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ABSTRACT

Motivation: The recognition of named entities (NER) is an elementary
task in biomedical text mining. A number of NER solutions have been
proposed in recent years, taking advantage of available annotated
corpora, terminological resources and machine-learning techniques.
Currently, the best performing solutions combine the outputs from
selected annotation solutions measured against a single corpus.
However, little effort has been spent on a systematic analysis of
methods harmonizing the annotation results and measuring against
a combination of Gold Standard Corpora (GSCs).
Results: We present Totum, a machine learning solution that
harmonizes gene/protein annotations provided by heterogeneous
NER solutions. It has been optimized and measured against a
combination of manually curated GSCs. The performed experiments
show that our approach improves the F-measure of state-of-the-art
solutions by up to 10% (achieving ≈70%) in exact alignment and
22% (achieving ≈82%) in nested alignment. We demonstrate that
our solution delivers reliable annotation results across the GSCs and
it is an important contribution towards a homogeneous annotation of
MEDLINE abstracts.
Availability and implementation: Totum is implemented in Java and
its resources are available at http://bioinformatics.ua.pt/totum
Contact: david.campos@ua.pt; rebholz@ebi.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
In the last decades, we have witnessed an explosion of
publicly available data, a consequence of the deep integration
of computerized solutions in society. This rapid growth was
also observed in biomedicine, with an overwhelming amount of
data resulting from high-throughput methods, accompanied by
a corresponding increase of textual information. For instance,
MEDLINE contains over 18 million references to journal papers
covering various biomedical fields (e.g. medicine and dentistry).
MEDLINE and other biomedical resources are manually curated
by expert annotators, in order to correctly identify biological
entities (e.g. genes and proteins) and the relations between them
(e.g. protein–protein interactions) from texts. However, manual
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annotation of large amounts of data has become a very demanding
and expensive task. This situation naturally led to the development
of computerized systems to perform these steps automatically.

The goal of information extraction (IE) is to extract structured
and unambiguous information from unstructured data (e.g. natural
language texts). Named entity recognition (NER) is a crucial initial
task of biomedical IE, which intends to extract chunks of text that
refer to specific entities of interest. It is one of the most important
tasks, as the identified entities will be used as input to the following
steps in the IE pipeline. However, gene and protein names have
several characteristics that make difficult their identification in texts
(Zhou et al., 2004).

• many entity names are descriptive (e.g. ‘normal thymic
epithelial cells’);

• two or more entity names sharing one head noun (e.g. ‘91
and 84 kDa proteins’ refers to ‘91 kDa protein’ and ‘84 kDa
protein’);

• one entity name with several spelling forms (e.g. ‘N-
acetylcysteine’, ‘N-acetyl-cysteine’ and ‘NAcetylCysteine’);

• ambiguous abbreviations are frequently used (e.g. ‘TCF’ may
refer to ‘T cell factor’ or to ‘Tissue Culture Fluid’).

Various systems were developed using different approaches and
techniques, which can be categorized as being based on rules,
dictionaries or machine learning. However, the most recent results
clearly indicate that better performance can be achieved by using
an ensemble of NER systems. As an example, the top five systems
of the BioCreative II gene mention challenge (Smith et al., 2008)
used ensembles of NER solutions. In these systems, each approach
identifies entity mentions with different characteristics and based
on different knowledge. Moreover, most of the NER solutions are
trained and/or tested in only one corpus, which is usually focused
in a specific biomedical domain and provides specific gene/protein
names and contexts. As a consequence, when the system is applied
to a corpus from a different domain, the global performance
drops significantly. Although this occurs with machine learning
approaches, it also affects dictionary-based solutions, depending
on the specificity of the used lexical resource. This is not only
a consequence of the different domains, but also a result of the
different annotation guidelines and their interpretation by human
annotators. For instance, Colosimo et al. (2005) presents a study
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with 5000 abstracts, obtaining an inter-annotators agreement of 87%
for Fly, 91% for Yeast and 69% for Mouse.

