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ABSTRACT

Summary: Hadoop-BAM is a novel library for the scalable
manipulation of aligned next-generation sequencing data in the
Hadoop distributed computing framework. It acts as an integration
layer between analysis applications and BAM files that are processed
using Hadoop. Hadoop-BAM solves the issues related to BAM data
access by presenting a convenient API for implementing map and
reduce functions that can directly operate on BAM records. It builds
on top of the Picard SAM JDK, so tools that rely on the Picard API are
expected to be easily convertible to support large-scale distributed
processing. In this article we demonstrate the use of Hadoop-BAM
by building a coverage summarizing tool for the Chipster genome
browser. Our results show that Hadoop offers good scalability, and
one should avoid moving data in and out of Hadoop between analysis
steps.
Availability: Available under the open-source MIT license at http://
sourceforge.net/projects/hadoop-bam/
Contact: matti.niemenmaa@aalto.fi
Supplementary information: Supplementary material is available at
Bioinformatics online.
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1 INTRODUCTION
Next-generation sequencing (NGS) technologies provide unprece-
dented opportunities for life science research. In order to exploit
this potential to its full extent, new computational approaches are
needed for the efficient processing of large datasets. Nearly all
NGS applications rely on sequence alignment as the first analysis
step. The alignment data is commonly stored in the standardized,
compact and indexed BAM (Binary Alignment/Map) format (Li
et al., 2009), which is then used for further analysis such as SNP
genotyping, peak calling or detecting differential gene expression.
As data sizes increase more rapidly than processing power and disk-
read speed, many of these bioinformatics tasks have been ported
to utilize the map-reduce distributed processing framework (Taylor,
2010). Existing solutions, such as GATK (McKenna et al., 2010),
SeqWare Query Engine (O’Connor et al., 2010) and Seal (Pireddu
et al., 2011), provide useful parts for NGS data analysis pipelines.
However, they do not allow efficient parallel access to BAM files.
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Map-reduce is a distributed computing paradigm that has been
designed for processing collections of relatively independent data
items, and is therefore well suited for sequencing reads (Dean and
Ghemawat, 2008). It divides data between processing nodes by
splitting the files into chunks, which are then processed separately.
The user has to write map and reduce functions, where the map
function does the actual processing of a chunk, and the reduce
function combines partial results. The most popular open source
implementation of map-reduce is Apache Hadoop (White, 2009).

BAM files are conceptually a good fit for map-reduce style chunk
processing, but their low level structure hinders adoption. Typically
map-reduce jobs process data chunks in line-based text format,
where identifying entries is simple as line boundaries are denoted
by newline characters. Detecting entry boundaries and accessing
the binary content of (compressed) BAM files, however, is non-
trivial. On the other hand, using plain Hadoop with text-based SAM
files results in several times greater disk and network loads. Text
formats also complicate the pipeline as data is typically stored in
BAM files. We developed the Hadoop-BAM Java library to act as
an integration layer between analysis applications and BAM files
stored in the Hadoop Distributed File System (HDFS).

2 METHODS
Hadoop-BAM solves the issues related to BAM splitting, presenting a
convenient API for implementing map and reduce functions for Hadoop. The
library supports two modes of access to BAM files. The first mode relies on
a precomputed index that maps byte offsets to BAM records and thus allows
random access, which is required to process chunks that can result from
Hadoop splitting the BAM data arbitrarily. The second mode does not use
an index and instead relies on a two-level detection routine. The higher level
locates boundaries between compressed blocks via BGZF magic numbers,
while the lower level detects BAM block boundaries via redundancies in the
BAM file format. For details we refer to the Supplementary Material.

The library exposes a Picard compatible Java API to programmers.
Hence, Hadoop code can be written without considering the issues of BGZF
compression, block boundary detection, BAM record boundary detection, or
parsing of raw binary data. Tools developed upon the PicardAPI can be easily
converted to support large-scale distributed computing with Hadoop-BAM.

2.1 Evaluation
To demonstrate the library, we use it for calculating coverage summaries
for the Chipster genome browser. Chipster is a biologist-friendly analysis
software for high-throughput data (Kallio et al., 2011), and its genome
browser allows users to zoom smoothly from whole chromosome to
nucleotide level. Good interactive performance with large BAM files is
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Fig. 1. Chipster genome browser using preprocessed data to show an
interactive high level overview of coverage profile.
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Fig. 2. Mean speedups for summarizing a 50 GB BAM file with Hadoop,
using heuristic splitting. Due to the cluster usage policy, the maximum
number of parallel worker nodes was restricted to 15.

achieved by precomputing summary files, which are used to create zoomed
out views (Fig. 1).

Implementing summarizing is simple, because Hadoop-BAM allows
developers to treat BAM files as Hadoop input/output formats, which
includes the provision of a custom partitioner for the input data. The library
further extends Hadoop to offer SAMRecord from the Picard toolbox as
a map-reduce value type. In essence, the task is to extract the genomic
coordinates from the given BAM file, sort the resulting records first by their
center point, and for each consecutive group of records of size at most N ,
output a summarized record containing mean position and group size.

The tool was implemented on top of Hadoop version 0.20.2, which was
the latest stable version as of writing. Intermediately data was compressed
via hadoop-lzo. For benchmarking, we relied on a test cluster with 112 nodes,
each of which has two six-core AMD Opteron 2435 CPUs with a clock speed
of 2.6 GHz and 250 GB of local disk space, and InfiniBand interconnect. A
50 GB BAM file containing whole-genome sequencing data from the 1000
Genomes Project was summarized into groups of size 2k for k ∈{1,2,...,16}
during a single map-reduce run.

Total execution time is already well under an hour with eight worker
nodes. This is very reasonable for a 50 GB dataset. As shown in Fig. 2,

the map-reduce job scales well up to about eight worker nodes, after which
scaling worsens. This also has a significant effect on the total time: starting at
the four worker mark, the job actually takes less time than the file transfers.
As the import and export of data requires much time, we conclude that
when designing Hadoop based pipelines, one should avoid moving data in
and out of Hadoop between analysis steps. Performance is also bound by
the interconnect network. This result indicates that BAM, as a binary and
compressed format, is suitable for large-scale NGS data analysis in the cloud.
Using SAM or another text format would greatly reduce performance, as
there would be far more data to transfer. All in all, compact formats are good
not only for storage, but also for distributed processing with map-reduce.

3 DISCUSSION
To conclude, we presented how the combination of a compact data
format such as BAM and a powerful distributed framework Hadoop
can be used to efficiently process large NGS datasets. The Hadoop-
BAM library provides an easy-to-use interface for their integration
by resolving the incompatibilities these two technologies have. We
predict that similar integration efforts will become common when
cloud computing is taken into wider use in NGS data analysis. While
our use case consisted of coverage calculations, it is important to
note that Hadoop-BAM can be used for virtually any analysis task
based on BAM files, ranging from variant detection to peak calling.

In order to make Hadoop-BAM more accessible, we are currently
evaluating simpler and higher-level Hadoop-based query languages
for working with BAM files. Examples of such include Apache
Pig (Olston et al., 2008) and Hive (Thusoo et al., 2010). We have
also developed a command line interface and are extending it to
provide Samtools-like functionality.
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