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ABSTRACT

Motivation: The number of missense mutations being identified in

cancer genomes has greatly increased as a consequence of techno-

logical advances and the reduced cost of whole-genome/whole-

exome sequencing methods. However, a high proportion of the

amino acid substitutions detected in cancer genomes have little or

no effect on tumour progression (passenger mutations). Therefore,

accurate automated methods capable of discriminating between

driver (cancer-promoting) and passenger mutations are becoming in-

creasingly important. In our previous work, we developed the

Functional Analysis through Hidden Markov Models (FATHMM) soft-

ware and, using a model weighted for inherited disease mutations,

observed improved performances over alternative computational pre-

diction algorithms. Here, we describe an adaptation of our original

algorithm that incorporates a cancer-specific model to potentiate the

functional analysis of driver mutations.

Results: The performance of our algorithm was evaluated using two

separate benchmarks. In our analysis, we observed improved perform-

ances when distinguishing between driver mutations and other germ

line variants (both disease-causing and putatively neutral mutations). In

addition, when discriminating between somatic driver and passenger

mutations, we observed performances comparable with the leading

computational prediction algorithms: SPF-Cancer and TransFIC.

Availability and implementation: A web-based implementation of

our cancer-specific model, including a downloadable stand-alone

package, is available at http://fathmm.biocompute.org.uk.

Contact: fathmm@biocompute.org.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Human cancers are characterized by the accumulation of somatic

mutations, e.g. gross insertions and deletions, as well as the more
subtle single base pair substitutions (Iengar, 2012), some of
which confer a growth advantage on the tumour cells

(Hanahan and Weinberg, 2011). The Catalogue of Somatic
Mutations in Cancer (COSMIC) (Bamford et al., 2004) is an
online repository of somatic mutation data, which includes

amino acid substitutions (AASs). The identification of cancer-

promoting AASs (driver mutations) promises to lead to a better

understanding of the molecular mechanisms underlying the dis-

ease, as well as providing potential diagnostic and therapeutic

markers (Furney et al., 2006). However, this remains a major

challenge, as the majority of AASs detected in cancer genomes

do not contribute to carcinogenesis; rather, these ‘passenger mu-

tations’ are a consequence of tumorigenesis rather than a cause

(Greenman et al., 2007). Therefore, accurate automated compu-

tational prediction algorithms capable of distinguishing between

driver and passenger mutations are of paramount importance.
A review by Thusberg et al. (2011) describes the performance

of several computational prediction algorithms (Adzhubei et al.,

2010; Bao et al., 2005; Bromberg and Rost, 2007; Calabrese

et al., 2009; Capriotti et al., 2006; Li et al., 2009; Ng and

Henikoff, 2001; Mort et al., 2010; Ramensky et al., 2002;

Thomas et al., 2003) using a ‘gold standard’ validation bench-

mark (Sasidharan Nair and Vihinen, 2013). In our previous

work, we developed the Functional Analysis through Hidden

Markov Models (FATHMM) algorithm and, using a model

weighted for inherited disease mutations, observed improved per-

formance accuracies over alternative computational prediction

methods using the same benchmark (Shihab et al., 2013).

However, the value of traditional computational prediction al-

gorithms in cancer genomics remains unclear (Kaminker et al.,

2007a). For example, the shared characteristics between driver

and other disease-causing mutations allow for a significant pro-

portion of cancer-associated mutations to be identified (high-sen-

sitivity/true positive rate); however, these methods are incapable

of reliably distinguishing between driver and other disease-caus-

ing mutations. Furthermore, with respect to carcinogenesis, a

large proportion of passenger mutations are still misclassified

as having a role in tumour progression (low-specificity/true nega-

tive rate). As a result, several cancer-specific computational pre-

diction algorithms capable of distinguishing between driver

mutations and other germ line variants (both disease-causing

and putatively neutral mutations) and/or capable of discriminat-

ing between somatic driver and passenger mutations have been

developed (Carter et al., 2009; Gonzalez-Perez et al., 2012;

Kaminker et al., 2007b; Reva et al., 2011).