In summary, various sources of variability can be identified
in human annotated corpora: specific biomedical domain or sub-
domain of the documents, annotation guidelines and human
annotators. Moreover, the different characteristics of NER systems
introduce another source of variability for the harmonization task.
As a result, considering the different underlying biological domains
and the diversity of annotation types, combining gene/protein
annotations from various systems is not a straightforward task. The
harmonization method should take advantage of this variability,
benefiting from the distinct background knowledge encoded by each
system on each corpus, in order to obtain a more general solution,
able to cope with the diversity of data found on a large-scale text
repository such as MEDLINE.

This article presents Totum, a harmonization solution that
addresses the problems of heterogeneous annotations. Section 2
presents the background of this work, and existent solutions to
the combination problem. In Section 3 we present the proposed
approach, and in Section 4 a comparison with state-of-the-art
solutions, discussing the advantages and limitations. Finally, Section
5 presents some concluding remarks.

2 BACKGROUND
Nowadays, the annotation of biomedical documents is mainly
performed manually by domain experts. Consequently, only small
sets of documents have been manually annotated and made publicly
available. The CALBC (Collaborative Annotation of a Large
Biomedical Corpus) project intends to minimize this problem,
providing a large-scale biomedical text corpus automatically
annotated through the harmonization of several NER systems. This
large corpus will contain annotations of several biological semantic
groups, such as diseases, species, chemicals and genes/proteins
(Rebholz-Schuhmann et al., 2010).

The CALBC corpus is focused in the immunology biomedical
sub-domain, which abstracts were collected from MEDLINE using
the query ‘immunol*’. To generate the first version of this corpus,
four different NER and normalization systems were used:

• System 1: implements a dictionary-based approach that takes
morphological variability into consideration. It uses several
publicly available resources, such as Swiss-Prot (Boutet et al.,
2007) and ChEBI (Degtyarenko et al., 2008);

• System 2: applies a dictionary-based approach using Entrez
Gene (Maglott et al., 2005), Swiss-Prot, Genew (Wain et al.,
2004), GDB (Letovsky et al., 1998) and OMIM (Hamosh
et al., 2005) as terminological resources;

• System 3: implements a machine learning approach using
Conditional random fields (CRFs), receiving orthographic and
morphological features as input. It also integrates a dictionary-
based step to identify gene mentions that were missed by the
CRF. This system was trained using data from several corpora,
including GENIA(Kim et al., 2003), PennBioIE (Kulick et al.,
2004), GENETAG (Tanabe et al., 2005), PIR (Mani et al.,
2005) and AlMed (Bunescu et al., 2005). In the end, the
system performs normalization to provide identifiers for each
gene/protein name;

• System 4: implements a dictionary-based solution, performing
fuzzy matching and disambiguation to remove false positives.

These systems use different approaches to process the text,
implementing different tokenization methods and/or strategies to
deal with stopwords. Thus, we can argue that each system provides
annotations with different characteristics, varying with the used
techniques and resources. In order to take advantage of this
variability, it is necessary to implement a method that will combine
the several annotations, providing only one gene/protein name
per chunk of text. To make this combination process possible,
the several systems need to ‘speak and understand the same
language’. IeXML (Rebholz–Schuhmann et al., 2006) facilitates
such task, by defining an XML standard for abstracts, sentences
and annotations representation. Using this cross corpus standard,
we can combine the heterogeneous annotations, either by unifying
and/or intersecting the annotations, or through the implementation
of machine learning-based solutions.

Intersection requires the agreement of at least two systems for
accepting an annotation, which improves precision but degrades
recall. For instance, Torii et al. (2009) presents a typical intersection
solution, combining the annotations from four machine learning-
based NER systems. Kuo et al. (2007) presents other interesting
solution to combine two CRF models, by intersecting the top 10
adjacent annotations of each model and selecting the intersection
with the best score. Union approaches, on the other hand, provide
annotations performed by either one of the systems, improving recall
but degrading precision. For instance, Ando (2007) performs the
union of two CRF models, removing annotations that overlap with
longer ones.

Intersection and union solutions are widely used, due to the
simplicity and positive outcomes of such methods. For instance,
in the BioCreative II gene mention task (Smith et al., 2008), most of
the participating systems that used an ensemble of systems applied
intersection or union to combine the heterogeneous annotations.
There are also solutions that use both techniques, Li et al. (2009)
and Hsu et al. (2008) get the best performance by intersecting the
annotations of similar models and then unifying the results of the
intersections.

