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ABSTRACT

Motivation: We present an integrated toolkit, BoBro2.0, for prediction

and analysis of cis-regulatory motifs. This toolkit can (i) reliably identify

statistically significant cis-regulatory motifs at a genome scale; (ii) ac-

curately scan for all motif instances of a query motif in specified gen-

omic regions using a novel method for P-value estimation; (iii) provide

highly reliable comparisons and clustering of identified motifs, which

takes into consideration the weak signals from the flanking regions of

the motifs; and (iv) analyze co-occurring motifs in the regulatory

regions.

Results: We have carried out systematic comparisons between motif

predictions using BoBro2.0 and the MEME package. The comparison

results on Escherichia coli K12 genome and the human genome show

that BoBro2.0 can identify the statistically significant motifs at a

genome scale more efficiently, identify motif instances more accur-

ately and get more reliable motif clusters than MEME. In addition,

BoBro2.0 provides correlational analyses among the identified motifs

to facilitate the inference of joint regulation relationships of transcrip-

tion factors.

Availability: The source code of the program is freely available for

noncommercial uses at http://code.google.com/p/bobro/.
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Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Computational identification of conserved cis-regulatory motifs

represents an important problem in computational genomics,

and it can provide a key piece of information for inference of

gene regulation networks (Brohee et al., 2011; Davidson and

Levin, 2005). In the past three decades, numerous tools have

been developed to find cis-regulatory motifs in the promoter re-

gions of given genes (Chen et al., 2008; Das and Dai, 2007; Li

et al., 2011; Sinha, 2007), and have been successfully applied to

several organisms to generate large-scale regulatory networks

(Baumbach, 2010; Brohee et al., 2011). In addition, two related

problems are also of great interest: (i) motif scanning for add-

itional motif instances across a genome based on known or pre-

dicted motifs, which needs a reliable measurement for the

statistical significance of the scanned motif instances; and high

false-positive prediction rates are the main issue with the existing

prediction tools; and (ii) reliability assessment of the predicted

motifs against annotated motifs in motif databases, which re-

quires an effective way to compare the predicted motifs with

the documented cis-regulatory motifs in the published literature

and databases. A number of software packages have been de-

veloped to deal with such issues (Bailey et al., 2009; Thomas-

Chollier et al., 2008). For example, the MEME package (Bailey

et al., 2009) was originally developed to identify conserved motifs

(Bailey and Elkan, 1994), and now consists of a number of ana-

lysis capabilities, such as FIMO (Tanaka et al., 2011) and MAST

(Bailey and Gribskov, 1998) for motif scanning and TOMTOM

(Tanaka et al., 2011) for motif comparison. These additional

capabilities have substantially extended the utility of the

MEME program.
Although substantial efforts have been invested to study these

motif-related problems since the mid-80s, they are still largely

unsolved, especially for genome-scale applications (Das and

Dai, 2007; Stormo, 2000; Tompa et al., 2005). A number of

challenging issues persist and await for better solutions, including

(i) more effective ways for reliably assessing the statistical signifi-

cance of the predicted motifs (Tompa et al., 2005), hence possibly

overcoming the high false-positive rate issue; (ii) improved cap-

abilities for evaluating predicted motif instances to decrease the

false-positive rates in motif scanning (da Fonseca et al., 2008;

Medina-Rivera et al., 2011); and (iii) improved similarity meas-

ures between two motifs, which currently suffer from the inabil-

ity to effectively deal with sequence variations in motifs, hence

leading to low prediction sensitivities (Tanaka et al., 2011).

We have recently developed an improved version of our pre-

vious tool BoBro (Li et al., 2011), BoBro2.0, to address some of

these issues (see Fig. 1 for the flowchart of BoBro2.0). Compared

with BoBro, the new toolkit has a number of novel capabilities (i)

motif refinement and evaluation based on information extracted

from the entire genome and a phylogenetic footprinting method,

(ii) motif scanning based on a global P-value estimation method,

(iii) motif comparison and clustering using a novel and effective
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technique and (iv) analysis of motifs’ co-occurrences in the regu-

latory regions. The capability of (i) can make the predicted

motifs not only statistically significant but also biologically

meaningful; the one in (ii) can improve motif-scanning perform-

ance in both the prediction precision and recall. The motif com-
parison and clustering function in (iii) can identify more reliable

motif clusters for a given transcription factor (TF), and the co-

occurring motif analysis in (iv) can provide useful information

about joint regulations among TFs. We have assessed the per-

formance of BoBro2.0 in comparison with MEME and asso-
ciated analysis tools on large test sets spanning genomic

sequences of E.coliK12 and human, and found that our program

consistently performed better than those programs.

