roche 454 and

1 million Illumina non-16S rRNA reads were simulated in the

Fig. 5. The modification of the bitvector table from pattern p1 ¼ $acuaga

to p2 ¼ $cuagaa for k¼ 1. Columns 0–2 of p2 are equal to columns 1–3 of

p1, except for column 0, where the most significant bit (MSB) of every

bitvector represents the symbol $ and is set to ‘0’. Column 3 of p2 equals

to column 4 of p1 with an additional bit appended. The appended bit is

set to ‘1’ in the bitvector corresponding to the newly appended character;

otherwise, it is set to 0. Column 4 of p2 is equal to column 3 of p2,

although the MSB is not considered. The same rule applies to column

5 of p2, where the two MSBs of the column 3 bitvectors are not

considered

3215

SortMeRNA

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3211/246053 by guest on 13 M
arch 2024

same manner as described in Section 2.5. The performance re-
sults can be viewed in Table 2. All programs have a selectivity

level 499.98%. The number of false positives for the

HMM-based programs remains comparable with SortMeRNA

for both Illumina and Roche 454 reads. The difference in the

simulated data results between Meta-RNA and rRNASelector

can be attributed to the number of bacteria versus archaea

rRNA sequences used in the construction of the HMMs, as

well as additional parameter settings in rRNASelector.

riboPicker* and BLASTN show the lowest selectivity.

Concerning the running time, the order of the fastest programs

is rRNASelector, Meta-RNA and SortMeRNA. Both

rRNASelector and Meta-RNA use the HMMER3 package,

which applies a prefilter to quickly reject sequences that would

score very low in the HMM. This acceleration heuristic gives

these programs a competitive advantage on the artificial dataset
for selectivity where all sequences are negative.

Results for 23S rRNAs are analogous in terms of accuracy and

running time. They can be found in Table A and Table B under

Section 3.3 of the Supplementary File.

4.3 Real data

The metatranscriptomic datasets SRR106861 of a photosynthetic

microbial community and SRR013513 of a tidal salt marsh creek

from 454 sequencing were downloaded from the NCBI Sequence

ReadArchive. The results for 16S and 23S can be viewed inTables

3 and 4, respectively, and the overlap of the results between tools

in Figures 6 and 7. The results obtained with SortMeRNA are
close to the ones obtained with HMM-based methods. riboPicker

finds only a fraction of all potential rRNAs, which confirms its

low sensitivity for small databases. The majority of 16S reads

found only by riboPicker* (1298) map to mRNA. For 23S ana-

lysis in Table 4 and Figure 7, �99% of the excess reads of

Meta-RNA (12112) and rRNASelector likewise map to 28S,

along with 83% of the (624) reads found only by BLASTN and

Meta-RNA. The (537) reads found only by BLASTN map to

mRNA, 16S rRNA and other non-coding RNA.

5 DISCUSSION

SortMeRNA has shown to be a rapid and efficient filter that can

sort a large set of metatranscriptomic reads with high accuracy

comparable with the HMM-based programs. SortMeRNA im-

plements seeds with errors (substitution and indel), and this im-
portant characteristic renders the algorithm robust to errors of

different types of sequencers while providing the ability to dis-

cover new rRNA sequences from unknown species.

The method used by the algorithm is universal and flexible.
The database can be constructed on any family of sequences

provided by the user. Moreover, the algorithm does not require

a multiple sequence alignment file to build the database, as

HMM-based programs do, and this is an advantage when se-

quences are hard to align or only partial sequences are available.

Another advantage of SortMeRNA is the small number of

Table 1. Sensitivity

Software Illumina Roche 454

rRNA Run time Latency Memory (%) Sensitivity (%) rRNA Run time Latency Memory (%) Sensitivity (%)

SortMeRNA 998615 1min39 s 1� 8.5 99.861 299979 1min 43 s 1� 6.3 99.993

riboPicker 558607 18min 45 s 11� 6.8 55.860 123024 18min 36 s 11� 5.6 41.008

riboPicker* 999941 6h 33min 238� 35.3 99.994 299999 9h 314� 34 99.999

BLASTN 995322 23h 52min 868� 3.0 99.532 299978 18h 35min 649� 1.4 99.992

Meta-RNA 983332 2h 72� 33.3 98.333 299980 1h 57min 68� 12.9 99.993

rRNASelector 974118 1h 47min 64� 17.4 97.411 299976 2h 70� 7 99.992

SSU-ALIGN 971221 6h 49min 248� 0.1 97.122 299902 5h 50min 204� 0.1 99.967

One million of MetaSim-simulated Illumina (100 nt) and 300 000 Roche 454 (�200 nt) rRNA reads against a representative 16 S rRNA database of 7659 sequences.

Table 2. Selectivity

Software Illumina Roche 454

rRNA Run time Latency Memory (%) Selectivity (%) rRNA Run time Latency Memory (%) Selectivity (%)

SortMeRNA 17 2min9 s 2� 7.6 99.9983 13 3min42 s 1� 10.2 99.9987

riboPicker 7 10min 22 s 8� 6.7 99.9993 3 29min 45 s 9� 16.8 99.9997

riboPicker* 158 56min 37 s 42� 35.1 99.9842 53 2h 43min 49� 45.2 99.9947

BLASTN 33 14min 22 s 11� 0.3 99.9967 33 16min 12 s 5� 0.3 99.9967

Meta-RNA 11 1min33 s 1� 0.1 99.9989 11 3min41 s 1� 0.2 99.9989

rRNASelector 10 1min20 s 1� 0.1 99.9990 11 3min21 s 1� 0.2 99.9989

SSU-ALIGN 8 3h 51min 173� 0.1 99.9992 11 10h 30min 188� 0.1 99.9989

One million of MetaSim-simulated Illumina (100 nt) and 1 million Roche 454 (�200 nt) non-rRNA reads against a representative 16S rRNA database of 7659 sequences.

