
Vol. 29 ISMB/ECCB 2013, pages i135–i144
BIOINFORMATICS doi:10.1093/bioinformatics/btt244

Supervised de novo reconstruction of metabolic pathways from

metabolome-scale compound sets
Masaaki Kotera1,y, Yasuo Tabei2,y, Yoshihiro Yamanishi3,4,y, Toshiaki Tokimatsu1 and
Susumu Goto1,*
1Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan,
2ERATO Minato Project, Japan Science and Technology Agency, Sapporo, Japan, 3Division of System Cohort, Medical
Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan and
4Institute for Advanced Study, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan

ABSTRACT

Motivation: The metabolic pathway is an important biochemical

reaction network involving enzymatic reactions among chemical com-

pounds. However, it is assumed that a large number of metabolic

pathways remain unknown, and many reactions are still missing

even in known pathways. Therefore, the most important challenge in

metabolomics is the automated de novo reconstruction of metabolic

pathways, which includes the elucidation of previously unknown reac-

tions to bridge the metabolic gaps.

Results: In this article, we develop a novel method to reconstruct

metabolic pathways from a large compound set in the reaction-filling

framework. We define feature vectors representing the chemical trans-

formation patterns of compound–compound pairs in enzymatic reac-

tions using chemical fingerprints. We apply a sparsity-induced

classifier to learn what we refer to as ‘enzymatic-reaction likeness’,

i.e. whether compound pairs are possibly converted to each other by

enzymatic reactions. The originality of our method lies in the search for

potential reactions among many compounds at a time, in the extrac-

tion of reaction-related chemical transformation patterns and in the

large-scale applicability owing to the computational efficiency. In the

results, we demonstrate the usefulness of our proposed method on

the de novo reconstruction of 134 metabolic pathways in Kyoto

Encyclopedia of Genes and Genomes (KEGG). Our comprehensively

predicted reaction networks of 15 698 compounds enable us to sug-

gest many potential pathways and to increase research productivity in

metabolomics.

Availability: Softwares are available on request. Supplementary mate-

rial are available at http://web.kuicr.kyoto-u.ac.jp/supp/kot/ismb2013/.
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1 INTRODUCTION

The importance of metabolomics research is growing fast in

recent years. Metabolomics can provide sensitive and thorough

metabolic signatures as effective biomarkers for the diagnosis

of diseases such as cancer. The knowledge about metabolism

(e.g. reaction networks, fluxes, drug metabolism) has proven

useful for performing rational drug design (Cascante et al.,

2002; Hellerstein and Murphy, 2004). Some metabolites of

plants and fungi have long been of vital use to drug leads

in the pharmaceutical industry (Simmond and Grayer, 1999).

In addition, systematic simulation studies on metabolic path-

ways rely on accurately predefined reaction network models.

However, a large number of metabolic pathways remain un-

known, and many reaction steps are still missing even in

known pathways. For example, detailed analysis of human

metabolome (Sreekumar et al., 2009) implies that even well-

investigated species like human have many unknown metabolic

pathways. As the experimental verification of reaction net-

works remains daunting, there is a strong need to develop in

silico methods to infer unknown but possible metabolic

pathways.

A variety of computational methods for reconstructing meta-

bolic pathways have been developed thus far, which can be cate-

gorized into the three frameworks, as shown in Figure 1. The

most traditional one is ‘reference-based framework’ (Fig. 1A). In

this framework, many known pathways are collected from litera-

tures to construct a combined pathway, named ‘reference path-

way’, which only considers chemical transformations without

distinguishing the difference of organisms (Fig. 1A, left). For

an organism of interest, enzyme genes are assigned to appropri-

ate positions in predefined reference pathways based on ortho-

logous information (and some other evidences if available) about

genes across different species (Bono et al., 1998; Dandekar et al.,

1999; Forst and Schulten, 1999; Galperin and Koonin, 1999)

(Fig. 1A, right). However, such reference pathway information

is available only for a limited set of genes, enzymes and metab-

olites, and it is inherently incomplete owing to the lack of experi-

mentally identified compounds and homology information.

These missing reaction steps may cause misleading interpret-

ations in practice. Therefore, the most important challenge in

metabolomics research is de novo reconstruction of metabolic

pathways, which includes the elucidation of previously unknown

reactions to bridge the metabolic gaps (Darvas, 1988; Greene

et al., 1999; Talafous et al., 1994).

