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ABSTRACT

Motivation: Accurate alignment of high-throughput RNA-seq data is a

challenging and yet unsolved problem because of the non-contiguous

transcript structure, relatively short read lengths and constantly

increasing throughput of the sequencing technologies. Currently avail-

able RNA-seq aligners suffer from high mapping error rates, low map-

ping speed, read length limitation and mapping biases.

Results: To align our large (480 billon reads) ENCODE Transcriptome

RNA-seq dataset, we developed the Spliced Transcripts Alignment to

a Reference (STAR) software based on a previously undescribed

RNA-seq alignment algorithm that uses sequential maximum map-

pable seed search in uncompressed suffix arrays followed by seed

clustering and stitching procedure. STAR outperforms other aligners

by a factor of450 in mapping speed, aligning to the human genome

550 million 2�76 bp paired-end reads per hour on a modest 12-core

server, while at the same time improving alignment sensitivity and

precision. In addition to unbiased de novo detection of canonical junc-

tions, STAR can discover non-canonical splices and chimeric (fusion)

transcripts, and is also capable of mapping full-length RNA se-

quences. Using Roche 454 sequencing of reverse transcription poly-

merase chain reaction amplicons, we experimentally validated 1960

novel intergenic splice junctions with an 80–90% success rate, corro-

borating the high precision of the STAR mapping strategy.

Availability and implementation: STAR is implemented as a standa-

lone Cþþ code. STAR is free open source software distributed under

GPLv3 license and can be downloaded from http://code.google.com/

p/rna-star/.

Contact: dobin@cshl.edu.
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1 INTRODUCTION

Although genomes are composed of linearly ordered sequences of

nucleic acids, eukaryotic cells generally reorganize the informa-

tion in the transcriptome by splicing together non-contiguous

exons to create mature transcripts (Hastings and Krainer, 2001).

The detection and characterization of these spliced RNAs have

been a critical focus of functional analyses of genomes in both the

normal and disease cell states. Recent advances in sequencing

technologies have made transcriptome analyses at the single nu-

cleotide level almost routine. However, hundreds of millions of

short (36nt) to medium (200nt) length sequences (reads) gener-

ated by such high-throughput sequencing experiments present

unique challenges to detection and characterization of spliced

transcripts. Two key tasks make these analyses computationally

intensive. The first task is an accurate alignment of reads that

contain mismatches, insertions and deletions caused by genomic

variations and sequencing errors. The second task involves map-

ping sequences derived from non-contiguous genomic regions

comprising spliced sequence modules that are joined together to

form spliced RNAs. Although the first task is shared with DNA

resequencing efforts, the second task is specific and crucial to the

RNA-seq, as it provides the connectivity information needed to

reconstruct the full extent of spliced RNAmolecules. These align-

ment challenges are further compounded by the presence of mul-

tiple copies of identical or related genomic sequences that are

themselves transcribed, making precise mapping difficult.
Various sequence alignment algorithms have been recently

developed to tackle these challenges (Au et al., 2010; De Bona,

et al., 2008; Grant et al., 2011; Han et al., 2011; Trapnell et al.,

2009; Wang et al., 2010; Wu and Nacu, 2010; Zhang et al., 2012).

However, application of these algorithms invokes compromises

in the areas of mapping accuracy (sensitivity and precision) and

computational resources (run time and disk space) (Grant et al.,

2011). With current advances in sequencing technologies, the

computational component is increasingly becoming a through-

put bottleneck. High mapping speed is especially important for

large consortia efforts, such as ENCODE (http://www.genome.

gov/encode/), which continuously generate large amounts of

sequencing data.
Furthermore, most of the cited algorithms were designed to

deal with relatively short reads (typically �200 bases), and are

ill-suited for aligning long read sequences generated by the emer-

ging third-generation sequencing technologies (Flusberg et al.,

2010; Rothberg et al., 2011). The longer read sequences, ideally

reaching full lengths of RNA molecules, have a great potential

for enhancing transcriptome studies by providing more complete

RNA connectivity information.