Machine learning-based solutions intend to learn the tokens’
boundaries by experience, using manually annotated data to this
purpose. The annotated data provides curated knowledge, which
makes the decisions more accurate and supported. However, what
makes this solution unique is also its biggest limitation, because
manually annotated data is sparse in comparison with unannotated
data, which could limit the learning window. Wilbur et al. (2007)
presents a machine learning solution to combine the annotations
from the 19 NER systems that participated in the BioCreative II gene
mention task, using a first-order CRF with a simple set of features
(tokens and systems’ matches). Mika and Rost (2004) present a
different approach, a weighted Support Vector Machine (SVM) to
perform the harmonization of three SVMs and one dictionary-based
system. Both solutions presented positive results, by obtaining better
performance in comparison with each system used in isolation.
Even the systems with low performance contributed to an improved
harmonization result, adding variability that was not provided by
other NER systems. However, both approaches trained the models
on the same corpus being annotated, which demanded the use
of a cross-validation strategy. During this process, both systems
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used almost the complete corpus for training purposes, which may
create a model that is highly fitted to specific features of the
training data. Consequently, the model could deviate from its target
function, making it less effective when used in corpora with different
characteristics.

The goal of the harmonization solution presented in this article is
to provide automatic annotations for a large set of abstracts (almost
one million) from MEDLINE, covering several sub-domains and
organisms in immunology. Since machine learning-based solutions
improve both precision and recall through the usage of curated
knowledge, our goal is to develop a solution less dependent on a
specific corpus and able to annotate most of MEDLINE abstracts
with high accuracy.

3 METHODS
In order to develop a harmonization solution based on supervised machine
learning, it is crucial to collect manually annotated data for the training
procedures. To avoid the single corpus dependency, we used four of the
biggest gold standard corpora (GSCs), which cover different biomedical
domains and organisms:

• FSUPRGE (Hahn et al., 2008): is a set of 3236 abstracts extracted
from MEDLINE focused on gene regulation and expression, namely
on regulatory events and all the components that are involved. The
annotation process was semi-automatic, using a NER system that
supports active learning (AL) to speed up the annotation process
with no loss of annotation quality. During the AL process, the system
selects the sentences that are expected to be more informative to the
classifier, in order to be annotated by human experts;

• JNLPBA (Kim et al., 2004): this corpus is a sub-set of the GENIA
corpus, containing 2399 abstracts extracted from MEDLINE using
the MeSH terms ‘human’, ‘bloodcell’ and ‘transcription factor’.
These abstracts were manually annotated based on the GENIA
ontology, which makes each annotation independent of the context.
The JNLPBA corpus includes only five classes (protein, DNA, RNA,
cell line and cell type) from the 36 available in the GENIA ontology.
Only the protein, DNA and RNA classes were used in this work;

• PennBioIE: is composed of several MEDLINE abstracts of two
highly specialized biomedical sub-domains: the molecular genetics
of cancer, and the inhibition of cytochrome P-450 enzymes. We use
the oncology sub-set, which contains 1414 abstracts with annotations
of proteins and RNAs;

• GENETAG: is composed of 20 000 sentences extracted from
MEDLINE abstracts, not being focused in any specific domain.
It contains annotations of proteins, DNAs and RNAs, which were
performed by experts from biochemistry, genetics and molecular
biology. This corpus was used in the BioCreative II challenge (Smith
et al., 2008), providing 15 000 sentences for training and 5000
sentences for testing. For this work, since the used systems implement
normalization, it was necessary to find the original abstracts for
each sentence. At the end, to avoid ambiguity problems, only 17 590
sentences were used.

Since each corpus is focused on a different goal and biomedical domain,
the annotated entity names differ from corpus to corpus. The 10 most frequent
annotations (Fig. 1) reflect this variability, presenting annotations that only
appear in one corpus (e.g. overall, ‘KIR’ only appears on FSUPRGE), and
annotations shared by the corpora with significantly different proportions
of occurrences (e.g. ‘NF-KappaB’ is the most frequent annotation on
JNLPBA, but only the eighth most frequent annotation on GENETAG
and FSUPRGE). Moreover, the percentage of unique entity names is also
different, which shows the entities sparseness and specificity of each corpus.
For instance, since PennBioIE is focused on a very specialized sub-domain,

the number of unique annotations in this corpus corresponds to just 18%
of the complete set of annotations. On the other hand, since GENETAG
is not focused on any sub-domain, 65% of its annotations are unique.
Even when the proportion of unique entity names is not high, each corpus
provides a unique set of names that is not available in any other corpora,
delivering an extensive set of contexts where the gene/protein name could
be found.