The previous studies on the de novo reconstruction can be

classified based on different aspects, i.e. whether it automatically

hypothesizes the compounds that are not identified yet, whether

it relies on pre-defined chemical transformation patterns and

whether the target (and/or source) compound(s) has/have to be

specified, as shown in Table 1. One framework is ‘compound-

filling framework’ (Fig. 1B), which predicts pathways by

hypothesizing intermediate compounds necessary between the

source and target compounds. Many of the prediction systems

based on this framework are not freely available (Darvas, 1988;

Greene et al., 1999; Talafous et al., 1994), but there are some free
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web servers such as PathPred (Moriya et al., 2010) and Univer-

sity of Minnesota Pathway Prediction System (UMPPS; Gao

et al., 2011). A serious limitation of the compound-filling frame-

work is that it is not suitable for predicting pathways for many

compounds at a time owing to prohibitive computational cost.
Another framework for the de novo reconstruction is ‘reaction-

filling framework’ (Fig. 1C), which predicts pathways by filling

in reactions among many existing compounds at a time. Some of

the previous methods depend on predefined chemical transform-
ation patterns (Hatzimanikatis et al., 2005; Nakamura et al.,

2012). The other previous methods reduce this dependency by

comparing chemical graph structures of all compounds in data-

bases and by determining possible chemical transformations

(Kotera et al., 2008; Tanaka et al., 2009), but they suffer from

huge computational costs. Thus, large-scale prediction is not

computationally feasible (Kotera et al., 2008), or its applicability

is limited only to ring-structured compounds (Tanaka et al.,
2009).

In this article, we develop a novel method for a de novo recon-

struction of metabolic pathways from a large compound set in

the reaction-filling framework. We define feature vectors
representing the chemical transformation patterns of com-

pound–compound pairs in enzymatic reactions using chemical

fingerprints. We apply a sparsity-induced classifier and support

vector machine (SVM) to learn what we refer to as ‘enzymatic-

reaction likeness’, i.e. whether a compound–compound pair is

possibly converted to each other by enzymatic reactions. The

originality of our method lies in the search for potential reactions

among many compounds at a time, in the extraction of chemical
transformation patterns and in the large-scale applicability

owing to the computational efficiency. In the results, we demon-

strate the usefulness of our proposed method on the de novo re-

construction of metabolic pathways in the Kyoto Encyclopedia

of Genes and Genomes (KEGG) database (Kanehisa et al.,

2012). Our comprehensively predicted reaction networks enable

us to suggest many potential pathways and to increase research

productivity in metabolomics.

2 MATERIALS AND METHODS

2.1 Enzymatic reactions and metabolic pathways

Enzymatic reactions and the associated chemical compounds were

retrieved from the KEGG LIGAND database (Kanehisa et al., 2012).

Chemical compounds in KEGG are given ID numbers consisting of a

letter ‘C’ and five numerals, e.g. C00002 for ATP. The number of all

chemical compounds with structure information in KEGG LIGAND is

15 698. Metabolic pathway information were retrieved from the KEGG

PATHWAY database (Kanehisa et al., 2012), where pathways are divided

into maps with ID numbers, such as Glycolysis and Gluconeogenesis

(map00010), TCA Cycle (map00020) and Pentose Phosphate Pathway

(map00030). We focus on 134 pathway maps involving at least 10 com-

pounds in this study. These pathway maps are classified into 11 categories,

such as carbohydrate metabolism and energy metabolism.

2.2 Compound fingerprints

Chemical structures of compounds were encoded by chemical fingerprints

corresponding to chemical substructures and various physicochemical

properties; therefore, each compound was represented by a high-dimen-

sional binary vector. We used the Chemistry Development Kit (CDK)

version 1.4.9 (Steinbeck et al., 2003) to calculate the following eight fin-

gerprints; CDK fingerprint, CDK extended fingerprint, CDK graph-only

fingerprint, CDK hybridization fingerprint, E-state fingerprint, Klekota-

Roth fingerprint, MACCS fingerprint and PubChem fingerprint, and

their dimensions are 1024, 1022, 1024, 1024, 71, 4860, 164 and 879, re-

spectively, where the feature elements absent from the compound set are

merged. Chemically identical compounds with the same structures

(duplicates) were removed; therefore, structures of all compounds in

the dataset were unique.

A

B

C

Fig. 1. Metabolic pathway reconstruction frameworks. Circles c1–c9 and

rectangles e1–e10 represents chemical compounds and enzyme proteins,

respectively. Left and right panels represent inputs and outputs, respect-

ively. The reference-based framework (A) extracts an organism-specific

pathway from a pre-fixed pathway map with orthologous information

about enzyme genes, whereas the compound-filling framework (B) and

the reaction-filling framework (C) are the de novomethods to reconstruct

a new pathway where reference information is not available

Table 1. Relationship between different studies on de novo metabolic

pathway reconstruction

Rule-based Target/Source

Compound-filling framework

Darvas (1988) Yes Specified

Talafous et al. (1994) Yes Specified

Greene et al. (1999) Yes Specified

Moriya et al. (2010) Yes Specified

Gao et al. (2011) Yes Specified

Reaction-filling framework

Hatzimanikatis et al. (2005) Yes Unspecified

Kotera et al. (2008) No Unspecified

Tanaka et al. (2009) No Unspecified

Nakamura et al. (2012) Yes Specified

Kotera et al. (this study) No Unspecified

Note: ‘Yes’ and ‘No’ represent whether the studies are predefined rule-based, re-

spectively. ‘Specified’ and ‘Unspecified’ represent whether target (or source) com-

pounds needs to be specified, respectively. There are many previous studies in the

reference-based framework, but they are not regarded as de novometabolic pathway

reconstruction.
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2.3 Reactant pairs

In addition to the conventional reaction equation format, KEGG stores

‘reactant pair’ format (Kotera et al., 2004) to describe enzymatic reac-

tions. A reactant pair represents a pair of substrate and product with

conserved chemical moiety in the reaction. For example, the reaction

equation ‘glucoseþATP¼ glucose 6-phosphateþADP’ consists of the

following three reactant pairs: ‘glucose5¼4glucose 6-phosphate’ (conser-

ving a glucose moiety), ‘ATP5¼4ADP’ (conserving an ADP moiety) and

‘ATP5¼4glucose 6-phosphate’ (conserving a phosphate moiety). The

compound pair ‘glucose5¼4ADP’ cannot be defined as a reactant pair

because these two compounds do not conserve any atoms in a reaction.