This report describes an alignment algorithm entitled ‘Spliced

Transcripts Alignment to a Reference (STAR)’, which was de-

signed to specifically address many of the challenges of RNA-seq

data mapping, and uses a novel strategy for spliced alignments.

We performed high-throughput validation experiments that cor-

roborated STAR’s precision for detection of novel splice junc-

tions. STAR’s high mapping speed and accuracy were crucial for

analyzing the large ENCODE transcriptome (Djebali et al.,

2012) dataset (480 billion Illumina reads). We also demonstrated

that STAR has a potential for accurately aligning long (several

kilobases) reads that are emerging from the third-generation

sequencing technologies.*To whom correspondence should be addressed.
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2 ALGORITHM

Many previously described RNA-seq aligners were developed as

extensions of contiguous (DNA) short read mappers, which were

used to either align short reads to a database of splice junctions

or align split-read portions contiguously to a reference genome,

or a combination thereof. In contrast to these approaches, STAR

was designed to align the non-contiguous sequences directly to

the reference genome. STAR algorithm consists of two major

steps: seed searching step and clustering/stitching/scoring step.

2.1 Seed search

The central idea of the STAR seed finding phase is the sequential

search for a Maximal Mappable Prefix (MMP). MMP is similar

to the Maximal Exact (Unique) Match concept used by the

large-scale genome alignment tools Mummer (Delcher et al.,

1999, 2002; Kurtz et al.) and MAUVE (Darling et al., 2004,

2010). Given a read sequence R, read location i and a reference

genome sequence G, the MMP(R,i,G) is defined as the longest

substring (Ri,Riþ 1, . . . ,RiþMML� 1) that matches exactly one or

more substrings of G, where MML is the maximum mappable

length. We will explain this concept using a simple example of a

read that contains a single splice junction and no mismatches

(Fig. 1a). In the first step, the algorithm finds the MMP starting

from the first base of the read. Because the read in this example

comprises a splice junction, it cannot be mapped contiguously to

the genome, and thus the first seed will be mapped to a donor

splice site. Next, the MMP search is repeated for the unmapped

portion of the read, which, in this case, will be mapped to an

acceptor splice site. Note that this sequential application of

MMP search only to the unmapped portions of the read

makes the STAR algorithm extremely fast and distinguishes it

from Mummer and MAUVE, which find all possible Maximal

Exact Matches. This approach represents a natural way of find-

ing precise locations of splice junctions in a read sequence and is

advantageous over an arbitrary splitting of read sequences used

in the split-read methods. The splice junctions are detected in a

single alignment pass without any a priori knowledge of splice

junctions’ loci or properties, and without a preliminary contigu-

ous alignment pass needed by the junction database approaches.

The MMP in STAR search is implemented through

uncompressed suffix arrays (SAs) (Manber and Myers, 1993).

Notably, finding MMP is an inherent outcome of the standard

binary string search in uncompressed SAs, and does not require

any additional computational effort compared with the full-

length exact match searches. The binary nature of the SA

search results in a favorable logarithmic scaling of the search

time with the reference genome length, allowing fast searching

even against large genomes. Advantageously, for each MMP the

SA search can find all distinct exact genomic matches with little

computational overhead, which facilitates an accurate alignment

of the reads that map to multiple genomic loci (‘‘multimapping’’

reads).
In addition to detecting splice junctions, the MMP search,

implemented in STAR, enables finding multiple mismatches

and indels, as illustrated in Figure 1b. If the MMP search does

not reach the end of a read because of the presence of one or

more mismatches, theMMPs will serve as anchors in the genome

that can be extended, allowing for alignments with mismatches.

In some cases, the extension procedure does not yield a good

genomic alignment, which allows identification of poly-A tails,

library adapter sequences or poor sequencing quality tails

(Fig. 1c). The MMP search is performed in both forward and

reverse directions of the read sequence and can be started from

user-defined search start points throughout the read sequence,

which facilitates finding anchors for reads with errors near the

ends and improves mapping sensitivity for high sequencing error

rate conditions.