In this work, we describe an adaptation to our original algo-

rithm, which amalgamates sequence conservation within hidden

Markov models (HMMs), representing the alignment of*To whom correspondence should be addressed.
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homologous sequences and conserved protein domains, with

‘pathogenicity weights’, representing the overall tolerance of

the corresponding model to mutations (Shihab et al., 2013), to

potentiate the functional analysis of driver mutations. Using a

model weighted for cancer-associated mutations, we observe per-

formance accuracies, which outperform alternative computa-

tional prediction algorithms (Adzhubei et al., 2010; Capriotti

and Altman, 2011; Ng and Henikoff, 2001; Reva et al., 2011)

when distinguishing between driver and other germ line muta-

tions (both disease-causing and neutral polymorphisms).

Furthermore, when discriminating between driver and passenger

mutations (somatic), we observe performance accuracies com-

parable with other state-of-the-art computational prediction al-

gorithms (Capriotti and Altman, 2011; Carter et al., 2009;

Gonzalez-Perez et al., 2012). A web-based implementation of

our algorithm, including a high-throughput batch submission

facility and a downloadable stand-alone package, is available

at http://fathmm.biocompute.org.uk.

2 METHODS

2.1 The mutation datasets

The mutation datasets used in this study were collected and assembled as

follows: first, cancer-associated mutations (germ line and somatic) from

the CanProVar database (Li et al., 2010) (CanProVar—Version 54;

http://bioinfo.vanderbilt.edu/canprovar) and putative neutral poly-

morphisms from the UniProt database (Apweiler et al., 2004)

(UniProt—November 2011; http://www.uniprot.org/docs/humsavar)

were downloaded and used to calculate our ‘cancer-specific pathogenicity

weights’. Next, we obtained three mutation datasets (Capriotti and

Altman, 2011) and performed an independent benchmark comparing

the performance of our algorithm with the performance of five alternative

computational prediction algorithms (Adzhubei et al., 2010; Capriotti

and Altman, 2011; Ng and Henikoff, 2001; Reva et al., 2011). Finally,

we obtained a published benchmark consisting of nine mutation datasets

(Gonzalez-Perez et al., 2012) and compared the performance of our al-

gorithm with the performance of four alternative computational predic-

tion algorithms (Adzhubei et al., 2010; Gonzalez-Perez et al., 2012; Ng

and Henikoff, 2001; Reva et al., 2011). The composition of these datasets

is summarized in Table 1, and the overlap between our training and

benchmarking datasets is illustrated in Supplementary Table S1.

2.2 Scoring cancer-associated amino acid substitutions

Following the procedure described in Shihab et al. (2013): protein domain

annotations from the SUPERFAMILY (Gough et al., 2001) (version

1.75) and Pfam (Sonnhammer et al., 1997) (Pfam-A and Pfam-B; version

26.0) databases are made. Next, the corresponding HMMs are extracted

if the mutation maps onto a match state within the model, and the

domain assignment is deemed to be significant (e-value �0.01). Where

multiple HMMs are extracted, then the model with the largest informa-

tion gain (as measured by the Kullback–Leibler divergence (Kullback and

Leibler, 1951) from the SwissProt/TrEMBL amino acid composition) is

used. Finally, we interrogate the amino acid probabilities within the

model and assume that a reduction in the amino acid probabilities

(when comparing the wild-type with the mutant residue) indicates a po-

tential negative impact on protein function. Finally, the predicted mag-

nitude of effect is weighted using cancer-specific pathogenicity weights

(Supplementary Methods):

ln
1:0� Pwð Þ � ðWp þ 1:0Þ

1:0� Pmð Þ � ðWc þ 1:0Þ
ð1Þ

Here, Pw and Pm represent the underlying probabilities for the

wild-type and mutant amino acid residues, respectively, and the patho-

genicity weights, Wc and Wp, represent the relative frequencies of cancer-

associated (CanProVar) and putative neutral polymorphisms

(UniProt) mapping onto the relevant HMMs, respectively. A pseudo-

count of 1.0 is incremented to our pathogenicity weights to avoid zero

divisible terms.