As of November 2012, there were 13564 reactant pairs stored in the

KEGG RPAIR database, which was used as the gold standard dataset.

Reactant pairs are classified into five types, main, trans, cofac, leave

and ligase, depending on the context in metabolic pathways, the topology

of the reactant pair graph (the pattern of substrate-product relations in

the reaction representing the flow of atoms) and the atomic element in-

formation. The main type is given manually for at least one of the pairs in

the reactant pair graph, representing the main flow of atoms, which gen-

erally includes the flow in the pathway diagram and/or the flow of or-

ganic carbon atoms. We used the reactant pair that was given main types

in this study.

2.4 Compound–compound pairs

A compound–compound pair has to be described in two distinct direc-

tions, i.e. forward and backward, to avoid to miss the similarity between a

forward direction of a reaction and a backward of another reaction.

Considering the distinction of forward and backward reactions, the

number of all possible compound pairs is n(n�1)¼Oðn2Þ, where n is

the number of compounds. The computational cost of searching for simi-

lar compound–compound pairs would be Oðn4Þ. Among all possible com-

pound–compound pairs, those involved in enzymatic reactions (reactant

pairs) found in all enzymatic reactions in KEGG were 13 564 (as of

November 2012). The number of compounds involved in these reactions

was 6729; thus, the number of all the combination of compounds (com-

pound–compound pairs) was 45272 712. The number of all possible com-

pound–compound pairs in KEGG LIGAND (involving 15 698

compounds) is 246411 506.

3 METHODS

We formulate the de novometabolic pathway reconstruction as a series of

reaction predictions (estimation of the enzymatic-reaction likeness) of

each pair of chemical compounds on a metabolic pathway, where the

reaction prediction is solved as the following supervised classification

problem. Given a collection of nðn� 1Þ compound–compound pairs

ðCi,CjÞði ¼ 1, . . . , n, j ¼ 1, . . . , n, i 6¼ jÞ, we estimate a function fðC,C0Þ

that would predict whether a chemical compound C is converted to an-

other compound C0 in an enzymatic reaction. In addition, we aim to

extract biochemical features contributing to the reaction prediction. In

this section, we present a general approach to solve these problems in a

unified framework. Our approach consists of three major components: (i)

prediction model, (ii) vector representation of compound–compound

pairs and (iii) binary classifier.

3.1 Prediction model

Linear models are a useful tool for classification and regression especially

for high dimensional data. Basically, a linear model represents an object

O by a feature vector �ðOÞ 2 <D, and then defines a linear function

fðOÞ ¼ wT�ðOÞ, where w 2 <D is a weight vector. The weight vector w

is estimated such that it can correctly predict the class of objects. The

object O is classified into positive or negative by thresholding the

computed value of f(O). Linear models also have an interpretability of

features. As each element of a feature vector �ðOÞ corresponds to an

element of the weight vector w, we can extract effective features contri-

buting to the prediction by sorting elements of �ðOÞ according to the

corresponding values of the weight vector w.

The prediction of enzymatic-reaction likeness is not trivial because the

object corresponds to a compound–compound pair in this study. Let C

and C0 be two chemical compounds. To apply the previous machine

learning approach to this problem, we need to represent a compound–

compound pair by a feature vector �ðC,C0Þ and then estimate a linear

function fðC,C0Þ ¼ wT�ðC,C0Þ. The weight vector w is estimated such

that it can correctly predict enzymatic-reaction likeness of compound–

compound pairs. Finally, the reaction between C and C0 is predicted by

thresholding the value of fðC,C0Þ.

3.2 Vector representation of compound–compound pairs

The design of feature vectors is crucial for the classification ability and

interpretability of features in the linear model. We propose two kinds of

feature vectors for each compound–compound pair based on the bio-

chemical knowledge about enzymatic reactions.