Besides the efficient MMP search algorithm, uncompressed

SAs also demonstrate a significant speed advantage over the

compressed SAs implemented in many popular short read

aligners (Supplementary Section 1.8). This speed advantage is

traded off against the increased memory usage by uncompressed

arrays, which is assessed further in Section 3.3.

2.2 Clustering, stitching and scoring

In the second phase of the algorithm, STAR builds alignments of

the entire read sequence by stitching together all the seeds that

were aligned to the genome in the first phase. First, the seeds are

clustered together by proximity to a selected set of ‘anchor’ seeds.

We found that an optimal procedure for anchor selection is

through limiting the number of genomic loci the anchors align

to. All the seeds that map within user-defined genomic windows

around the anchors are stitched together assuming a local linear

transcription model. The size of the genomic windows deter-

mines the maximum intron size for the spliced alignments. A

frugal dynamic programming algorithm (see Supplementary

Section 1.5 for details) is used to stitch each pair of seeds, allow-

ing for any number of mismatches but only one insertion or

deletion (gap).

Importantly, the seeds from the mates of paired-end RNA-seq

reads are clustered and stitched concurrently, with each

paired-end read represented as a single sequence, allowing for

a possible genomic gap or overlap between the inner ends of

the mates. This is a principled way to use the paired-end infor-

mation, as it reflects better the nature of the paired-end reads,

namely, the fact that the mates are pieces (ends) of the same

sequence. This approach increases the sensitivity of the

Map Map again

MMP 1 MMP 2

exons in the genome

RNA-seq read

Map
MMP 1

mismatches

Extend
Map
MMP 1

A-tail, or adapter,
or poor quality tail 

Trim

(a)
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Fig. 1. Schematic representation of the Maximum Mappable Prefix

search in the STAR algorithm for detecting (a) splice junctions, (b) mis-

matches and (c) tails
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algorithm, as only one correct anchor from one of the mates is

sufficient to accurately align the entire read.
If an alignment within one genomic window does not cover the

entire read sequence, STAR will try to find two or more windows

that cover the entire read, resulting in a chimeric alignment, with

different parts of the read mapping to distal genomic loci, or

different chromosomes, or different strands (Supplementary

Fig. S1). STAR can find chimeric alignments in which the

mates are chimeric to each other, with a chimeric junction

located in the unsequenced portion of the RNA molecule be-

tween two mates. STAR can also find chimeric alignments in

which one or both mates are internally chimerically aligned,

thus pinpointing the precise location of the chimeric junction

in the genome. An example of the BCR-ABL fusion transcript

detection from the K562 erythroleukemia cell line is given in the

Supplementary Section 1.7 (Supplementary Fig. S2).
The stitching is guided by a local alignment scoring scheme,

with user-defined scores (penalties) for matches, mismatches, in-

sertions, deletions and splice junction gaps, allowing for a quan-

titative assessment of the alignment qualities and ranks (see

Supplementary Section 1.4 for details). The stitched combination

with the highest score is chosen as the best alignment of a read.

For multimapping reads, all alignments with scores within a cer-

tain user-defined range below the highest score are reported.
Although the sequential MMP search only finds the seeds

exactly matching the genome, the subsequent stitching procedure

is capable of aligning reads with a large number of mismatches,

indels and splice junctions, scalable with the read length. This

characteristic has become ever more important with the

emergence of the third-generation sequencing technologies

(such as Pacific Biosciences or Ion Torrent) that produce

longer reads with elevated error rates.

3 RESULTS

3.1 Performance on simulated RNA-seq data

First, we used simulated data to evaluate performance of STAR

and compare it with other RNA-seq mappers. Simulations allow

for a precise calculation of false-positive and -negative rates, al-

though artificial error models, used to generate simulated reads,

may not adequately represent experimental errors. We used a

simulated dataset from a recent study (Grant et al., 2011), in

which 10 million of 2� 100nt Illumina-like read sequences

with a reasonably high error rate were generated from the

mouse transcriptome, including annotated transcripts and artifi-

cial ones. Various types of genomic variations and sequencing

errors were introduced to mimic real RNA-seq data.
The latest available versions of STAR 2.1.3, TopHat2 2.0.0