In order to obtain performance results, the corpora were divided into train
and test sets. JNLPBAand GENETAG were already divided by the providers,
using ≈17 and 25% of the data for testing, respectively. On the other hand,
PennBioIE and FSUPRGE were not divided, so we left 30% of the data for
testing purposes. Since each corpus is provided in a specific format, all the
data were converted to the IeXML format, creating one large corpus with
≈6566 abstracts for training and 2242 for testing.

After annotating the corpus using the four systems described in Section
2 (S1–S4), there were several points of disagreement. Figure 2 shows some
examples that reflect this variability. For instance, some systems include the
organism name in the gene/protein names and others do not (Fig. 2: Example
1), which remains a point of active discussion among expert annotators.
Other point of disagreement is the inclusion of the tokens ‘protein’ or ‘gene’
as suffix or prefix, making the systems to have a different behaviour (Fig. 2:
Example 3). Finally, there is also variability regarding the inclusion of greek
letters in the entity names (Fig. 2: Example 2).

The observed annotations variability also result in different performance
results. Thus, it is important to understand the performance behaviour of
the used systems, comparing them against typical and publicly available
solutions with similar characteristics. Consequently, we annotated the four
corpora using six solutions, three based on machine-learning and three based
on dictionaries. Kuo et al. (2007) presents a CRF-based solution trained
on GENETAG corpus, using orthographic and morphological features.
It implements a bidirectional strategy, by combining two CRF models:
one parsing the sentences from left to right (forward), and other parsing
the sentences from right to left (backward). Another system is ABNER
(Settles, 2005), which also applies CRFs trained on GENETAG corpus, using
orthographic and morphological features. For the last ML-based solution,
we trained ABNER on JNLPBA. Regarding dictionary-based solutions,
the first one uses exact matching and BioThesaurus 7.0 (Liu et al., 2005)
as the gene/protein names dictionary after removing uninformative terms
that are not used in the scientific literature. The identification of the
terms uses orthographic variability (e.g. ‘HZF[-]1’ and ‘[Hh]zf[-]1’) as
described in Kirsch et al. (2006). The second solution is similar to the
previous one, however it uses the Swiss-Prot subset of UniProt as the
dictionary. After the matching process, basic disambiguation is performed
through a specific term frequency associated with the term. The last
solution also uses a disambiguation layer, but using BioThesaurus 7.0
instead.

Figure 3 compares these six public solutions with the four systems used
in this work (S1–S4), considering the four human annotated corpora and
exact matching evaluation. In FSUPRGE two systems are above the average
of public solutions, and the remaining are outside of the standard deviation
(SD) range. Considering JNLPBA, one system is above the average, two are
within the SD and one is outside that range. For GENETAG, one system is
above the average of the public solutions, one is within the SD range and the
remaining two are outside that range. Finally, all the used systems are above
the average of the public solutions on PennBioIE. Remember that the ML-
based solution that we use performs normalization, which does not happen
on ML-based public systems. Thus, it is expectable that the ML-based public
solutions provide better results, since the normalization step discards some
names that were not possible to relate with unique identifiers.

A brief analysis indicates that our set of systems follow the average
behaviour of the other solutions. In fact, a statistical analysis of the
performance results show no significant difference between the two sets of
systems. A two-tailed non-parametric Mann–Whitney test was performed,
considering each corpus separately, resulting in P-values in the interval
[0.2571; 0.9143].
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Fig. 1. Ten most frequent annotations on each curated corpus, reflecting the variability between the corpora. The percentage of unique annotations indicates
the variability within each corpus. The highlighted annotation appear only on that specific corpus.

Fig. 2. Examples of the annotations’ variability provided by the four
systems. Sn indicates the annotation performed by system n.

Fig. 3. Comparison of systems S1–S4 against publicly available solutions,
considering the four GSC, namely the whole set of FSUPRGE and PennBioIE
and only the test parts of JNLPBA and GENETAG. The bars illustrate the
mean and SD of each set.