Compounds C and C0 are represented by D-dimensional

fingerprints (binary vectors) as �ðCÞ ¼ ðc1, c2, . . . , cDÞ
T and

�ðC0Þ ¼ ðc01, c
0
2, . . . , c0DÞ

T, respectively, where ck, c
0
k 2 f0, 1g,

k ¼ 1, . . . ,D. Let I(cond) be an indicator function, where IðcondÞ ¼ 1 if

cond is true and otherwise IðcondÞ ¼ 0. Here, we define two operations for

the fingerprints as follows:

ð�ðCÞ ^�ðC0ÞÞ ¼ ðIðc1 ¼ c01 ¼ 1Þ, . . . , IðcD ¼ c0D ¼ 1ÞÞ,

and

ð�ðCÞ ��ðC0ÞÞ ¼ ðIðc1 ¼ 1, c01 ¼ 0Þ, . . . , IðcD ¼ 1, c0D ¼ 0ÞÞ:

ð�ðCÞ ^�ðC0ÞÞ represents the common features in �ðCÞ and �ðC0Þ,

which is referred to as common feature vector. On the other hand,

ð�ðCÞ ��ðC0ÞÞ represents the features present in �ðCÞ and absent in

�ðC0Þ, which is referred to as differential feature vector. Thus, the both

feature vectors are expected to capture chemical transformation patterns

between compounds C and C0. Using these feature vectors, we propose

two kinds of feature vectors of any compound–compound pair as follows:

�ðC,C0Þ ¼ ð�ðCÞ ^�ðC0Þ,�ðCÞ ��ðC0Þ,�ðC0Þ ��ðCÞÞT,

and

�ðC,C0Þ ¼ ð�ðCÞ ��ðC0Þ,�ðC0Þ ��ðCÞÞT:

We shall refer to �ðC,C0Þ and �ðC,C0Þ as diff-common feature vector

and diff-only feature vector, respectively. The diff-common and diff-only

feature vectors are different in that the diff-common feature vector has

common features in addition to differential features. The diff-only feature

vector is expected to capture substructure changes around the reaction

center in the conversion of a chemical compound to another compound.

The diff-common feature vector is expected to additionally capture core

substructures kept in the conversion of a chemical compound to another

compound.

For example, if �ðCÞ ¼ ð1, 1, 0Þ and �ðC0Þ ¼ ð1, 0, 1Þ are given,

the corresponding feature vectors are computed as

�ðC,C0Þ ¼ ð1, 0, 0, 0, 1, 0, 0, 0, 1Þ and �ðC,C0Þ ¼ ð0, 1, 0, 0, 0, 1Þ. The

both feature vectors are asymmetry, i.e. �ðC,C0Þ 6¼ �ðC0,CÞ and

�ðC,C0Þ 6¼ �ðC0,CÞ.

3.3 Binary classifier

We apply linear SVM as a binary classifier. Models are typically learned

to minimize the objective function with a regularization for SVM. It is

well-known that the use of regularization is necessary to achieve a model

that generalizes well to unseen data, particularly if the dimension of
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features is high. One common regularization is L2-regularization, which

keeps most elements in the weight vector to be non-zeros; therefore, one

can suffer from interpreting features from learned weights. Another pos-

sible regularization is L1-regularization that makes most elements in the

weight vector to be zeros; therefore, one can interpret a limited number

of informative features. In this study, we introduce linear SVM with

L1-regularization for its high interpretability.

Given a collection of compound–compound pairs and their labels

ð�ðCi,CjÞ, yijÞ where yij 2 fþ1, � 1g ði ¼ 1, . . . , n, j ¼ 1, . . . , n, i 6¼ jÞ,

linear SVM is formulated by the following unconstrained optimization

problem:

min
w

Xn
i¼1

Xi�1
j¼1

Mij þ
Xn
j¼iþ1

Mij

( )
,

where

Mij ¼ maxf1� yijw
T�ðCi,CjÞ, 0g:

To enhance the interpretability of linear models, the weight vector is

optimized with L1-regularization as follows:

min
w
jjwjj1 þ C

Xn
i¼1

Xi�1
j¼1

Mij þ
Xn
j¼iþ1

Mij

( )
,

where jj � jj1 is L1 norm (the sum of absolute values in the vector) and C is

a hyper-parameter. L1-regularization has an effect of making the weights

of uninformative features zeros without loss of classification accuracy.

L1-regularized linear SVM is referred to as L1SVM, whereas L2-regular-

ized SVM is referred to as L2SVM.

Learning weight vectors from compound–compound pairs is a difficult

problem. As the number of compound–compound pairs is the product of

all the compounds in a dataset, the problem becomes extremely large-

scale. In fact, our dataset consists of 15 698 compounds; thus, there are

246411 506 possible compound–compound pairs in total. The previous

studies on classifying object pairs (e.g. compound–protein and protein–

protein pairs) have used kernel SVM, where the input of the SVM clas-

sifier is the kernel similarity matrix (Ben-Hur and Noble, 2005; Faulon

et al., 2008; Jacob and Vert, 2008). However, it is difficult to apply the

kernel SVM to large-scale applications. This is because the time complex-

ity of the quadratic programming problem for the kernel SVM is Oðn6Þ,

where n is the number of compounds, and the space complexity is Oðn4Þ,

which is just for storing the kernel matrix. Moreover, the kernel SVM

does not have an interpretability of features. Another crucial observation

is that �ðC,C0Þ and �ðC,C0Þ are a sparse binary vector. For such sparse

binary vectors, weight vectors can be learned via efficient optimization

algorithms (Hsieh et al., 2008). In this study, we used an efficient algo-

rithm named LIBLINEAR, which is available from http://www.csie.ntu.

edu.tw/cjlin/liblinear/.