(Trapnell et al., 2009), GSNAP 2012-07-03 (Wu and Nacu,

2010), RUM 1.11 (Grant et al., 2011) and MapSplice 1.15.2

(Wang et al., 2010) were run on the simulated dataset labeled

as ‘SIM1-TEST2’ in (Grant et al., 2011). Because the TopHat2

2.0.0 release represents a major new development of the TopHat

aligner, which has not been peer reviewed yet, we also made the

comparisons with the previous TopHat version 1.4. We found

that the new version yields a slightly better accuracy and faster

mapping speed (Supplementary Section 2.1 and Fig. S3). All

aligners were run in the de novo mode, i.e. without using gene/

transcript annotations. The maximum number of mismatches

was set at 10 per paired-end read, and the minimum/maximum

intron sizes were set at 20 b/500 kb (Supplementary Section 2 for

additional information). Note that running comparison between

mappers with their default parameters is a reasonable and com-

monly accepted practice, as all considered aligners were, by de-

fault, optimized for mammalian genomes and recent RNA-seq

data.
The resulting alignments were compared with the true genomic

origin of the simulated reads, and true-/false-positive rates of

splice junction detection were calculated using procedures and

scripts developed by Grant et al. (2011). ROC curves (Fig. 2)

were computed with the detection (discrimination) threshold

given by the number of reads mapped across each junction, i.e.

for each aligner, only junctions supported by at least N reads

were selected for each point along the ROC curves, with N varied

from 1 (lowest threshold) to 100 (high threshold). All aligners

exhibit desirable steep ROC curves at high values of detection

threshold. At the lowest detection threshold of 1 read per junc-

tion, STAR exhibits the lowest false-positive rate while achieving

high sensitivity. Supplementary Figure S5 shows the same ana-

lysis for a low error rate-simulated dataset, which yields similar

conclusions.

3.2 Performance on experimental RNA-seq data

For evaluation of the RNA-seq mappers’ performance on experi-

mental RNA-seq data STAR, TopHat2, GSNAP, RUM and

MapSplice were run (see Supplementary Section 2 for additional

information) on an ENCODE long RNA-seq dataset (K562

whole cell Aþ sample, 1 Illumina GAIIx lane of 40 million

2� 76 reads). STAR and GSNAP aligned the largest percentage

of reads (94% both), followed by RUM (86%), MapSplice

(85%) and TopHat2 (71%).
Different accuracy metrics for splice junction detection with

respect to the Gencode 7 (Harrow et al., 2012) annotations are

plotted in Figure 3a–c as a function of the detection threshold,

defined as the minimum number of RNA-seq reads per junction.
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Although all aligners detect a similar number of annotated junc-

tions (Fig. 3a, solid lines), there are noticeable differences between

mappers in the number of detected unannotated junctions (Fig.

3a, dashed lines). The percentage of the unannotated among all

detected junctions is plotted in Figure 3b as a function of detec-

tion threshold. Because all aligners show similar sensitivities to

annotated junctions, the proportion of annotated among all de-

tected junctions may serve as a surrogate of precision. STAR,

RUM and TopHat2 perform similarly, while GSNAP exhibits

lower precision at a lower detection threshold, and MapSplice

shows unusual non-monotonic and non-saturating behavior,

which was also noted in Zhang et al. (2012). Pseudo-ROC

curve, i.e. the proportion of annotated junctions that are detected

(pseudo-sensitivity) versus the proportion of detected junctions

that are unannotated (pseudo-false-positive rate), is plotted in

Figure 3c. All aligners (except MapSplice) perform similarly at

high values of the detection threshold.
Because many unannotated junctions represent true novel spli-

