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ABSTRACT

Motivation: Genome coverage, the number of sequencing reads

mapped to a position in a genome, is an insightful indicator of irregu-

larities within sequencing experiments. While the average genome

coverage is frequently used within algorithms in computational gen-

omics, the complete information available in coverage profiles (i.e.

histograms over all coverages) is currently not exploited to its full

extent. Thus, biases such as fragmented or erroneous reference gen-

omes often remain unaccounted for. Making this information access-

ible can improve the quality of sequencing experiments and

quantitative analyses.

Results: We introduce a framework for fitting mixtures of probability

distributions to genome coverage profiles. Besides commonly used

distributions, we introduce distributions tailored to account for

common artifacts. The mixture models are iteratively fitted based on

the Expectation-Maximization algorithm. We introduce use cases with

focus on metagenomics and develop new analysis strategies to

assess the validity of a reference genome with respect to (meta-) gen-

omic read data. The framework is evaluated on simulated data as well

as applied to a large-scale metagenomic study, for which we compute

the validity of 75 microbial genomes. The results indicate that the

choice and quality of reference genomes is vital for metagenomic ana-

lyses and that validation of coverage profiles is crucial to avoid incor-

rect conclusions.
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1 INTRODUCTION

Genome coverage, the number of sequencing reads mapped to a

specific position within a reference genome, contains valuable

information about reference genome and the mapping process

and is easily accessible. Therefore, it is frequently consulted in
bioinformatics analyses to improve decisions in algorithms or to

provide meaningful information to the user. For instance, experi-

mental design methods (Löwer et al., 2012) guide the experimen-

talist to achieve a specific average sequencing depth (i.e. genome

coverage). After sequencing, the obtained reads can be mapped

to a reference genome. Quality control tools (DeLuca et al., 2012;

Garcı́a-Alcalde et al., 2012) analyze the mapping data and report

measures such as coverage information, mapping quality or error
rate to the user. For example, Qualimap (Garcı́a-Alcalde et al.,

2012) visualizes the coverage profile and the coverage over the
whole genome together with the GC content, which allows de-

tecting biases in the sequencing process. If no reference genome is

available, the reads can be assembled to complete genomes or at
least longer contiguous sequences (contigs). The latter is now-

adays possible for metagenomic data, i.e. datasets containing
reads of many different species with different abundances. The

assembler MetaVelvet (Namiki et al., 2012) uses the coverage

information in the de Bruijn graph to connect contigs of similar
coverage, as they are more likely to belong to the same organism.

In addition to these examples, local coverage information is also
used for detecting copy number alterations in genomes (e.g.

Miller et al., 2011).
Despite these versatile applications of genome coverage, a vast

amount of information commonly remains unused. Most current
methods either use the average coverage over a certain sequence

(DeLuca et al., 2012; Löwer et al., 2012) or describe the coverage

profile using single probability distributions such as the negative
binomial (Miller et al., 2011) or gamma (Hooper et al., 2010)

distribution. Yet, to the best of our knowledge, more complex
models such as mixtures of distributions are not used to fit

genome coverage profiles (GCPs). Here, we suggest that more

complex models can improve current methods and can open
doors for new analysis strategies.

We see one application of complex coverage distribution
models in metagenomics, where reference-based methods have

become increasingly popular with the advent of high-throughput
sequencing technologies (Mande et al., 2012). However, there are

two major problems with reference genomes. First, the process of

assembling and finishing reference genomes is time consuming
and cumbersome and many reference genomes remain unfinished

in the draft stage with varying qualities depending on the used
sequencing technologies (Mavromatis et al., 2012). Draft gen-

omes are typically a set of assembled contigs, where many contigs

may be erroneous or, if assembled from metagenomic data,
belong to different organisms. The second problem is of biolo-

gical nature; evolution in the microbial world proceeds at high
pace due to short replication times, and new subtypes or even

species emerge perpetually. This causes different microbial spe-

cies to have high genomic similarities. Therefore, the coverage is
generally far from homogenous when mapping metagenomic

reads to a reference genome; describing it with a single uni-modal*To whom correspondence should be addressed.
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distribution would not be appropriate. Here, more complex
models can have the power to disentangle and quantify different

contributors to the genome coverage.
In this article, we present a framework for fitting complex

mixtures of probability distributions to GCPs. We demonstrate
in simulated experiments that the proposed framework can pro-
duce reliable and robust results and present a real data experi-

ment, where we use our framework to reanalyze the data
presented in a large-scale metagenomic study.