In practical applications, we regarded known reactant pairs as positive

examples and the other compound–compound pairs as negative examples

because it is impossible to obtain true negative data for enzyme reactions

in reality. In the learning phase, we randomly selected negative examples

for computational efficiency, where the ratio of negative examples against

positive examples is set to five in this study.

3.4 Baseline method

The most straightforward method for the reconstruction is a similarity-

based approach, assuming that reactive compound–compound pairs are

likely to share high chemical structure similarity. Actually, a substrate

compound and a product compound in an enzyme reaction tend to have

a big core structure, and their different region tend to be small (Kotera

et al., 2008). Tanimoto similarity (Jaccard similarity) between compound

fingerprints can often be considered as a measure of chemical structure

similarity between two compounds. A direct strategy is therefore to

predict the enzyme-reaction likeness between two compounds whenever

the Tanimoto similarity value between these compounds is above a

threshold to be determined. We refer to this approach as BASELINE.

4 RESULTS AND DISCUSSION

4.1 Performance evaluation on enzymatic-reaction

likeness

We tested L1SVM and L2SVM and BASELINE on their

abilities to predict the enzymatic-reaction likeness of given com-

pound–compound pairs from their chemical fingerprint data. We

performed the following 5-fold cross-validation. (i) We randomly

split compound–compound pairs in the gold standard data into

five subsets of roughly equal sizes. We regarded known reactant

pairs as positive examples and the other compound–compound

pairs as negative examples. (ii) We took each subset as a test set

and the remaining four subsets as a training set. (iii) We trained a

predictive model based only on the training set. (iv) We com-

puted the prediction scores for compound–compound pairs in

the test set. (v) Finally, we evaluated the prediction accuracy

over the five folds.

We evaluated the prediction performance by the receiver oper-

ating characteristic curve, which is a plot of true positives as a

function of false positives based on various thresholds, where

true positives are correctly predicted reactions and false positives

are positively predicted pairs that are not present in the gold

standard reactions. We summarized the performance by the

area under the receiver operating characteristic curve (AUC)

score, where 1 is for a perfect inference and 0.5 is for a

random inference. We repeated the cross-validation experiment

five times and computed the average of the AUC scores over the

five cross-validation folds. The parameters involved in the meth-

ods were optimized with the AUC score as the objective

function.
Table 2 shows the resulting AUC scores and their standard

deviations. Among the eight fingerprints, the PubChem finger-

print achieved the highest AUC scores in some conditions. The

AUC scores of the diff-common feature vector were slightly

higher than those of the diff-only feature vector in both

L1SVM and L2SVM. This result implies that it is important to

take into account not only substructure transformation patterns

but also common substructures in the reaction prediction.

L1SVM and L2SVM outperformed BASELINE, which suggests

that supervised learning with the proposed feature vectors is

meaningful.

L1SVM has a strong advantage over L2SVM in terms of high

interpretability of features. Although the AUC scores of L1SVM

are comparable or slightly worse than those of L2SVM, the

number of features with non-zero weights in L1SVM is signifi-

cantly smaller than that in L2SVM owing to sparsity constraints.

Figure 2 shows a comparison of the number of extracted features

between L1SVM and L2SVM in the case of using the PubChem

fingerprint, where ALL means the number of all elements in the

feature vectors. It was observed that L1SVM extracted a limited

number of features, compared with L2SVM. This allows mean-

ingful analysis of the extracted features for biological interpret-

ation, which is shown in Section 4.4.
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The AUC scores of BASELINE were fairly high, regardless of

fingerprints (except E-state fingerprint, probably owing to the

small dimensions compared with other seven fingerprints),

which validated the fact that a core substructure is shared be-

tween a substrate compound and a product compound in a react-

ant pair. Another explanation about the high AUC scores of

BASELINE is that negative examples (all possible compound

pairs except for reactant pairs in the gold standard data) include

many structurally dissimilar compound pairs. As most of such

compounds are unlikely to be converted to each other in a reac-

tion, BASELINE (a standard similarity-based method) can

easily classify them into negative class. To avoid such trivial

predictions, we removed compound pairs whose Tanimoto coef-

ficient (Jaccard coefficient) is less than 0.5 from the gold stand-

ard data and constructed a filtered dataset consisting of

compound pairs whose structures are similar to some extent.

Classification is more difficult for the filtered data. We per-

formed the same cross-validation experiment on the filtered

data, and the AUC scores are shown in Table 3. The result

shows that the proposed method clearly outperforms the

BASELINE method.

4.2 Performance evaluation on pathway reconstruction

We tested the proposed L1SVM method with the PubChem fin-

gerprint on its ability to reconstruct pathways from a given com-

pound set, assuming the situation where we want to detect a

series of reactant pairs comprising a metabolic pathway.
We performed the following pathway-based cross-validation.

(i) We took known reactant pairs on the same pathway as a test

set. We regarded the reactant pairs as positive examples and the

other compound pairs as negative examples. (ii) We took the

remaining sets of reactant pairs and compound pairs (which

are absent from the pathway of the test set) as a training set.