2.3 Extending our algorithm to mutations falling outside

conserved protein domains

The main disadvantage of our original algorithm was confining coverage

(via the weighting scheme used) to protein missense variants falling within

conserved protein domains. To increase coverage, we have developed an

extension to the aforementioned data for predicting the functional effects

of AASs falling outside conserved protein domains. In brief, ab initio

HMMs, representing the alignment of homologous sequences within

the SwissProt/TrEMBL database (Apweiler et al., 2004), are constructed

using the JackHMMER component of HMMER3 (Eddy, 2009) (one

iteration with the optional—hand parameter applied). The predicted mag-

nitude of effect is then calculated as in Equation (1); however, these

models are weighted with the relative frequencies of cancer-associated

(CanProVar) and putative neutral polymorphisms (UniProt) mapping

onto the top scoring sequence(s), and their homologous domain(s),

being used to construct the model (Supplementary Methods).

2.4 Performance evaluation

As recommended in Vihinen (2012), the performance of our method was

assessed using the following six parameters [Equations (2–7)]:

Accuracy ¼
tpþ tn

tpþ tnþ fpþ fn
ð2Þ

Precision ¼
tp

tpþ fp
ð3Þ

Sensitivity ¼
tp

tpþ fn
ð4Þ

Specificity ¼
tn

fpþ tn
ð5Þ

Negative Predictive Value ðNPVÞ ¼
tn

tnþ fn
ð6Þ

Matthews Correlation Coefficient ðMCCÞ

¼
tp � tnð Þ � ðfn � fpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tpþ fnð Þ � tpþ fpð Þ � tnþ fnð Þ � ðtnþ fpÞ

p
ð7Þ

In the aforementioned data, tp and fp refer to the number of true

positives and false positives reported and tn and fn denote the number

of true negatives and false negatives reported.

3 RESULTS

3.1 A cancer-specific prediction threshold

The Capritotti and Altman (2011) benchmark comprises three

mutation datasets: the cancer and neutral only (CNO) mutation

dataset assesses the performance of computational prediction

algorithms when tasked with discriminating between driver mu-

tations and neutral (germ line) polymorphisms; the cancer, neu-

tral and other disease (CND) mutation dataset is used

to evaluate the performance of computational prediction

1505

Cancer Missense Functional Prediction

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/12/1504/292253 by guest on 13 M
arch 2024



algorithms when tasked with distinguishing between cancer-

associated and other germ line mutations (both disease-causing

and neutral polymorphisms); and the synthetic mutation dataset

measures the performance of computational prediction algo-

rithms when differentiating between somatic driver and passen-

ger mutations. Therefore, to derive a prediction threshold

capable of being applied under all conditions, we plotted the

distribution of the predicted magnitude of effect for all mutations

in the Capriotti and Altman benchmark using a leave-one-out

cross-validation procedure (Fig. 1). From this, we calculated a

prediction threshold at which the specificity and sensitivity of our

algorithm were both maximized across the mutation datasets:

�0.75. Using this threshold, we observed that a large proportion

of driver mutations (92%) fell below our prediction threshold,

whereas the vast majority of germ line polymorphisms (disease-

causing/putative neutral mutations) and passenger mutations fell

above our prediction threshold, 94 and 87%, respectively.