After annotating the corpora with the four systems, since each system uses
its own tokenization technique, we created a tokenization method compatible
with all strategies, allowing the creation of a single data source that contains
the systems’ contributions and gold standard annotations. Such data source
is in a CoNNL-like format (Sang and De Meulder, 2003), where each line
contains six columns: token, BIO1 tags for each of the four systems, and
gold standard BIO tag (Fig. 4).

Using the data in the CoNNL-like format, we are able to train a
machine learning method, which can be supervised or semi-supervised.
Semi-supervised solutions use both annotated and unannotated data, in
order to obtain features of the entity names that are not present in the
annotated data. Specifically for this task, the usage of unannotated data could

1The BIO encoding scheme is used to represent the annotations, were each
token should be in beginning (‘B’), inside (‘I’) or outside (‘O’) of an entity
name.

contribute to a better abstract learning of the named entities boundaries.
However, the application of such techniques is computationally heavy and
could be performed as an extension to an equivalent supervised solution.
Thus, we decided to use a supervised method, through the application
of CRFs (Lafferty et al., 2001), since it presents several advantages over
other methods. At first, CRFs avoid the label bias problem (Lafferty et al.,
2001), a weakness of maximum entropy Markov models (MEMMs). On
the other hand, CRFs also have advantage over hidden Markov models
(HMMs), a consequence of its conditional nature that results in the relaxation
of the independence assumptions (Wallach, 2004). Finally, to compare
against SVMs, we analyzed the algorithms’ complexity. For training, linear
CRFs have quadratic complexity (Sutton and McCallum, 2006). However,
such complexity increases exponentially with the used CRF order. On
the other hand, SVMs training complexity could be cubic in the worst
case (Burges, 1998). Regarding the prediction phase, both algorithms have
linear complexity. Overall, we can argue that both algorithms provide
positive outcomes, but SVMs could require more time to train complex
models.

CRFs were first introduced by Lafferty et al. (2001). Assuming that we
have an input sequence of observations (represented by X), and a state
variable that needs to be inferred from the given observations (represented by
Y ), a CRF is a form of undirected graphical model that defines a single log-
linear distribution over label sequences (Y ) given a particular observation
sequence (X). This layout makes it possible to have efficient algorithms
to train models, in order to learn conditional distributions between Yj and
feature functions from training data. To accomplish this, it is necessary
to determine the probability of a given label sequence Y given X, and
consequently the most likely label. First, the model assigns a numerical
weight to each feature, then those weights are combined to determine
the probability of a certain value for Yj . This probability is calculated as
follows:

p(y|x,λ)= 1

Z(x)
exp

⎛
⎝∑

j

λjFj(y,x)

⎞
⎠, (1)

where λj is a parameter to be estimated from training data and indicates
the informativeness of the respective feature, Z(x) is a normalization factor
and Fj(y,x)=∑n

i=1 fj(yi−1,yi,x,i), where each fj(yi−1,yi,x,i) is either a
state function s(yi−1,yi,x,i) or a transition function t(yi−1,yi,x,i). CRFs
can be extended into higher-order models, which makes each yi dependent
on a fixed number o of previous variables yi−o,...,yi. Accordingly, the
probability will consider not only the previous observation and its features,
but o-previous observations and features.

Using the MALLET’s CRF implementation (McCallum, 2002), we used
a second-order CRF. At the beginning, we applied a simple set of features:
tokens, systems annotations tags and a {−1,1} window of tokens to model
local context. In order to optimize the set of features, we performed several
experiments using part-of-speech, stemming, different window sizes and
different CRF orders. However, the performance always dropped and the
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Fig. 4. Illustration of the required steps to train the CRF model using the several corpora.

initial set of features was kept. Figure 4 illustrates the workflow to convert
the data and train the model.