(iii) We trained a predictive model based only on the training set.

(iv) We computed the prediction scores for all possible com-

pound–compound pairs in the test set. (v) Finally, we evaluated

the prediction accuracy over the known reactant pairs. We re-

peated the above steps on each of the 134 metabolic pathway

maps in KEGG pathway.

Figure 3 shows the resulting AUC scores by the pathway-

based cross-validation, where the left panel is the result of

using the diff-common feature vector and the right panel is the

result of using the diff-only feature vector. Each point in the

panels corresponds to the result of each pathway map, where

each pathway map belongs to one of the 11 pathway categories.

The AUC scores tend to be lower than those in the 5-fold cross-

validation for all known reactant pairs (in Section 4.1), which

implies that pathway reconstruction is a more difficult problem.

For example, metabolism of terpenoids and polyketides involve

pathways specific to a limited group of organisms. Removal of

such pathways from the training set results in low predictive

performance, indicating the difficulty to model exotic metabol-

ism in newly found organisms. Additionally, although diff-only

feature vector resulted in lower AUC scores than diff-common

feature vector in the 5-fold cross-validation, diff-only feature

vector performed slightly better than diff-common feature

vector in some pathway maps including those in carbohydrate

metabolism and lipid metabolism and so forth. One explanation

is that, because compounds in the same pathway tends to be

structurally similar to each other, removal of all compounds in

the target pathway from the training set may sometimes lose the

effectiveness of the common feature vector in the training set for

the pathway-based cross-validation, and differential feature

Table 2. AUC scores on 5-fold cross validation experiments for enzymatic-reaction likeness on the whole gold standard data

Diff-common feature vector Diff-only feature vector

Fingerprint L1SVM L2SVM L1SVM L2SVM BASELINE RANDOM

CDK 0:942� 0:002 0:949� 0:003 0:910� 0:002 0:929� 0:003 0:904� 0:005 0:500� 0:000

CDK extended 0:943� 0:003 0:949� 0:003 0:913� 0:003 0:931� 0:003 0:903� 0:005 0:500� 0:000

CDK graph-only 0:934� 0:003 0:940� 0:004 0:894� 0:002 0:921� 0:002 0:883� 0:002 0:500� 0:000
CDK hybridization 0:942� 0:002 0:949� 0:003 0:907� 0:003 0:927� 0:002 0:881� 0:002 0:500� 0:000

E-state 0:876� 0:008 0:877� 0:007 0:756� 0:009 0:803� 0:007 0:811� 0:006 0:500� 0:000

KlekotaRoth 0:921� 0:002 0:943� 0:003 0:892� 0:006 0:915� 0:006 0:888� 0:010 0:500� 0:000

MACCS 0:930� 0:003 0:937� 0:003 0:886� 0:008 0:906� 0:006 0:877� 0:005 0:500� 0:000
PubChem 0:942� 0:001 0:947� 0:002 0:922� 0:002 0:931� 0:003 0:904� 0:003 0:500� 0:000

Fig. 2. Comparison of the number of extracted features among different

methods
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vector becomes relatively important. Nevertheless, it was shown

that the proposed method worked well to some extent even when

all reactions in a pathway map are not known. There was no

significant difference between different pathway categories or

between different feature vectors. These results suggest the use-

fulness of the proposed method not only for filling in the reaction

gaps among existing pathways but also for de novo reconstruc-

tion of a series of reactions.

4.3 Interpretation of the chemical transformation patterns

In a reaction, some substructures are formed, whereas other sub-

structures are eliminated. Here, we examined the importance of

such chemical substructure transformations according to the

weights learned by the L1SVM method. We focused on the sub-

structure components in the PubChem fingerprint, removing the

components that do not represent substructures (those in

Hierarchic Element Counts and in Extended Smallest Set of

Smallest Rings set).
Figure 4 is a network representation of such chemical sub-

structure transformations with positive weights that contributed

to estimate the enzyme-reaction likeness. In Figure 4, nodes rep-

resent the substructure components, the node size is proportional

to the weight and edges represent the top 100 co-occurring

(one formed and one eliminated) substructures. For example,

the substructure with the highest contribution was labeled as

‘C(�H)(�O)(�O)’, meaning a carbon atom attaching with a

hydrogen atom and two oxygen atoms, which includes (hemi)-

acetal group, (hemi)ketal group, carboxyl group, O-formyl group

and so forth. This substructure is connected with the substruc-

tures labeled as ‘C(�C)(�O)’, including hydroxy group, alde-

hyde group and so forth. The connection between these two

includes frequently occurring transformations ‘aldehyde

5¼4hemiacetal’ and so forth. This substructure transformation

network is useful when interpreting the frequently occurring

Fig. 3. AUC scores for each pathway map with diff-common feature vectors (left panel) and diff-only feature vectors (right panel)

Table 3. AUC scores on 5-fold cross validation experiments for enzymatic-reaction likeness on the filtered gold standard data