3.2 An independent benchmark against other

computational prediction algorithms

Using the Capriotti and Altman (2011) mutation datasets, we

performed an independent benchmark comparing the perform-

ance of our method with the performance of two generic com-

putational prediction algorithms: SIFT (Ng and Henikoff,

2001) and PolyPhen-2 (Adzhubei et al., 2010); alongside two

cancer-specific computational prediction algorithms: Mutation

Assessor (Reva et al., 2011) and SPF-Cancer (Capriotti and

Altman, 2011). For this analysis, we obtained SIFT and

PolyPhen-2 predictions using the corresponding algorithms’

batch submission facilities, whereas Mutation Assessor predic-

tions were collected using the available web service, and SPF-

Cancer predictions were provided by the corresponding author

Table 1. Summary of mutation datasets used in this study

Dataset Positives Negatives Description

Training datasets

CanProVar 12720 — A collection of cancer-associated mutations used to calculate our pathogenicity weights

UniProt — 36928 A collection of putative neutral polymorphisms used to calculate our pathogenicity

weights

Capriotti and Altman benchmark

CNO 3163 3163 Comprising driver mutations used to train the CHASM algorithm and neutral

polymorphisms

CND 3163 3163 Comprising driver mutations used to train the CHASM algorithm and other germ line

mutations (both disease-causing and neutral polymorphisms)

Synthetic 3163 3163 Comprising driver and passenger mutations (somatic) used to train the CHASM

algorithm

Gonzalez-Perez et al. benchmark

COSMIC 2þ 1 3978 39850 Comprising COSMIC mutations occurring in 2þ samples and COSMIC mutations

occurring in one sample

COSMIC 5þ 1 1631 39850 Comprising COSMIC mutations occurring in 5þ samples and COSMIC mutations

occurring in one sample

COSMIC 2/POL 3978 8040 Comprising COSMIC mutations occurring in 2þ samples and neutral polymorphisms

COSMIC 5/POL 1631 8040 Comprising COSMIC mutations occurring in 5þ samples and neutral polymorphisms

COSMIC D/O 2151 41664 Comprising driver mutations used to train the CHASM algorithm and COSMIC mu-

tations not in the positive subset

COSMIC D/POL 2151 8040 Comprising driver mutations used to train the CHASM algorithm and neutral

polymorphisms

COSMIC CGC/NONCGC 4865 34827 Comprising COSMIC mutations falling within genes defined in the CGC and

COSMIC mutations falling within genes outside the CGC

WG 2/1 790 24079 Comprising somatic mutations occurring in 2þ samples and somatic mutations occur-

ring in one sample

WG CGC/NONCGC 1302 22983 Comprising somatic mutations falling within genes defined in the CGC and somatic

mutations falling within genes outside the CGC

CGC, Cancer Gene Census (Futreal et al., 2004).

Fig. 1. The distribution of the predicted magnitude of effect for all driver

mutations against all non–cancer-associated (germ line and somatic) mu-

tations in the Capriotti and Altman (2011) benchmark. Here, the dashed

line represents our prediction threshold of �0.75 at which the specificity

and sensitivity of our algorithm is maximized across all mutation datasets
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on request (as no batch submission is available). The algorithm’s

default parameters and prediction thresholds were applied

throughout our analysis.

First, using the cancer and neutral only (CNO) mutation data-

set, we assessed the performance of these algorithms when tasked

with distinguishing between driver mutations and putatively neu-

tral polymorphisms. In addition, using the cancer, neutral and

other disease (CND) mutation dataset, we assessed the perform-

ance of these algorithms when tasked with differentiating be-

tween driver mutations and other disease-causing mutations

(non-neoplasm). From Table 2, and in terms of performance

accuracies, it would seem that our method is the best-performing

algorithm across these mutation datasets (94 and 93%, respect-

ively). Using the synthetic mutation dataset, we assessed the per-

formance of these algorithms when tasked with discriminating

between somatic driver and passenger mutations. Here, our

method outperforms SIFT, PolyPhen-2 and Mutation

Assessor; it is comparable with SPF-Cancer (89 and 90%, re-

spectively). Next, we compared the performance of our domain-

based algorithm with the performance of our novel extension

(capturing regions falling outside of conserved protein domains).