cing events and are not false positives, the percentage of unan-

notated among all detected junctions is not an accurate proxy for

the false-positive rate. To obtain a more accurate estimate of the

false-positive rate, we followed another frequently used approach

(Zhang et al., 2012) and plotted (Fig. 3d) the number of junctions

detected by at least two mappers (pseudo-true positive) and the

number of junctions detected exclusively by each mapper

(pseudo-false positive). STAR alignments yield the lowest

pseudo-false-positive rate, i.e. the lowest proportion of exclu-

sively detected junctions (Fig. 3e), while at the same time achiev-

ing the second in class pseudo-sensitivity (Fig. 3f). GSNAP

exhibits the highest pseudo-sensitivity at the cost of a high

pseudo-false-positive rate. These results qualitatively agree with

the aligners’ performance on the simulated data, whereas the

quantitative differences may be attributed to disparities between

real and simulated errors. Supplementary Figure S6 shows the

same analysis for a shorter RNA-seq dataset (2� 50b), which

indicates that STAR retains high sensitivity and precision even

for short reads.
Note that the pseudo-true-/false-positive definitions are based

on the assumption that junctions detected by only one aligner are

more likely to be false positive than the junctions detected by two

or more aligners; however, these definitions are not rigorous be-

cause the true/false assessments cannot be made for experimental

data. We would also like to stress that these comparisons were

done for current versions of each tool, with the default

Fig. 3. Various accuracy metrics for splice junction detection in the experimental RNA-seq data. The color-coding scheme for mappers is the same in all

plots. X-axis in plots (a), (b), (d) and (e) is the detection threshold defined as the number of reads mapped across each junction, i.e. each point with the X-

value of N represents all junctions that are supported by at least N reads mapped by a given aligner. (a) Total number of detected junctions, annotated

(solid lines) and unannotated (dashed lines); (b) percentage of detected junctions that are annotated; (c) pseudo-ROC curve: percentage of all annotated

junctions that are detected versus percentage of detected junctions that are unannotated; (d) number of unannotated junctions detected by at least two

mappers (solid lines) and number of unannotated junctions detected exclusively by only one mapper (dashed lines); (e) percentage of detected unan-

notated junctions that are detected exclusively by only one mapper and (f) pseudo-ROC curve: percentage of unannotated junctions that are detected by

at least two mappers versus percentage of detected unannotated junctions that are detected exclusively by only one mapper
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parameters and for the present state of Illumina sequencing tech-

nology. As both sequencing technologies and tools improve,

these rankings may change and have to be reevaluated.
Similarly to other RNA-seq aligners, STAR’s default param-

eters are optimized for mammalian genomes. Other species may

require significant modifications of some alignment parameters;

in particular, the maximum and minimum intron sizes have to be

reduced for organisms with smaller introns.

3.3 Speed benchmarks

Speed benchmarks were performed on a server equipped with

two 6-core Intel Xeon CPUs X5680@ 3.33GHz and 148GB

of RAM (random-access memory). Six or 12 threads were re-

quested for each run, using half or full capacity of the server.

All mappers were run with their default parameters on the �40

million 2� 76 Illumina human RNA-seq dataset described in the

previous section.
The ‘wall’ time (i.e. the total run time required to complete the

mapping) and RAM usage are presented in Table 1. STAR

achieves a speed of 550 million 2� 76 Illumina paired-end

reads per hour using 12 threads (full capacity of the server),

i.e. 45 million paired reads per hour per processor, outperform-

ing the second fastest mapper (TopHat2) by a factor450. STAR

exhibits close to linear scaling of the throughput rate with the

number of threads, losing �10% of per thread mapping speed

when the number of threads is increased from 6 to 12.
STAR’s high mapping speed is traded off against RAM usage:

STAR requires �27GB of RAM for aligning to the human

genome. Like all other aligners, with the exception of RUM,

the amount of RAM used by STAR does not increase signifi-

cantly with the number of threads, as the SA is shared among all

threads. Although STAR’s RAM requirements would have been

prohibitively expensive several years ago, at the time when the

first short read aligners were developed, recent progress in semi-

conductor technologies resulted in a substantial drop of RAM

prices, and modern high performance servers are commonly

equipped with RAM 432GB. STAR has an option to use

sparse SAs, reducing the RAM consumption to 516GB for

the human genome at the cost of �25% decrease in the mapping

speed, while maintaining the alignment accuracy.