Diff-common feature vector Diff-only feature vector

Fingerprint L1SVM L2SVM L1SVM L2SVM BASELINE RANDOM

CDK 0:957� 0:001 0:942� 0:002 0:958� 0:003 0:943� 0:002 0:873� 0:004 0:500� 0:000

CDK extended 0:960� 0:002 0:945� 0:005 0:960� 0:004 0:946� 0:004 0:876� 0:006 0:500� 0:000

CDK graph only 0:938� 0:001 0:921� 0:003 0:941� 0:003 0:923� 0:003 0:823� 0:003 0:500� 0:000
CDK hybridization 0:951� 0:003 0:935� 0:002 0:952� 0:001 0:936� 0:001 0:826� 0:004 0:500� 0:000

E-state 0:817� 0:005 0:777� 0:006 0:817� 0:011 0:778� 0:006 0:719� 0:008 0:500� 0:000

KlekotaRoth 0:951� 0:003 0:935� 0:004 0:952� 0:005 0:936� 0:004 0:854� 0:008 0:500� 0:000

MACCS 0:909� 0:002 0:902� 0:002 0:908� 0:007 0:902� 0:007 0:799� 0:007 0:500� 0:000
PubChem 0:952� 0:002 0:947� 0:003 0:954� 0:003 0:925� 0:002 0:871� 0:003 0:500� 0:000
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chemical transformations. Nevertheless, many fingerprints

including PubChem put some distinctive functional groups in

the same fingerprint component (such as the one labeled as

‘C(�H)(�O)(�O)’). This may lead to the flexibility of the pre-

diction, but at the same time to the increase of false positives.

Additionally, it is not possible to deal with the chemical trans-

formations that cannot be described in the existing fingerprints.

A more suitable fingerprint would be needed for improving the

reliability of the de novo metabolic pathway reconstruction in the

future work. A possible solution would be to include a number of

different levels of substructure (or functional group)

classification.

4.4 Newly predicted reactions and chemical

transformations

Having confirmed the usefulness of our method, we conducted a

comprehensive reaction prediction for all possible compound

pairs. We trained a predictive model using all known reactant

pairs in the gold standard data. We then predicted potential re-

actions for 246 397942 compound–compound pairs involving

15 698 compounds in KEGG LIGAND (13564 known reactant

pairs are excluded). All the prediction results can be obtained

from the supplemental materials from http://web.kuicr.kyoto-u.

ac.jp/supp/kot/ismb2013/. The prediction times of L1SVM with

the diff-common and the diff-only feature vectors were 1.4 and

Fig. 5. Part of the generated de novo reactions combined with existing network, where nodes and edges represent compounds and reactions, respectively.

Black thin lines represent the reactions existing in KEGG. Gray lines represent 50 new reactions with high scores predicted by diff-common and

diff-only feature vectors. The width of the gray edges is proportional to the predictive score. Predicted reactions (A–I) are given detailed explanation in

Figure 6

Fig. 4. Substructure transformation network. Nodes represent the

PubChem fingerprint components that contributed to the prediction

with diff-only feature vectors, where the size of the nodes is proportional

to the weights in L1SVM. Edges represent the top 100 frequently pairs of

substructures, where the one is formed and the other is eliminated in a

reaction
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1.1h, respectively, for all possible compound pairs, which

demonstrates the practical feasibility of our methods for large-

scale compound data. We used one core of a Quad-Core AMD

Opteron Processor (3.1GHz) linux machine with 512GB

memory. The computational time of the proposed method

was remarkably smaller than that of the rule-based

method (Nakamura et al., 2012) that needed 0.03 s per pair (cor-

responding to �2000h for all possible compound pairs). The

Fig. 6. Examples of the predicted pairs taken from Figure 5. The chemical transformation patterns in pairs (A–C) are already known and described in

KEGG reactant pairs (Note that these reactions are not known, but the transformation patterns are known), whereas pairs (D–I) have unknown

patterns. (A) C-C bond accompanied with secondary alcohol group is degraded and forms an aldehyde group, which is a reaction typically found in EC

sub-subclass 4.1.2 (aldehyde-lyases). (B) C-S bond in disulfide bond is degraded and forms an S-mercapto group, which is found in EC sub-subclass 4.4.1

(carbon-sulfur lyases). (C) This chemical transformation pattern is found in many reactions in EC 2.4.1 (glycosyltransferases) and EC 3.2.1 (glycosi-

dases). (D) This pattern is not found in known reactions. At the first sight, this pair may look like two steps of methylation/demethylation (EC 2.1.1) or

intramolecular transfer of a methyl group (part of EC 5.4). With closer investigations of Isoquinoline alkaloid biosynthesis pathway (map00950, which

these compounds belong to), it looks more natural to occur the two steps of metylenedioxy ring formation/cleavage (EC 1.14.21 or 1.21.3) because some

metylenedioxy ring formation reactions are known to take place in this pathway. However, in any case, methylation and metylenedioxy ring formation

occurs in the context of biosynthesis, whereas demethylation and metylenedioxy ring cleavage occurs in the context of biodegradation. In that sense, this

compound–compound pair may be an example of false positives when taking account of the reaction flow in the pathway level. (E) This compound–

compound pair may look intramolecular transfer of a hydroxy group, which is typically found in EC 5.4.4 (hydroxymutases), but the transfer of hydroxy