2 METHODS

The proposed method has four steps (Fig. 1). After mapping a set of

sequence reads to a reference genome, the mapped reads are analyzed and

a GCP is constructed. Then, a mixture model of customized probability

distributions is fitted to the profile using an iterative procedure that is

similar to the Expectation-Maximization (EM) algorithm (Dempster

et al., 1977), seeking to identify and distinguish different contributors

in the profile. Further analysis on the fit parameters can then be used

to answer questions about the reference genome and the mapping pro-

cess, such as the validity of a reference genome or the occurrence of

multiple related organisms in one dataset. The presented method is not

a new invention in itself, it is rather a combination of established statis-

tical methods, which we demonstrate to be useful for analyzing GCPs.

The novelty of this contribution is the composition of the mixture models

and the subsequent analysis steps.

2.1 Genome coverage profiles

When reads are mapped to a reference genome, the per-base coverage for

each position in the reference genome is given as the number of reads

covering that position. We term the histogram over all per-base coverages

the GCP. A GCP encapsulates valuable information about the relation

between the reference genome and the genome(s) contained in the dataset.

In the following, we solely operate on GCPs, as they provide a condensed

view on the mapping of reads to a reference genome.

A GCP can take shape in various ways: First, if the reference genome

matches perfectly to the reads contained in the dataset, the genome is

homogeneously covered and the GCP consists of a uni-modal distribu-

tion, as depicted in Figure 2a. In reality, the reads and the reference

genome will differ owing to mutations and errors in the reads.

Therefore, the differing parts of the reference genome will not be covered

by reads and lead to an excess of zero-coverage counts in the GCP, as

shown in Figure 2b. Note that the distribution has a tail at low coverages,

which we discuss in Section 2.5. As a third type (shown in Fig. 2c), a

reference genome may have an overall low coverage as well as positions

differing from the reads. Then, positions with zero coverage may be

caused either by a locally differing sequence or the position was not

covered by chance owing to the statistical fluctuations in the coverage.

In addition to the three simple types, a GCP can also be a more complex

combination of coverage distributions, as shown in Figure 2d. In this

example, the dataset contained two genomes, A and B, with differing

coverages. Both genomes share parts with the reference genome and

also have similarities among each other.

2.2 Genome coverage distributions

In this section, we give a short overview of probability distributions,

which we consider relevant for describing GCPs. The simplest assumption

we can make is the random sampling property of shotgun sequencing

devices, meaning that we assume a uniform distribution of the reads

over the genome. When reads are mapped to a genome, the coverage

of each position follows a Poisson distribution Pðxj�Þ. The Poisson dis-

tribution is well studied and has one parameter �, which simplifies fitting

observed distributions. However, the Poisson distribution is often too

narrow for fitting real genome coverage distributions, in particular for

metagenomic data. This effect is called over-dispersion and occurs fre-

quently in biological data. A common way (Bliss and Fisher, 1953) to

(a) (b)

(c) (d)

Fig. 2. Exemplary GCPs after mapping a set of reads to a reference

genome. (a) Reads matching perfectly to reference genome. (b)

Reference genome partially covered by reads; the covered areas have

high coverage. (c) Reference genome partially covered by reads with

low coverage. The dashed curve has a non-zero value at zero coverage

and thus adds to the number of positions that were not covered due to

disagreement with the reads. (d) Reference genome partially covered by

reads from two organisms A and B with different abundances, yielding a

mixture of four distributions: (i) a zero-distribution for the parts of the

reference not covered, (ii) the coverage caused by organism A

(mean ¼ 6�, dotted curve), (iii) the coverage caused by organism B

(mean ¼ 16�, dashed curve) and (iv) the coverage where A and B map

to the same position (22�, dash-dotted curve)

 

Coverage Profile Model Fi�ing Analysis Read Mapping 

? 

Fig. 1. Method overview. Starting with a set of reads mapped to a reference genome, we construct a GCP and fit a mixture of probability distributions to

the profile. This procedure is the basis for further analysis steps concerning the reference genome, the mapping process and the read dataset
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account for over-dispersion is assuming that the Poisson parameter � is

distributed according to a second distribution. When � is assumed to be

gamma distributed, we obtain a negative binomial distribution NBðxja, bÞ,

which has two shape parameters and is thus harder to fit than the Poisson

distribution. However, the negative binomial turned out to model GCPs

well for both high and low coverages and has been used, for example, in

differential expression analysis (Anders and Huber, 2010).