This model can change the annotations’ boundaries, remove incorrect
annotations, and generate new annotations in comparison with the ones
provided by the systems. However, if the systems being combined perform
normalization, i.e. provide unique identifiers for the entities, creating
new annotations may not be desirable, since assigning identifiers to such
annotations will not always be possible. In order to create a Totum solution
that does not create new annotations, we changed the training portion of the
GSC, removing manual annotations, i.e. replacing the corresponding entity
labels by ‘O’, in those cases that were not identified as an entity by any of
the four systems. Accordingly, we end up with a different GSC, adjusted to a
different goal, which only contains gold standard entity labels where at least
one system produced an entity output. This filtered version of the corpus
contains 78% of the original gold standard annotations. Performing the CRF
training in this new corpus, we get a new solution focused on changing the
annotations boundaries or removing incorrect ones. Furthermore, we also
built a post-processing filter to remove new annotations, which could happen
(not in significant proportions) since the model uses tokens as features to learn
the boundaries. In the end, we provide two different solutions: one, identified
as Totum, optimized for harmonizing annotations from NER systems, and the
other, identified as TotumID, guided towards harmonizing the annotations
and respective identifiers provided by normalization systems.

4 RESULTS

4.1 Experimental setting
In order to obtain F-measure, precision and recall results that
reflect the behaviour of the several solutions, we have applied
four matching techniques: exact, nested and approximate using two
different similarity thresholds. This detailed analysis is important
since some post-NER tasks can be performed even if imprecise
names are provided (e.g. relation extraction). Thus, we first
perform exact alignment, which requires the boundaries of the
entities to match exactly. Then, to perform approximate alignment,
IDF (inverse document frequency) scores of the tokens were
calculated using the corpus of one million MEDLINE abstracts about
immunology. With these scores, we can calculate a similarity value
using the cosine between the two vectors of the tokens. For example,
if annotator A1 annotates the phrase Pa = ‘T1 T2’ and the annotator
A2 the phrase Pb = ‘T1 T2 T3’, there is no exact match. Thus,
we consider the IDF scores of each token fx= idf(Tx), calculating
the cosine similarity between the vectors v1=< f 1,f 2,0> and
v2=< f 1,f 2,f 3>. A match is accepted if cos(v1,v2) is equal or

higher than a predefined value. In this work we use two different
thresholds, 0.98 and 0.90. Finally, we also use nested alignment,
in order to check when an annotation contains the boundaries of
another.

To evaluate the performance of the two Totum solutions, we
trained the harmonization model using the train part of the merged
corpus, either with the original complete annotation set or with
filtered annotations as explained in the previous section. This then
allows us to check the results on the unaltered test part of each corpus
and on the merged test set, providing accurate information regarding
the behaviour of both solutions. Such solutions will be compared
against the two most common and state-of-the-art harmonization
approaches: intersection (two vote agreement) and union (one vote
agreement).

4.2 Performance analysis
Figure 5 presents an overview of the results obtained in the
experiments, focusing on the comparison of Totum against Union
and Intersection. Annex 1 in the Supplementary Material presents
detailed and precise results. Overall, the harmonization solutions
present better results than the average of the four systems. On the
other hand, when comparing with the best performing system, the
two state-of-the-art approaches have a better performance only on
FSUPRGE, PennBioIE and Merged. Both Totum solutions present
better results, with the exception of TotumID on GENETAG, which
is outperformed in exact matching.

Comparing the harmonization solutions, Totum significantly
outperforms the other approaches. TotumID also presents better
results than the two state-of-the-art solutions. Finally, union
also presents better results than intersection. To analyze the
improvements of both Totum approaches, we studied in detail
the results achieved on the merged corpus, since it reflects
better the global systems’ behaviour. Moreover, there is no big
difference between the results of the two approximate matching
techniques. Consequently, we will only consider the cosine 0.98
alignment, which expresses better the process of discarding less
informative tokens during the alignment. Therefore, comparing
Totum with union, F-measure improvements of 7.61, 7.06 and
16.17% were obtained for exact (69.30%), approximate (77.34%)
and nested (81.77%) matching, respectively. Against intersection,
Totum achieved better performance by 10.34% for exact, 10.91% for
approximate and 22.25% for nested alignment. Comparing TotumID
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(a)

(b)

(c)

Fig. 5. Overview of the results achieved by systems S1–S4 and harmonization solutions on the test parts of each corpus and on the merged test set, considering
exact, cosine 0.98 and nested matching. The filled boxes indicate the range of performance results for Union, Intersection and Totum, across the five test sets.
(Sn, System n; U, Union; I, Intersection; T, Totum and TID, TotumID).