We observed similar performances both within and outside con-

served protein domains and concluded that our extension (and

the corresponding weighting scheme) was just as effective as our

domain-based algorithm when predicting the functional conse-

quences of cancer-associated mutations (Supplementary Table

S2). Finally, we plotted receiver operating characteristic (ROC)

curves in the form of cumulative true positive/false positive plots

centred on a conservative 1% error rate (Fig. 2). These curves re-

affirm the comparable performances between our algorithm and

Table 2. Performance of computational prediction methods using the Capriotti and Altman benchmarking datasets

Method tp fp tn fn Accuracya Precisiona Specificitya Sensitivitya NPVa MCCa

Cancer and neutral only (CNO)

SIFT 2180 560 1266 982 0.69 0.69 0.69 0.69 0.69 0.38

PolyPhen-2b 2421 1244 1894 656 0.70 0.66 0.60 0.79 0.74 0.40

Mutation Assessor 2403 1004 2155 751 0.72 0.71 0.68 0.76 0.74 0.45

SPF-Cancer 2876 196 2967 287 0.92 0.94 0.94 0.91 0.91 0.85

FATHMM 2858 77 3077 300 0.94 0.97 0.98 0.91 0.91 0.88

Cancer, neutral and other disease (CND)

SIFT 2180 943 745 982 0.57 0.55 0.44 0.69 0.59 0.14

PolyPhen-2b 2421 1921 1238 656 0.56 0.54 0.34 0.79 0.62 0.14

Mutation Assessor 2403 1921 1238 751 0.58 0.56 0.39 0.76 0.62 0.17

SPF-Cancer 2876 418 2745 287 0.89 0.87 0.87 0.91 0.91 0.78

FATHMM 2858 161 2933 300 0.93 0.95 0.95 0.91 0.91 0.85

Synthetic

SIFT 2180 1431 1434 982 0.59 0.58 0.50 0.69 0.62 0.19

PolyPhen-2b 2421 1902 985 656 0.56 0.54 0.34 0.79 0.62 0.14

Mutation Assessor 2403 1474 1432 751 0.63 0.60 0.49 0.76 0.67 0.26

SPF-Cancer 2859 297 2866 304 0.90 0.91 0.91 0.90 0.90 0.81

FATHMM 2858 362 2710 300 0.89 0.88 0.88 0.91 0.90 0.79

Note: tp, fp, tn, fn refer to the number of true positives, false positives, true negatives and false negatives, respectively. Bold values indicate the best performing method across

the corresponding performance statistics. aAccuracy, precision, specificity, sensitivity, NPV and MCC are calculated ‘from normalized numbers. b‘Possibly damaging’

predictions are classified as pathogenic.

Fig. 2. ROC curves showing the cumulative true positive rate versus the cumulative false positive rate for the computational prediction algorithms

evaluated in our independent benchmark
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SPF-Cancer. In addition, these curves demonstrate the relatively

poor performances of ‘generic’ computational prediction algo-

rithms, such as SIFT and PolyPhen-2, when applied to predict

the functional consequences of cancer-associated mutations.

As our prediction threshold was derived using the same mu-

tation datasets used in this benchmark (albeit using a leave-one-

out analysis), and a large proportion of driver mutations is also

present in our training data, we recognize the potential for bias

in the observed performances. Therefore, to alleviate this bias,

we further performed a 20-fold cross-validation procedure

(Supplementary Table S3). We observed no significant deviations

in the performance measures reported earlier in the text and,

therefore, concluded that the performance of our algorithm is

not an artefact of our weighting scheme.
Finally, to enable a direct (and fair) comparison between our

algorithm and another leading computational prediction algo-

rithm, CHASM (Carter et al., 2009), we performed the same

2-fold cross-validation procedure used in (Capriotti and

Altman, 2011) using the synthetic dataset. Here, we observed

an improved performance when using our algorithm (Table 3).

Furthermore, we observed no significant deviations from our

original performance measures reported earlier in the text.