In Figure 2b, we observed a tail on the low-coverage end of the main

distribution. The magnitude of the tail depends on the fragmentation of

the reference genome with mutations, as we discuss in detail in Section

2.5. The shape of the tail is determined by the original parent distribution;

therefore, the tail distribution does not have its own shape parameters

and can rather be considered as an extensional distribution. We imple-

mented the Poisson tail and the negative binomial tail in our framework

and give a detailed mathematical description in the Supplementary Text.

Finally, we introduce the zero distribution z(x), which is useful to

describe the excess of zero coverage positions. The zero distribution has

probability 1 at zero, and 0 everywhere else. It is static as it has no shape

parameters, but proves its usability in combination with other distribu-

tions. The zero-inflated Poisson and zero-inflated negative binomial are

defined as mixed distributions of zero and Poisson or zero and negative

binomial. These zero-inflated (ZI) distributions were used, for example,

to model the number of defects in manufactured items (Lambert, 1992),

but can also be applied for GCPs: the areas where the reference genome

agrees with the reads in the dataset yields a coverage distribution accord-

ing to Poisson or negative binomial, the areas with disagreement are

modeled by the zero distribution.

We want to regard mixtures consisting of more than one probability

distribution and write the joint distribution function as follows:

fðx, �j�Þ ¼ �0 � zðxÞ þ
Xk

i¼1

�i �Diðxj�iÞ ð1Þ

where k is the number of non-zero distributions, �i are the non-negative

mixing coefficients that sum to 1 and give a weight to each distribution,

and Di is a Poisson, negative binomial or tail distribution with the cor-

responding set of parameters �i. Fitting these mixture models to data

cannot be done directly, but requires an iterative method, as described

in the following section.

2.3 Iterative algorithm for fitting the mixture model

The algorithm starts with a set of initial parameters for the distributions

Di that can either be user defined or estimated from the GCP. With every

iteration, the algorithm adjusts the parameters to increase the likelihood

of the data given the mixture model in Equation (1). The iteration is

stopped when an accuracy threshold is reached, e.g. the change of the

likelihood drops below a predefined value. The algorithm repeatedly

computes the so-called expectation step followed by an adjustment of

the parameter set to improve the accuracy with which the corresponding

model describes the data, i.e. the likelihood of the data given the model

with parameters after iteration tþ 1 should be greater or equal to the

likelihood after iteration t. This assumption is guaranteed if maximum

likelihood estimation is used when adjusting the parameter set. In this

case, the procedure is known as the EM algorithm (Dempster et al.,

1977).

2.3.1 Expectation step Following the initialization, the expectation

step estimates conditional probabilities identical to the EM algorithm.

Using the current set of parameters �ðtÞ, we compute for each observed

coverage value the probability of belonging to distribution Di. With these

coverage-wise probabilities, we re-estimate the mixing coefficients �i for

each distribution Di. See Supplementary Text for more details.

2.3.2 Parameter estimation step In the second step, we optimize the

parameter set �ðtÞ by fitting the mixture model with respect to the

previously calculated mixing coefficients �ðtÞ. When fitting the distribu-

tions Di, we have to decide whether to use moment-based or maximum

likelihood estimates. Using the method of moments, for 1-(2-) parametric

distributions, we take the sample mean (the sample mean and the vari-

ance, respectively) and calculate the distribution parameters from these

moments. Maximum likelihood estimation directly selects a set of par-

ameters �ðtÞ that maximizes the likelihood. Owing to the nature of our

data there is no ultimate solution. Either method might be more suitable

depending on the situation. Yet, for the negative binomial distribution,

there is no closed form of the maximum likelihood estimator and requires

application of, for example, Newton’s method. The method of moments

proves to yield similar results for the negative binomial distribution and is

numerically more robust. The zero and the tail distributions do not re-

quire parameter estimation as the former has no shape parameters and

the latter inherits the parameters from the parent distribution.

2.4 Genome–Dataset Validity score

The standard scenario is that we have one reference genome and a set of

genomic reads originating from one or more unknown genome(s). Then,

we define the Genome–Dataset Validity (GDV) score as the fraction of

the reference genome that has a counterpart in the genome(s) underlying

the reads. The true similarity of the two sequences is not directly observ-

able, as the unknown genome is realized as a set of short reads.

The naı̈ve way to estimate the similarity of both sequences is by map-

ping the reads to the genome and measuring the fraction of the genome

that was covered by reads. This estimate can be sufficiently good for high

genome coverages, such as coverages above 10�. Here, the likelihood

that a location shared between both genomes remains uncovered is neg-

ligibly small. Almost all sites on the known genome not covered by reads

can be considered to be different from the unknown genome. In contrast,

for low abundances, the probability that a base is not covered by reads

although it is shared by both genomes can not be neglected anymore.