with union, it presents an improvement of 3.89% (65.58%) on exact,
2.83% (73.11%) on approximate and 5.22% (70.83%) on nested
matching. Against intersection, TotumID presented better results,
with improvements of 6.62, 6.68 and 11.30% for exact, approximate
and nested alignment, respectively. Considering the other corpora,
Totum presents the best improvements on JNLPBA and less on
PennBioIE. On the other hand, TotumID performs better on JNLPBA
and worst on GENETAG, where it is slightly outperformed by union.
Surprisingly, the best final results were achieved in the corpora
that we used smaller amounts of data for the training procedures
(FSUPRGE and PennBioIE), which is a direct consequence of the

better results achieved by the systems. In summary, both Totum
approaches present significant improvements in comparison with the
two state-of-the-art solutions. However, the best results are achieved
on nested alignment, which indicates that both Totum solutions
provide longer names than the other approaches.

Regarding precision and recall, intersection presents better
precision than union, since it uses two system votes to reach
an agreement. On the other hand, union has better recall than
intersection, because it only uses one vote. However, Totum presents
better recall in all experiments. Thus, we can conclude that our
solution is more sensitive than the other approaches, recognizing
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Table 1. Number of annotations generated by each system and
harmonization solution in comparison with manually curated data,
considering the test parts of the corpora

FSUPRGE JNLPBA PennBioIE GENETAG Merged

Gold 17 181 6142 5285 5716 34 324

System 1 12 691 4670 4636 4034 26 031
System 2 7562 2899 2109 2172 14 742
System 3 10 290 4599 3346 2725 20 960
System 4 9043 4269 3663 2687 19 662

Union 16 524 6447 5460 5233 33 664
Intersection 10 986 4722 3805 3165 22 678
TotumID 14 025 5349 4660 4127 27 866
Totum 16 431 6467 5074 4694 31 906

The highlighted values indicate the solution (and the harmonization method) that
provided the higher number of annotations for each corpus.

more entity names correctly. Regarding precision, Totum always
performs better on nested matching. However, in the other matching
techniques, intersection presents better precision. This means that
our approach has increased specificity in comparison with the used
systems and union. Overall, Totum significantly improves recall
(sensitivity) in comparison with other approaches, with a small
drop of precision (specificity) in comparison with intersection. Thus,
we can argue that our solution deals better with heterogeneous
annotations and features, considerably improving recall and with
no precision loss.

4.3 Annotations analysis
To understand the improved results provided by both Totum
solutions, we have to study the generated annotations. Table 1
presents the number of annotations provided by the systems and
harmonization solutions, when annotating the test parts of the GSC.
System 1 provides more annotations than the other systems, which
does not mean that it delivers the best results. Analyzing Figure 5, we
can see that System 1 is outperformed by Systems 3 and 4 in most
of the corpora. The same pattern is verified in the harmonization
solutions, where union presents the largest amount of annotations
in almost all corpora. However, Totum provides the best trade-off
between precision and recall, generating approximately the same
number of annotations as in the GSC, and with fewer mistakes.

To analyze the generated annotations, we developed a tool to
compare the exact annotations provided by two solutions, in order
to study the changes promoted by solution 2 against solution
1. We considered seven different categories of agreement and
disagreement: Matched (the annotation is the same in the two
solutions); New (the second solution adds an annotation that does
not exists in the first one); Removed (the second solution removes
an annotation provided by the first one); Add left (one or more
tokens were added to the left side of the annotation); Add right
(one or more tokens were added to the right side of the annotation);
Remove left (one or more tokens were removed from the left side
of the annotation); and Remove right (one or more tokens were
removed from the right side of the annotation).

Additionally, for each annotation, we performed exact matching
with the GSC to find if the change was correct or not.
Figure 6 presents the results of comparing Totum with the
other harmonization solutions, considering the merged test corpus.