3.3 A performance comparison with a published review

In addition to performing our own benchmark, we downloaded

and used the Gonzalez-Perez et al. (2012) benchmark

(comprising nine mutation datasets) to compare the performance

of our algorithm with four alternative computational prediction

algorithms: SIFT (Ng and Henikoff, 2001), PolyPhen-2

(Adzhubei et al., 2010), Mutation Assessor (Reva et al., 2011)

and TransFIC (Gonzalez-Perez et al., 2012). For this analysis, we

opted to compare our algorithm with the Mutation Assessor

TransFIC, as it has been shown to outperform the SIFT

TransFIC and PolyPhen-2 TransFIC. In accordance with

(Gonzalez-Perez et al., 2012), and to enable a fair comparison

to be made between our algorithm and the Mutation Assessor

TransFIC, we adjusted our prediction thresholds across the nine

mutation datasets to maximize the Matthews correlation coeffi-

cient (MCC) of our algorithm. Here, our algorithm outperforms

SIFT, PolyPhen-2 and Mutation Assessor across all mutation

datasets. In addition, it seems our algorithm is comparable

with the Mutation Assessor TransFIC (Table 4). The perform-

ance of our algorithm using our standard prediction threshold is

documented in Supplementary Table S4.

3.4 Benefits of a disease-specific weighting scheme

To better understand the potential benefits of incorporating a

cancer-specific weighting scheme into our algorithm, we com-

pared the score/prediction assignments for all mutations in the

Capriotti and Altman (2011) benchmark using a cancer-specific

weighting scheme with the score/prediction assignments for the

same mutations using our original inherited-disease weighting

scheme. As expected, the odds of identifying driver and passen-

ger mutations were 7.92 (CI: 6.82, 9.22) and 1.95 (CI: 1.69, 2.25)

times greater, respectively, when using a cancer-specific weight-

ing scheme. Furthermore, the odds of correctly identifying other

disease-causing mutations as having no effect on tumour pro-

gression were 75.48 (CI: 59.70, 96.17) times greater when using a

cancer-specific weighting scheme. The observed performance

gain illustrates the ability of our algorithm to not only distin-

guish between driver and passenger mutations but also to

discriminate between cancer-associated mutations and other

germ line mutations (both disease-associated and neutral

polymorphisms).

Table 4. Performance of computational prediction methods using the Gonzalez-Perez et al. benchmarking datasets

Dataset SIFT PolyPhen-2 Mutation assessor TransFIC FATHMM

Acc. MCC Acc. MCC Acc. MCC Acc. MCC Acc. MCC Threshold

COSMIC 2þ 1 0.49 0.10 0.59 0.06 0.30 0.80 0.93 0.50 0.93 0.63 �3.50

COSMIC 5þ 1 0.49 0.12 0.60 0.09 0.32 0.90 0.97 0.57 0.95 0.57 �3.50

COSMIC 2/POL 0.70 0.32 0.79 0.39 0.80 0.91 0.93 0.86 0.93 0.84 �1.50

COSMIC 5/POL 0.71 0.32 0.86 0.41 0.71 0.96 0.98 0.76 0.97 0.89 �1.50

COSMIC D/O 0.48 0.09 0.61 0.10 0.18 0.78 0.88 0.25 0.90 0.35 �3.00

COSMIC D/POL 0.70 0.29 0.85 0.42 0.64 0.92 0.94 0.69 0.95 0.86 �0.75

COSMIC CGC/NONCGC 0.44 0.08 0.56 0.07 0.16 0.78 0.85 0.50 0.91 0.55 �1.60

WG 2/1 0.84 0.02 0.71 0.01 0.10 0.89 0.96 0.23 0.97 0.31 �3.50

WG CGC/NONCGC 0.42 0.11 0.56 0.11 0.34 0.90 0.94 0.52 0.95 0.39 �2.80

Note: The performances of alternative computational prediction algorithms have been reproduced with permission from Gonzalez-Perez et al. (2012; Open Access Article).

Bold values indicate the best performing method across the corresponding benchmark.