Assume, for example, a simple model where the base coverages over the

genome follow a Poisson distribution. While the probability of not cover-

ing a base at 10� coverage is 0.0045%, it rises to 13.5% for 2� coverage

and 36.8% for 1� coverage.

The described iterative algorithm can improve on the naı̈ve approach

and provide reliable estimates for much lower coverages. Depending on

the coverage distribution, we can fit a mixture of a Poisson or negative

binomial distribution and a zero distribution to the GCP. The contribu-

tion of the zero distribution should then roughly correspond to the frac-

tion of the reference genome that has no counterpart in the unknown

genome(s). Therefore, we calculate the GDV score as follows:

GDV ¼ 1� �0:

This calculation has a clear advantage over the naı̈ve approach: at low

coverages, the probability that a position is not covered by chance (and

not due to dissimilarity) is high, and the naı̈ve approach is at risk of

overestimating the fraction of the genome with no counterpart. In con-

trast, the mixture model approach makes use of the positions with higher

coverage to estimate the probability of obtaining zero coverage by chance

and thus provides more realistic and more reliable estimates.

2.5 Genome fragmentation estimation

In addition to the pure similarity of the sequencing reads and the refer-

ence genome, we can also question how fragmented the reference genome

is with respect to the reads. With fragmentation, we mean the number of

contiguous sequence fragments in the genome that conform with the

reads. For example, single-nucleotide polymorphisms, insertions or dele-

tions in the reads with respect to the reference genome can be the cause

for genome fragmentation. As discussed in detail in the Supplementary

Text, the effects at the fragment borders manifest in a tail structure in the

GCP. The tail distributions can be included in the mixture model in
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Equation (1) and their mixing coefficients can be estimated with the

described iterative algorithm. The size of the tail (i.e. �Tail) allows estimat-

ing the genome fragmentation directly, as the size of the tail depends on

the number of fragment borders. With the genome length L and the read

length RL, the number of fragments can be estimated as follows:

Frag �
�Tail � L

2 � RL
: ð2Þ

A high fragmentation of the genome gives rise to additional correction

terms for models with zero inflation. Due to the excess of zero coverage

positions at fragment borders, which is most pronounced for genomes

with partially non-zero low (1��10�) coverage and zero coverage else-

where, we introduce a correction term zcorr for the mixing coefficient of

the zero component of the model. The correction term is a function of the

number of fragments in the genome Frag, the genome length L and the

average delay �d of the first read mapped behind a fragment border:

zcorr ¼
2 � Frag � �d

L
:

We provide a detailed derivation of the number of fragments and the

correction term in the Supplementary Text.

3 EXPERIMENTS AND RESULTS

The framework described in the previous section provides a

powerful tool for solving problems related to reference genomes

and genome coverage distributions. Here we present three experi-

ments that demonstrate the applicability of the framework in a

metagenomic context. In the first experiment, we demonstrate

that the proposed algorithm can fit complex mixtures of distri-

butions to GCPs and evaluate the influence of the choice of

model on the fit quality. In the second experiment, we demon-

strate the robustness of the framework: quantities calculated

from the GCP fits (here: GDV scores) are stable over a wide

range of genome coverages. This is crucial in metagenomics,

where the number of mapped reads per genome is typically

small, but can be high for single abundant species. In the third

experiment, we apply the framework on real data and thereby

illustrate a further application: we reanalyze data from a large-

scale human gut metagenomic study and compute the GDV

scores for a selected set of reference genomes.

3.1 Fitting complex mixture models

In this experiment, we evaluate the performance of the algorithm

for fitting complex mixture models to multi-modal GCPs. Thus,

we created a dataset with reads of two organisms sharing large

genomic regions, Escherichia coli and Shigella boydii. We simu-

lated 100000 reads for E.coli and 600 000 reads for S.boydii with

75 bp length and Illumina sequencing characteristics using the

Mason read simulator (Holtgrewe, 2010). These reads were

then mapped to the E.coli reference genome with Bowtie

(Langmead et al., 2009). We expected the genome to be homo-

geneously covered by the E.coli reads and locally by additional

S.boydii reads. Yet, the number of E.coli reads could only ac-

count for 1:5� coverage. This challenged the algorithm in two

ways. First, the low E.coli coverage caused a fraction of genome

positions to have zero coverage; yet, they should not be explained

by a zero distribution. Second, the S.boydii fragments with high

coverage produced a tail in the GCP, which overlapped with the

E.coli distribution. For fitting, we used models consisting of three

components: (i) a zero distribution (abbreviated by z), (ii) a

Poisson (p) or negative binomial (n) distribution for the E.coli

reads and (iii) a Poisson, negative binomial, Poisson with tail (pt)

or negative binomial with tail (nt) distribution for the S.boydii

reads. The initialization was chosen such that component (ii)

fitted the E.coli peak and (iii) fitted the S.boydii peak.
All models were fitted to the GCP using an accuracy threshold

of 0.1% and the zero-correction was calculated for the models

with tail distribution. To compare the models by numbers, we

calculated the Kolmogorov–Smirnov test statistic, the maximum

absolute difference dmax between the observed and the estimated

cumulative mass function.