3216

E.Kopylova et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3211/246053 by guest on 13 M
arch 2024

parameter settings required by the program (see Section 2 of the

Supplementary Data).

ACKNOWLEDGEMENTS

Project MAPPI is associated with the Tara Oceans expedition

(oceans.taraexpeditions.org), where the principal tasks involve

the development of new software for mapping and assembling

metagenomic and metatranscriptomic data.

Funding: This research was supported by the French National

Agency for Research (grant ANR-2010-COSI-004).

Conflict of Interest: none declared.

REFERENCES

Altschul,S. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Askitis,N. and Zobel,J. (2010) Redesigning the string hash table, burst trie, and bst

to exploit cache. ACM JEA, 15, 7–8.

Bomar,L. et al. (2011) Directed culturing of microorganisms using metatranscrip-

tomics. MBio, 2, e00012–11.

Cannone,J. et al. (2002) The comparative RNA web (CRW) site: an online database

of comparative sequence and structure information for ribosomal, intron, and

other RNAs. BMC Bioinformatics, 3, 15.

Eddy,S. (1998) Profile hidden Markov models. Bioinformatics, 14, 755–763.

Edgar,R. (2010) Search and clustering orders of magnitude faster than BLAST.

Bioinformatics, 26, 2460–2461.

Gilbert,J. and Hughes,M. (2011) Gene expression profiling: metatranscriptomics.

Methods Mol. Biol., 733, 195–205.

Heinz,S. et al. (2002) Burst tries: a fast, efficient data structure for string keys. ACM

Trans. Inf. Syst., 20, 192–223.

Huang,Y. et al. (2009) Identification of ribosomal RNA genes in metagenomic

fragments. Bioinformatics, 25, 1338–1340.

Lee,J. et al. (2011) rRNASelector: a computer program for selecting ribosomal

RNA encoding sequences from metagenomic and metatranscriptomic shotgun

libraries. J. Microbiol., 49, 689–691.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

burrows-wheeler transform. Bioinformatics, 25, 1754–1760.

Ludwig,W. et al. (2004) ARB: a software environment for sequence data. Nucleic

Acids Res., 32, 1363–1371.

Mears,J. et al. (2002) Modeling a minimal ribosome based on comparative sequence

analysis. J. Mol. Biol., 321, 215–234.

Mihov,S. and Schulz,K. (2004) Fast approximate search in large dictionaries. J.

Comput. Ling., 30, 451–477.

Mitankin,P. (2005) Universal Levenshtein Automata. Building and Properties.

Master’s Thesis. Bulgaria, Sofia University.

Nawrocki,E. et al. (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics,

25, 1335–1337.

Nygaard,V. et al. (2005) Limitations of mRNA amplification from small-size cell

samples. BMC Genomics, 6, 147.

Pruesse,E. et al. (2007) Silva: a comprehensive online resource for quality checked

and aligned ribosomal RNA sequence data compatible with ARB.Nucleic Acids

Res., 35, 7188–7196.

Richter,D. et al. (2008) A sequencing simulator for genomics and metagenomics.

PLoS One, 3, e3373.

Schmieder,R. et al. (2012) Identification and removal of ribosomal RNA sequences

from metatranscriptomes. Bioinformatics, 28, 433–435.

Schulz,K. and Mihov,S. (2002) Fast string correction with Levenshtein automata.

IJDAR, 5, 67–85.

Shi,Y. et al. (2009) Metatranscriptomics reveals unique microbial small RNAs in the

ocean’s water column. Nature, 459, 266–269.

Sinha,R. and Zobel,J. (2004) Cache-conscious sorting of large sets of strings with

dynamic tries. ACM JEA, 9, Article No. 1.5, doi: 10.1145/1005813.1041517.

Sinha,R. et al. (2006) Cache-efficient string sorting using copying. ACM JEA, 11,

Article No. 1.2, doi: 10.1145/1187436.1187439.

Stewart,F. et al. (2011) Metatranscriptomics analysis of sulfur oxidation genes in the

endosymbiont of solemnya velum. Front. Microbiol., 2, 134.

Fig. 6. Venn diagram for reads classified as 16S rRNA by BLASTN,

Meta-RNA, SortMeRNA and riboPicker* in the SRR106861

metatranscriptome

Fig. 7. Venn diagram for reads classified as 23S rRNA by BLASTN,

Meta-RNA, SortMeRNA and riboPicker* in the SRR013513

metatranscriptome

Table 3. Runtime for the SRR106861 metatranscriptome of 105 873

reads against a 16S rRNA database of 7659 sequences

Software rRNA Run time Latency Memory (%)

SortMeRNA 27046 34 s 1� 4.8

riboPicker 11389 4min 10 s 7� 2.3

riboPicker* 27195 39min 3 s 69� 30.8

BLASTN 27061 1h 29min 157� 0.6

Meta-RNA 27111 10min 33 s 18� 1.8

rRNASelector 27085 10min 40 s 18� 0.8

Table 4. Runtime for the SRR013513 metatranscriptome of 207 368

reads against a 23S rRNA database of 2811 sequences

Software rRNA Run time Latency Memory (%)

SortMeRNA 94395 51 s 1� 3.8

riboPicker 71937 10min 2 s 12� 3.9

riboPicker* 84152 36min 27 s 43� 5.5

BLASTN 94439 3h 42min 261� 0.9

Meta-RNA 106698 1h 33min 109� 4.8

rRNASelector 107900 1h 36min 113� 3

3217

SortMeRNA

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3211/246053 by guest on 13 M
arch 2024