3.4 Experimental validation

As part of the characterization of human transcriptome by the

ENCODE (Djebali et al., 2012), STAR was used to map poly-

adenylated (poly Aþ) long (4200nt) transcripts isolated from

whole cell extracts of primary human H1ES (embryonic stem

cells) and HUVEC (umbilical vein endothelial cells) cell lines.

These RNAs were sequenced using a duplex-specific nuclease

protocol (Parkhomchuk et al., 2009) that generated 2� 76bp

strand-specific reads.
Not surprisingly, unannotated (novel) splice sites show lower

abundance levels than the annotated junctions, as indicated by

the significant drop in the number of unannotated junctions with

the number of supporting reads (Supplementary Fig. S7).

Because each of the cell lines was sequenced in biological dupli-

cates, a collection of high confidence splice sites could be identi-

fied based on their reproducibility between replicas. To assess the

reproducibility of the detected splice junctions, we developed a

non-parametric irreproducible discovery rate (npIDR) approach,

specifically suitable for the discrete nature of the RNA-seq data

(see Supplementary Materials for the detailed description). This

approach is similar to the npIDR concept extensively used in the

analysis of the ENCODE ChIP-seq experiments (Landt et al.,

2012). Supplementary Figure S8 shows the dependence of

npIDR¼ 0.1 on the read count per junction, providing a prin-

cipledmethod for selecting the read count threshold with a desired

level of reproducibility.For example, five staggered reads per junc-

tion are required to achieve an npIDR of 0.1, i.e. the 90% likeli-

hood that these junctions will be observed again in another

experiment on the same cell line with the same sequencing depth.
Experimental validation was carried out on 1920 novel splice

junctions in a wide range of RNA-seq reads support, both below

and above the npIDR threshold. Only splice junctions mapped to

intergenic or antisense loci to Gencode 7 genes (Harrow et al.,

2012) were chosen for validation, as these junctions are more

likely to be false positive than the junctions that map within the

annotated genes. The high-throughput validation pipeline

involved reverse transcription polymerase chain reaction amplifi-

cation of targeted regions followed by Roche 454 sequencing of

the pooled products. The reverse transcription polymerase chain

reaction primer design took advantage of the�250nt insert length

of the paired-end reads supporting targeted junctions, and en-

tailed the production of long 300–600nt amplicons. These ampli-

cons were pooled and sequenced by a Roche 454 sequencer to

provide long and more confidently mappable reads that were

aligned to the genome with BLAT. Detailed description of the

experimental protocols can be found in Djebali et al. (2012).
We selected 1920 intergenic and antisense splice junctions from

H1ES and HUVEC cell lines, including both highly

(npIDR50.1) and poorly (npIDR40.1) reproducible junctions.

Of all the tested novel intergenic/antisense junctions supported

by at least five RNA-seq reads (corresponding to npIDR50.1),

�82–89% (H1ES) and 84–95% (HUVEC) were corroborated by

at least two amplicons sequenced by 454 (Table 2). Notably, the

validation rate remains at a high level of 72% (H1ES) and 74%

(HUVEC) even for the candidate junctions that were supported

by as few as two RNA-seq reads. These results confirm high

precision of the STAR’s splicing detection algorithm even for

rare novel junctions.

Table 1. Mapping speed and RAM benchmarks on the experimental

RNA-seq dataset

Aligner Mapping speed: million

read pairs/hour

Peak physical

RAM, GB

6 threads 12 threads 6 threads 12 threads

STAR 309.2 549.9 27.0 28.4

STAR sparse 227.6 423.1 15.6 16.0

TopHat2 8.0 10.1 4.1 11.3

RUM 5.1 7.6 26.9 53.8

MapSplice 3.0 3.1 3.3 3.3

GSNAP 1.8 2.8 25.9 27.0
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The upper bound of the false discovery rate (FDR) can be

estimated from the validation rate (�VR) as FDR� 1�VR.

For low abundance junctions, the experimental FDR is lower

than the npIDR predicted from the dissimilarity between the

replicates: for example, although 45% of junctions, supported

by just two reads, are not reproducible (Supplementary Fig.