Figure 3 depicts the fits of selected mixture models, and de-

tailed results about the mixing coefficients and fit errors are

provided in the Supplementary Table. The results show a prom-

inent difference between models with and without tail: models

with tail fit the observed GCP much better (average

dmax ¼ 0:0022) than the models without tail (average

dmax ¼ 0:0073). The simplest model, zpp (see Fig. 3a), yields

the highest fit error of all models (dmax ¼ 0:0141). For the

models without tail, the fit error decreases as the model complex-

ity (parameters to fit) increases. The difference of the fit error

between the models with tail is overall lower than between the

models without tail: the lowest fit error is achieved by zpnt

(dmax ¼ 0:0018), the highest by znnt (dmax ¼ 0:0026). In particu-

lar, the fit error does not decrease with increasing model com-

plexity. Furthermore, the model fits with tail are highly similar:

besides the similar fit error, they also have almost identical mean

values � for the two non-zero distributions [distribution

(ii): 1:575�51:60; distribution (iii): 10:545�510:57].
The relative sizes of the tail distributions are on par with the

other distributions, indicating a high degree of fragmentation

of the E.coli genome compared with S.boydii. The number of

S.boydii fragments in E.coli can be estimated via Equation (2);

depending on the model, there are between 8032 and 8289

S.boydii fragments in the E.coli genome. The contribution of

the zero distribution is estimated to exactly zero in all models

except zpp and zpn.
Further experiments using more complex models (e.g. znnnt)

do not reduce the fit error. The spare distributions either take the

same shape as one of the two original distributions or their

mixing coefficients are reduced to zero, depending on the start

parameters.

This experiment shows that our algorithm can fit complex

mixture models to GCPs accurately. Best results are obtained

when the complexity and the selected distributions in the

model match the data, but more complex models do not decrease

accuracy and should thus be chosen in doubt. The low fit errors

of the models with tail distribution support the usefulness of the

tail distribution concept. Although our iterative algorithm is not

guaranteed to converge to an optimal solution as EM does, we

see that the fit results are highly similar, in particular for the

models with tail.

3.2 Influence of average coverage

In this experiment, we demonstrate the robustness of our frame-

work over a wide range of genome coverages. Information

about the genomes—both the source of the reads and the
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reference—derived from GCPs should generally not be affected
by the overall number of reads mapped to the reference genome.
Weused theShigella flexneri genome as reference and simulated

datasets of short (75bp) Illumina reads from the E.coli genome
with Mason. The smallest dataset contained 1000, the largest

10 Million E.coli reads. We used Bowtie to map these datasets
to the S.flexneri reference genome and fitted ZI Poisson and ZI

negative binomial models, both with and without zero correction,
to theGCPs. TheGDV score was calculated for eachmodel based
on the fit parameters as described in Section 2.4. The true GDV

score was estimated from the dataset with 10 Million simulated
E.coli reads to be 0.826.Due to the high coverage, at least one read

starts at each position in theE.coli genome, and amapping should
therefore cover all fragments in the S.flexneri genome that are
identical with E.coli and at least 75bp long.

The estimated GDV score of S.flexneri for the E.coli reads is
summarized in Figure 4 and Supplementary Figure S3. Curve (a)
shows the estimated GDV score for the ZI Poisson mixture

models (without and with zero correction), (b) for the corres-
ponding ZI negative binomial models. The estimated GDV

score of the S.flexneri genome is close to the estimated true
GDV score (gray dotted line) for all mixture models when the
number of reads is above 1 Million. In the range from 100 000 to

1 Million reads, the ZI Poisson with correction yields the best
estimates; it keeps the estimates on an almost constant level. For

the ZI negative binomial model, the correction has a much smal-
ler influence and the estimates are slightly worse than the cor-

rected Poisson model. In the low-coverage regime (below 1:5�
coverage or 100 000 reads), the tail effect is not observed any-
more and all models reduce to the ZI Poisson and ZI negative

binomial, respectively. The Poisson model yields lower estimates
as the number of reads decreases and therefore becomes increas-

ingly unreliable. On the other hand, the negative binomial model
yields relatively good estimates down to low numbers of reads
(�10 000), which corresponds to only 0:16� coverage in the cov-

ered fragments.