Overall, there is a high level of agreement between the several
solutions, with an average of 85% correct annotations. The biggest
sources of disagreement are new, remove, add right and add left
categories. The addition of new annotations is one of the most
important, since it adds annotations that were not considered by
other approaches. On average, 61% of these annotations are correct
according to the gold standard. Considering nested alignment, >72%
of those new annotations are correct. The impact of this task is
reflected in the comparison with the intersection approach (Fig. 6a).
Ultimately, this task adds more true positives than false positives
which contributes to a better precision, and reduces the number of
false negatives contributing to a better recall. Another important
category is remove, which discards false positives provided by other
solutions. We can see the impact of this task in the comparison with
union (Fig. 6b), where >76% of the deletions are correct. Adding
tokens to the right side is the category where Totum performs worst.
In average, it changes 40% of the annotations to correct, 40% to
incorrect and 20% were wrong and remain wrong after the change.
Finally, adding tokens to the left side presents a small positive
contribution, by changing in average almost 50% to correct, 33% to
incorrect and 17% that are still wrong after the change.

The only difference between our two solutions is the compatibility
with normalization systems. Thus, there is a high level of agreement
between the two approaches, differing only on the generation of
new annotations (Fig. 6c). Remove left and right did not present
any significant results, which reinforces the idea that our solutions
provide longer names in comparison with other approaches.

Due to the generation of longer names, Totum considers that
the suffixes and prefixes ‘gene’, ‘protein’, and the ones relative
to species and greek letters, always make part of the annotations.
However, this is not consistent with the annotations on all corpora.
For instance, in comparison with intersection, Totum corrects ‘IL-2’
to ‘IL-2 gene’, but changing ‘RFX-B’ to ‘RFX-B protein’ makes the
annotation to be wrong according to the gold standard. Regarding
the addition of greek letters, it corrects ‘SDF1’ to ‘SDF1 alpha’.
Our solution also adds organism names on annotations, converting
‘CD81’ to ‘mouse CD81’ and ‘AML1’ to ‘human AML1’, which are
not correct according to the manually annotated data. Furthermore,
Totum could consider the same chunk of text as being an annotation
or not, which could be correct or not depending on the corpus.
For instance, in comparison with intersection, Totum removes the
annotation ‘CD4’, which is correct 51 times and wrong 22 times.
The same occurs with the addition of the annotation ‘cytokine’,
which is correct 88 times and wrong 67 times. This behaviour does
not mean that Totum is completely wrong, since some corpora were
annotated focusing in very specialized biomedical sub-domains, and
consequently, some gene/protein names were discarded since they
were not related with that sub-domain.

In summary, we can argue that Totum maintains a constant
global behaviour, allowing the annotation of large amounts of data
following the same guidelines, which were obtained training a
machine learning model on several GSC.

5 CONCLUSION
In this article, we presented Totum, a new cross-corpus solution to
harmonize heterogeneous gene/protein names from several NER or
normalization systems. This approach uses CRFs to take advantage
of the variability existent in several corpora from different domains,
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(a) (b) (c)

Fig. 6. Comparison of the annotations provided by Totum against the other harmonization solutions.

learning the correct tags for the tokens and making the final
result more precise and reasoned. In comparison with traditional
harmonization solutions, which only allow fixing the annotations
boundaries (by adding or removing tokens), our solution also allows
creating new annotations or removing incorrect ones, which extends
the traditional harmonization behaviour. Totum is also compatible
with normalization systems (TotumID), preserving the provided
identifiers and avoiding the creation of new annotations which would
not have an identifier assigned.

Analysing the annotations provided by Totum, we concluded
that improved results are achieved due to the deletion of incorrect
annotations, the recognition of annotations discarded by other
approaches, and the usage of the knowledge provided by the systems’
annotations to create new entity names. In the end, we may conclude
that Totum provides longer annotations than the other approaches,
presenting a similar behaviour regarding the boundaries definition
of the different gene/protein names.

The experiments demonstrate that both solutions outperform
the most common and state-of-the-art approaches. Considering the
merged corpus, and in comparison with an intersection approach,
Totum presents F-measure improvements of up to 10.34, 10.91 and
22.25% on exact, approximate and nested alignment, respectively.
Comparing against union, improvements of 7.61, 7.06 and 16.17%
are achieved, regarding the same matching strategies.

Overall, Totum takes advantage of the annotations provided by
several systems for different corpora, providing a solution that is
not constrained to a specific corpus as the original systems are. In
the end, the harmonized annotations provided by Totum present F-
measures of 69.30, 77.34 and 81.77% for exact, approximate and
nested alignment. With these results, we believe that this approach
is a step towards a homogeneous annotation of MEDLINE abstracts,
supporting several biomedical domains and organisms.
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