S8),470% of them are successfully validated (Table 2). Hence,

npIDR can serve as a conservative upper bound FDR estimate

in cases where validation experiments are impractical.

4 DISCUSSION

Despite several years of ongoing improvements, alignment of the

non-contiguous RNA-seq reads to a reference genome is not a

solved problem yet, owing both to its intrinsic complexity and

rapid transformations of the sequencing technologies. Several

critical problems have been found to afflict previously published

approaches, such as high mapping error rate, alignment biases,

low sensitivity for unannotated transcripts, poor scalability with

the read length, restrictions in the number of junctions/mis-

matches/indels per read, inability to detect non-linear transcripts

(such as chimeric RNAs), and, crucially, low mapping

throughput.
In this work, we described STAR, a novel algorithm for align-

ing high-throughput long and short RNA-seq data to a reference

genome, developed to overcome the aforementioned issues.

Unlike many other RNA-seq mappers, STAR is not an extension

of a short-read DNA mapper, but was developed as a

stand-alone Cþþ code. STAR is capable of running parallel

threads on multicore systems with close to linear scaling of prod-

uctivity with the number of cores. STAR is fast: on a modern,

but not overly expensive, 12-core server, it can align 550 million

2� 76nt reads per hour to the human genome, surpassing all

other existing RNA-seq aligners by a factor of 50. At the same

time, STAR exhibits better alignment precision and sensitivity

than other RNA-seq aligners for both experimental and simu-

lated data.

One of the main inherent problems of all de novo RNA-seq

aligners is the inability to accurately detect splicing events that

involve short (55–10nt) sequence overhangs on the donor or
acceptor sides of a junction. This causes a significant

underdetection of splicing events, and also increases significantly

the misalignment rate, as such reads are likely to be mapped with

a few mismatches to a similar contiguous genomic region. In

addition, this effect also biases the alignments toward processed

pseudogenes, which are abundant in the human genome.

Similarly to other RNA-seq aligners, to mitigate this problem,

STAR has an option to obtain information about possible splice
junction loci from annotation databases (Supplementary Section

4). It is also possible to run a second mapping pass, supplying it

with splice junction loci found in the first mapping pass. In this

case, STAR will not discover any new junctions but will align

spliced reads with short overhangs across the previously detected

junctions.
To demonstrate STAR’s ability to align long reads, we have

mapped the long (0.5–5kb) human mRNA sequences from

GenBank (see Supplementary Section 5 for details). The accur-

acy of STAR alignments is similar or higher than that of BLAT

(Kent, 2002) a popular EST/mRNA aligner. At the same time,
STAR outperforms BLAT by more than two orders of magni-

tude in the alignment speed, which is important for

high-throughput sequencing applications.

The algorithm extensibility to long reads shows that STAR
has a potential to serve as a universal alignment tool across a

broad spectrum of emerging sequencing platforms. STAR can

align reads in a continuous streaming mode, which makes it

compatible with novel sequencing technologies such as the one

recently announced by Oxford Nanopore Technologies. As the

sequencing technologies and protocols evolve, new mapping stra-

tegies will have to be developed, and STAR core algorithm can

provide a flexible framework to address arising alignment
challenges.

Data access

GEO: GSE38886 (Roche 454 sequencing)

GEO: GSE30567 (Illumina long RNA-Seq)

Table 2. Number of selected junctions and percentage of selected junctions that were validated by at least two 454 reads, as a function of the RNA-seq

read count per junction

H1ES HUVEC

Read count per

junction from

two replicates

Number of

tested

junctions

Proportion of

junctions validated

by at least two

454 reads (%)

Read count

per junction

from two replicates

Number of

tested junctions

Proportion of

junctions validated

by at least two

454 reads (%)

2 192 72.4 2 192 74.0

3 192 77.6 3 192 75.0

4 96 74.0 4 96 76.0

5 96 82.3 5–6 96 84.4

6–7 96 79.2 7–8 96 84.4

8–11 96 81.3 9–12 96 86.5

12–24 96 87.5 13–23 96 94.8

�25 96 88.5 �24 96 90.6
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