The results of this experiment suggest two different strategies

for the selection of the mixture models: for coverages below 1�,

the plain ZI negative binomial distribution yields the best results

and allows determining the GDV score with acceptable accuracy.

For local coverages of 2� and above, the ZI Poisson model with

zero-correction produces highly accurate estimates and outper-

forms all other models. There, the advantage of the Poisson

(a) (b) (c)

Fig. 3. Influence of the choice of mixture model for fitting GCPs. Three exemplary models are shown: (a) zero and two Poisson distributions (zpp), (b)

zero and two negative binomial distributions (znn), (c) zero, Poisson and negative binomial distribution with tail (zpnt). Model (c) yields the lowest fit

error (dmax ¼ 0:0018), but is more complex than models (a) and (b). Model (a) has the lowest complexity, but yields the highest fit error (dmax ¼ 0:0141)

(a)

(b)

Fig. 4. Estimating the GDV score. The charts show the estimated frac-

tion of the S. flexneri genome that is similar to the E.coli genome, i.e. the

GDV score, depending on the average coverage of the S.flexneri genome

with E.coli reads. We used ZI Poisson (a) and negative binomial (b) mix-

ture models (see text). Each model was fitted without (black solid line)

and with (red dash-dotted line) zero correction. The yellow dashed line is

the fraction of the genome that was covered by reads. The gray dotted

line is the estimated true GDV score
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model is 2-fold: in addition to the better estimates, the Poisson

model has one parameter less than the negative binomial model,

and parameter estimation is faster. Conclusively, we see that the

estimated GDV score is largely independent of genome coverage

and estimation is possible even below 1� coverage.

3.3 Application: metagenomics

The validity of reference genomes is crucial for a sound inter-

pretation of the data, in particular in metagenomics. Thus, we

estimate GDV scores on real metagenomic data. The work by

Qin et al. (2010) serves as a test case; they sequenced the meta-

genomic communities in faecal samples of 124 European individ-

uals on the Illumina platform (75 bp paired end reads) and

conducted exhaustive analysis to provide insight into the com-

position of genes and bacterial species in the human gut. As one

result, they report a list of 75 prevalent bacterial species, the

common core, which were present (genome coverage 41%) in

a large number of individuals. We obtained the original reference

genomes of the common core and selected 17 genomes that were

originally found in all 124 individuals with at least 1% coverage.

The metagenomic reads of individual MH0012 were downloaded

from the corresponding EBI database (accession numbers:

ERX004076–ERX004082).
In this experiment, we estimated the GDV score of the selected

reference genomes with respect to the metagenome of individual

MH0012. The 93Million paired-end Illumina reads were mapped

to the selected reference genomes using Bowtie 2 (Langmead and

Salzberg, 2012), and the coverage profile was calculated subse-

quently for each genome. We used Bowtie 2 here, as the meta-

genomic data and the quality of the reference genomes requires a

higher tolerance toward mismatches between reads and refer-

ence, which cannot be accomplished with Bowtie. In the next

step, we fitted a mixture model of a zero distribution, two nega-

tive binomial distributions (with maximum likelihood estima-

tion), and a negative binomial tail distribution to the GCPs.

We preferred the negative binomial over the Poisson distribution

here, as we expected over-dispersion due to a high biological

variability in the metagenomic data. Two negative binomial dis-

tributions were chosen with genomic similarities in mind, where

one distribution should fit the matches from the correct species

and the other distribution should account for the noisy matches

obtained by organisms with partial sequence similarity. The fit

error was calculated as in the first experiment.
The run time of the framework was measured for the 17 se-

lected reference genomes. Fitting the model to the GCP was ac-

complished on average within 2.9 s (minimum: 2.1 s, maximum:

4.5 s). Another 1–3 min need to be added for calculating the GCP

from the SAM file before fitting. In general, we observe that the

run time is strongly correlated to the number of matching reads,

i.e. the genome coverage, and the complexity of the model.

The GDV score of the 17 selected reference genomes is shown

in Figure 5 and ranges from 0.140 (Clostridium sp. M621) to

0.965 (Bacteroides vulgatus). All genomes have a moderate aver-

age coverage (minimum 8�, maximum 47�), and the coverage

has only low correlation to the GDV score (Pearson correlation

coefficient: r ¼ 0:34). The fit error is below 0.02 for all genomes

except Faecalibacterium prausnitzii. Despite the high-error level

compared with the first experiment, manual inspection of the fits

indicates that the assumed model is sufficient for the complexity

of data. Manual inspection of F.prausnitzii showed that the GCP

was too complex for the assumed model and required an add-

itional negative binomial component.