group from a position to another in an aromatic ring is not found in any known reactions stored in KEGG. This pair may be another example of false

positives because the substitution of hydroxy group in aromatic ring is much harder to occur than the addition of hydroxy group. It is known that some

anaerobic bacteria have 4-hydroxybenzoyl-CoA reductase (EC 1.3.7.9) that catalyzes the substitution of hydroxy group in aromatic ring. However, we

assume it would be hard to catalyze intramolecular transfer of hydroxy group in substituted aromatic ring. (F) Although there are many varieties of

hydroxylases (part of EC 1.14), there is no known pattern to produce hydroxyl amine from amide group. (G) For this reaction to occur, there need to be

more than one reaction steps, and an important step would be similar to EC 4.1.2 (aldehyde-lyases). (H) There are similar EC 2.3.3 (acyl transferases)

reactions in polyketide synthesis. (I) Some of EC 1.2.3 (oxidases) catalyze similar reactions
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same task is not feasible by other reaction-filling framework
methods because of their methodological limitation (Kotera
et al., 2008; Tanaka et al., 2009). The compound–filling frame-

work methods (Gao et al., 2011; Moriya et al., 2010) needed tens
of seconds per compound (corresponding to thousands of hours
for all possible compound pairs).

We examined the newly generated reaction network in detail
(Figs 5 and 6). Among the predicted pairs connected with exist-
ing pathways, some pairs formed triangles with existing path-

ways (e.g. pair B in Fig. 5), meaning that some predicted pairs
may represent two- or more-step reactions. With the closer look
at the chemical structures (Fig. 6), it was also assumed that some

pairs (D, E, G and H) would be possibly converted in more than
one reaction steps. Some pairs were found to have the same
chemical transformations as those in known reactions (e.g.

pairs A, B and C), which looks reasonable to occurr. Among
those without known chemical transformations (e.g. pairs D, E,

F, G, H, I), it would be safe to say some pairs (e.g. pairs D, E
and F) are false positives, and it would not be for other pairs (e.g.
pairs G, H and I). It was found that using chemical fingerprints

can easily produce chemically unrealistic false predictions, which
can possibly be filtered out using graph isomorphism. The effect-
ive integration of the speed of the fingerprints and the accuracy

of the graph isomorphism would be one of the important future
developments.
We further investigated the distribution of possible Enzyme

Commission (EC) numbers for the predicted reactions, and it
was clearly shown that the distribution of predicted reactions is
different from that of known reactions, and diff-common and

diff-only feature vectors favor different molecules or reactions
(see Supplementary Material). For example, diff-common fea-
ture vector found compound–compound pairs that are possibly

catalyzed by EC3, and diff-only feature vector found those by
EC4. It is supposed that this bias is partly due to the given

compound sets and partly due to the reaction types that the
proposed method can deal with. We assume that the former is
the main reason of the bias in the new prediction because the re-

assignment experiments did not show significant difference from
the original EC classifications compared with new predictions.
As described earlier in the text, our method based on super-

vised reaction-filling framework has the potential to suggest pos-
sible reactions among large number of known chemical
compounds not only with known chemical transformation pat-

terns but also with unknown transformation patterns. Reaction
reversibility is not considered in this study. One reason is that
only small numbers of enzymatic reactions are known irrevers-

ible in vitro, and the direction of the reactions in vivomay change
according to the context in pathways and conditions. The other
reason is, more importantly, the purpose of this study is gener-

ating the pathways that can be used as a template for modeling
metabolic flux. Testing the generated pathways with metabolic

flux analysis is an interesting and unavoidable future direction of
this study.

5 CONCLUSION

We presented a novel de novo metabolic pathway reconstruction
method in the reaction-filling framework. The proposed method

does not require manually predefined rules, i.e. it automatically

learns a statistical model to predict enzymatic reaction likeness

for any compound pairs based on all possible existing know-

ledge. This method can deal with any compounds (even if they
are not found in KEGG) as long as they are represented in

chemical fingerprints.

An advantage of our method lies in finding potential reactions

among many compounds at a time. The previous study (Kotera

et al., 2008) used graph isomorphism, which contributed to the

accuracy of the method but took much more calculation time.

The current study used fingerprints (instead of graph isomorph-

ism) to improve calculation time and deal with vast amount of

compounds. For more accurate prediction, we are going to de-

velop the two-step prediction, where fingerprints are applied to

filter out vast amount of negative pairs in the first step, and

graph isomorphism is applied to refine the predicted pairs in

the second step.
In principle, our method (i.e. reaction-filling framework) is

insufficient to correctly predict a multi-step pathway, which

can be better dealt with the other framework (i.e. compound-

filling framework). This does not imply which framework is su-

perior; these two frameworks can complement each other for

more successful de novo metabolic pathway reconstruction. We

assume the proposed study is an important preliminary step

toward the hybrid framework.
Further improvement of the de novometabolic pathway recon-

struction method would enable the on-demand integration of

reaction network and gene (or protein) networks derived from

metabolome and other omics, e.g. genome, transcriptome and

proteome.
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