Table 3. A performance comparison using a 2-fold cross-validation

procedure

Method Accuracy Precision Specificity Sensitivity NPV MCC

CHASM 0.80 0.85 0.87 0.73 0.76 0.60

FATHMM 0.87 0.88 0.88 0.86 0.86 0.74

Note: The performances of CHASM have been reproduced with permission from

Capriotti and Altman (2011), Copyright 2013, Elsevier. Bold values indicate the best

performing method across the corresponding performance statistics.
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4 DISCUSSION

In this article, we described an adaptation to the Functional

Analysis through Hidden Markov Models (FATHMM) algo-

rithm (Shihab et al., 2013) in which a cancer-specific weighting

scheme was incorporated to potentiate the functional analysis of

driver mutations. The performance of our method was then

benchmarked against four alternative computational prediction

algorithms: SIFT (Ng and Henikoff, 2001) and PolyPhen-2

(Adzhubei et al., 2010), Mutation Assessor (Reva et al., 2011)

and SPF-Cancer (Capriotti and Altman, 2011); using the

Capriotti and Altman (2011) benchmarking datasets. In terms

of performance accuracies, FATHMM seems to be the best per-

forming method available when assigned with the task of distin-

guishing between driver mutations and other germ line

polymorphisms (both disease-causing and neutral).

Furthermore, when tasked with discriminating between driver

and passenger mutations (somatic), our method seems to per-

form as well as the alternative leading prediction algorithm:

SPF-Cancer. Although the performance of our algorithm in

this category does not represent an improvement over SPF-

Cancer, our method offers a large-scale/high-throughput batch

submission facility capable of analysing all foreseeable genomic/

cancer datasets—an important facility that is not offered with

SPF-Cancer. In addition, to facilitate a comparison between our

algorithm and another leading computational prediction algo-

rithm: CHASM (Carter et al., 2009), we performed a 2-fold

cross-validation procedure and observed an improved perform-

ance when using our method. We also compared the perform-

ance of our algorithm with four computational prediction

algorithms: SIFT (Ng and Henikoff, 2001), PolyPhen-2

(Adzhubei et al., 2010), Mutation Assessor (Reva et al., 2011)

and TransFIC (Gonzalez-Perez et al., 2012), using a published

benchmark (Gonzalez-Perez et al., 2012). Once again, we

observed improved performance accuracies over traditional com-

putational prediction algorithms: SIFT, PolyPhen-2 and

Mutation Assessor; and we noted comparable performances

with the Mutation Assessor TransFIC.
In any fair comparison, care should be taken to reduce the

potential overlap between the mutation datasets used for training

and testing; however, this level of testing is not possible, as it

would require obtaining and retraining each algorithm with

common datasets. To remove the potential bias in our results,

we performed a 20-fold cross-validation procedure across our

benchmark. From this analysis, we observed no significant devi-

ations in the performance of our algorithm and, therefore, con-

cluded that the performances observed were not an artefact of

the weighting scheme used.
The potential benefits of incorporating cancer-specific infor-

mation into our predictions were assessed by comparing the per-

formance of our cancer-specific weighting scheme with the

performance of our original inherited-disease weighting scheme.

In accordance with previous findings (Kaminker et al., 2007a),

we observed some similarities in driver scores/predictions be-

tween the two weighting schemes. However, we noted improved

odds in identifying driver/passenger mutations using a cancer-

specific weighting scheme. Unsurprisingly, we also noted signifi-

cantly improved odds in correctly classifying disease-causing

(non-neoplasm) mutations as having no effect on tumour

progression. Therefore, by incorporating a cancer-specific

weighting scheme, we have shown that our method is capable

of identifying mutations that directly contribute to carcinogen-

esis, irrespective of other underlying disease associations.
To facilitate the analysis of large-scale cancer genomic data-

sets, our public web server (available at http://fathmm.biocom-

pute.org.uk) provides unrestricted and near instant predictions

for all possible amino acid substitutions within the human prote-

ome. For example, we were capable of annotating the entire

COSMIC (Bamford et al., 2004) database—comprising of over

half a million mutations—in51 h using a single processing core.

In addition, we also provide an open-source software package

allowing users to run our algorithm using their high-performance

computing systems.
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