Considering that E.coli reads mapped to a S.flexneri genome

yield a GDV score of 40.8, as demonstrated in the previous

experiment, the numbers observed in this experiment are rather

low. One reason may be that the selected reference genomes

originally served as representatives for clusters of similar gen-

omes. Furthermore, most reference genomes were sets of separ-

ate contigs, indicating that the reference genomes could be

incomplete or have low quality. This is prototypic for metage-

nomics, as the majority of bacteria are still not or only poorly

sequenced, such that a reference genome with low GDV score

may be not a good, but the best possible choice. The only high-

quality reference genome (no contigs) is B.vulgatus, which

achieves by far the highest GDV score (GDV ¼ 0:96).
A similar picture can be observed on the full set of 75 genomes

(see Supplementary Figure); the GDV scores are in the range

from 0.013 (Enterococcus faecalis) up to 0.998 (Clostridium

leptum). Interestingly, four out of the seven best scored genomes

are high-quality genomes and the other three have5100 contigs.

Manual validation confirmed the high validity and showed

homogenous coverage over the genomes, only interrupted by

small gaps and single high-coverage parts. On the other hand,

the genome with the worst score—the gut bacterium E.faecalis—

is also a high-quality genome. Manual validation showed that

E.faecalis was not covered homogeneously. This underlines the

features of the GDV score: to achieve a high validity, reference

genomes must be homogeneously covered by reads and must

have high quality. A high genome quality but a low and inhomo-

geneous coverage, indicating that the species itself is not present,

is correctly penalized by a low score.

4 DISCUSSION

We introduced GCPs as a means to extract quantitative infor-

mation from mapping data. By fitting mixtures of probability

Fig. 5. GDV scores for human gut metagenome. The validity of 17

prevalent bacterial species with respect to one metagenomic human gut

sample was estimated by fitting the GCPs as described in Section 2.4. The

GDV score (dots) ranges from 0.140 for Clostridium sp. M621 to 0.965

for B.vulgatus. A lower fit error (crosses, right axis) indicates a more

trustworthy GDV score estimate

1265

Analyzing genome coverage profiles

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/10/1260/260059 by guest on 20 M
arch 2024



distributions to the GCP, we obtain valuable information about

the reference genomes and the mapping process, such as the

fraction of the genome that could not be covered by reads or if

there is more than one organism contributing to the coverage.

This makes the proposed framework a powerful tool for the

analysis of mapping data without restriction to the application.
The introduced GDV score is a simple, yet powerful, measure

for how well a reference genome fits to the mapped reads.

Especially in metagenomics, reference genomes are typically

not required to fit perfectly to the data; nevertheless, the

degree of divergence should not become too large. As one ex-

ample, we observed a GDV score of 0.82 in the experiment in

Section 3.2, where we mapped E.coli reads to a S.flexneri

genome. This illustrates a relatively high biological divergence

between data and reference despite a high GDV score. We as-

sessed GDV scores in a real metagenomic experiment conducted

by Qin et al. (2010) and observed surprisingly low scores for

genomes that were originally considered to be present in the

dataset; only 9 of 75 reference genomes achieved scores 40.8.

This is an imposing example for high discrepancy between meta-

genomic data and reference genomes, which we presume to be a

common challenge of metagenomic experiments. One of the

major reasons might be the quality of the reference genomes:

as microbes from metagenomic experiments are typically not

cultivable, their genomes must be assembled from environmental

samples, which is significantly more complicated and error prone

than assembly from pure samples. In the experiment at hand, 37

of 75 reference genomes consisted of4100 (up to 1700) separate

contigs, only six genomes were one contiguous sequence. The

framework proposed and applied in this work makes these

flaws quantifiable.

The first experiment showed that the iterative algorithm is able

to fit complex mixtures of highly specialized probability distri-

butions to GCPs. The impact of the tail distributions became

apparent, as they significantly reduced the fit error. The second

experiment showed that quantities calculated on fitted GCPs are

robust toward influences of the average genome coverage. There,

we observed stable estimates of the GDV score over a wide range

of coverages, starting at average coverages below 0:2�.
Although our method is robust toward the average coverage, it

can be sensitive to the mapping parameters: more restrictive

mapper settings typically yield a lower GDV score and a

higher influence of the tail distributions. This has to be con-

sidered when comparing GDV scores over different experiments.

The iterative algorithm encounters limitations in extreme cases,

for example, when the average coverage is very low, but locally

extremely high. This can be the case when a genome is not pre-

sent in the data, but shares a gene with other highly abundant

genomes. Then, the algorithm may fail to fit the low-coverage

distribution, as intended by the user, but tries to fit the extremely

high noise contributions. In other cases, the standard start par-

ameters are inappropriate, such that the algorithm ends up in a

local probability maximum instead of fitting the distribution as

intended. These problems demonstrate that visual inspection of

the fit is necessary and this is supported by the framework.

Common strategies used for the EM algorithm are also possible,

such as the initialization with different or manually determined

starting parameters.

Here, we focused on applications in metagenomics; however,

the information obtained by fitting the coverage distribution is

by no means limited to metagenomics but can be used for other

purposes, such as experimental design and sequencing depth es-

timation (Hooper et al., 2010), the detection of copy number

variations (Miller et al., 2011) or metagenome assembly

(Namiki et al., 2012). As an example, metagenomic sequencing

experiments can be designed in a way, such that the GDV score

can be calculated robustly for reference genomes with a certain

minimum abundance in the sample. The minimum amount of

sequencing required can be found by finding the minimum

required coverage for a robust GDV score calculation in a simu-

lation-based experiment, as presented in Section 3.2. Tools for

estimating species abundances in metagenomic data, such as

GRAMMy (Xia et al., 2011), GASiC (Lindner and Renard,

2012) or READSCAN (Naeem et al., 2013), can make use of

the GDV score to more precisely estimate the abundance of the

organism truly contained in the dataset, if the used reference

genomes have a low validity. Observations give rise to the

assumption that our method is applicable to single contigs in

unfinished reference genomes. There, the GDV score may sup-

port the identification of chimeric or erroneous contigs and thus

contribute to the improvement of reference genomes. New appli-

cations arise, for example, in metagenomics where the informa-

tion from the GCPs can be used to estimate the evolutionary

distance of unknown organisms in the data to known organisms

by mapping the reads to the known genomes and calculating

GDV scores. In conjecture with phylogenetic information, the

GDV score can be used to narrow the truly contained organism

down to a certain area of a phylogenetic tree by excluding

reference genomes yielding a lower GDV score.

5 CONCLUSION

Genome coverage information is commonly consulted for assess-

ing the quality of mapping data. Yet, we argue that the coverage

information is not sufficiently exploited and does allow a deeper

evaluation of the mapping process and the suitability of reference

genomes. Thus, we introduced GCPs as a powerful tool to

extract valuable information about the interplay of read data

and reference genomes and described an algorithm for fitting

specialized probability distribution functions to GCPs. In simu-

lated experiments, we showed that the proposed algorithm per-

forms well on complex GCPs and over a wide range of genome

coverages, including coverages as low as 0:2�. We demonstrated

a use case of our framework in metagenomics, where we could

apply our approach to quantify the discrepancy of metagenomic

data and reference genomes. The observations suggest that the

selection of reference genomes for metagenomic experiments

should be done carefully and the validity of the reference

genomes should be integrated in the further analysis.
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Löwer,M. et al. (2012) Confidence-based somatic mutation evaluation and priori-

tization. PLoS Comput. Biol., 8, e1002714.

Mande,S. et al. (2012) Classification of metagenomic sequences: methods and chal-

lenges. Brief. Bioinformatics, 13, 669–681.

Mavromatis,K. et al. (2012) The fast changing landscape of sequencing technologies

and their impact on microbial genome assemblies and annotation. PLoS One, 7,

e48837.

Miller,C. et al. (2011) ReadDepth: a parallel R package for detecting copy number

alterations from short sequencing reads. PLoS One, 6, e16327.

Naeem,R. et al. (2013) READSCAN: a fast and scalable pathogen discovery pro-

gram with accurate genome relative abundance estimation. Bioinformatics, 29,

391–392.

Namiki,T. et al. (2012) MetaVelvet: an extension of Velvet assembler to de

novo metagenome assembly from short sequence reads. Nucleic Acids Res.,

40, e155.

Qin,J. et al. (2010) A human gut microbial gene catalogue established by metage-

nomic sequencing. Nature, 464, 59–65.

Xia,L. et al. (2011) Accurate genome relative abundance estimation based on shot-

gun metagenomic reads. PLoS One, 6, e27992.

1267

Analyzing genome coverage profiles

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/10/1260/260059 by guest on 20 M
arch 2024