2 METHODS

BoBro2.0 represents an integrated toolkit for motif identification and

analysis, including capabilities for BoBro-based motif Refinement tool

(BBR), BoBro-based motif Scanning tool (BBS), BoBro-based motif

Comparison and Clustering tool (BBC) and BoBro-based motif correla-

tion Analysis tool (BBA). Table 1 summarizes the key features of each of

these components, and details about applications and references are avail-

able in the Supplementary Material. Generally, a regulatory motif can be

represented by different models, e.g. consensus (Schneider, 2002),

position weight matrix (PWM) (Ben-Gal et al., 2005) or hidden

Markov model (Baum, 1970), which are all based on aligned motif bind-

ing sites. Hence, in the following, we usemotif to represent a set of aligned

similar binding sites (documented or predicted), and use instance or motif

instance to represent each individual site of the motif.

2.1 BBR: a method for filtering out noises among

predicted motifs at a genome scale

Consider a genome-scale motif prediction problem: denote all the motifs

predicted by a de-novo motif finding tool as �; R and C represent the

given set of regulatory sequences for motif identification and a control

sequence set, respectively. For any motif m 2 �, it is considered as a

motif if it satisfies the following three criteria: (i) the P-value of m with

respect to a hypothesis that it appears in R by chance is below a specified

cutoff value; (ii) R is more enriched of the instances of m than C, as

defined in formula (1); and (iii) m is well-conserved across a diverse set

of species, as defined in formula (2).

Criterion (i) is measured using the P-value defined in our previous

work (Li et al., 2011). Specifically, let x be a random variable denoting

the number of instances of a motif in a given set of regulatory sequences,

and its probability distribution, p(x), can be approximated using a

Poisson distribution. Hence, the P-value of a motif can be calculated

by summing up the probability of p(x) over x � k, denoting that the

motif has at least k instances. An enrichment score is defined to evaluate

the statistical significance of the ratio between the number of m’s

instances in R and that in C, as given in the following,

Z ¼
NR � Rj j�NCð Þ= Cj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rj j�NCð Þ= Cj j
p ð1Þ

where NR and NC are the numbers of instances of m in R and C, respect-

ively; and jRj and jCj are the sequence lengths of R and C, respectively.

Criterion (iii) is defined in terms of the average enrichment score defined

in formula (2), with each Z term being defined in (1) for each organism

over a set of diverse species and the original genome.

Z ¼
1

Grj j

X
i2Gr

Zi ð2Þ

where Gr represents a set of species and Zi is m’s enrichment score in

species i, i 2 Gr. We consider a motif as statistically significant if its

P53.3e-5 (the P-value threshold has been corrected for multiple testing

based on the estimated number, 300, of TFs in E.coli). Criteria (ii) and

(iii) are designed to ensure that predicted motifs will be as biologically

meaningful as possible (Bailey, 2011).

2.2 BBS: scanning and ranking new instances of a query

motif based on P-values

A key to reliable motif-scanning at a genome scale is an ability to effect-

ively evaluate the similarity between a motif instance and a query motif

(Das and Dai, 2007; Haverty and Weng, 2004; Medina-Rivera et al.,

2011; Thomas-Chollier et al., 2008). Obviously, different similarity cutoffs

may result in different scanning results. BBS provides a global P-value for

the entire motif instances for each motif scan. We first introduce a few

definitions; let M be an aligned query motif of L nucleotides long and its

PWM WM is defined as a 4-by-L matrix, given in (3):

WM ¼

�
log

pij
qi

�
4�L

ð3Þ

where pij is the probability of nucleotide i 2 A,C,G,Tf g appearing at

position j inM; and qi is the probability of i appearing in the background

sequences, e.g. all the promoter sequences in the entire genome.

Comparing with the traditional PWM model that assumes independence

among different sequence positions, we assumed first-order Markov-

chain property among consecutive sequence positions in our model.

We generated a transition matrixW0M, with W0Mði, i
0, jÞ representing the

probability of a specific nucleotide type i followed by a specific nucleotide

type i0in consecutive positions j and jþ 1 of the query motif (see

Supplementary Material for details). The similarity between a motif in-

stance b ¼ i1, i2, :::, iL ij 2 A,C,G,Tf g and a query motif M is measured

using:

SMðb;WM,W0MÞ ¼
XL
j¼1

WMðij, jÞ þ
XL�1
j¼1

W0Mðij, ijþ1, jÞ ð4Þ

Consider a motif M0 with t instances a1, a2, :::, atf g, the average similarity

ASðM0,MÞ between M0 and M is measured using the following:

ASðM0,MÞ ¼
1

t

Xt
i¼0

SMðai;WM,W0MÞ ð5Þ

A l closure ofM, denoted as �ðM, lÞ, is a set of sequence segments in the

input regulatory sequences, each having a similarity score no less than

Fig. 1. An outline of the BoBro2.0 toolkit; the blue arrows indicate data

flows within BoBro2.0; the red rectangles represent different data status

across the whole analysis procedure; and the blue cylinders denote im-

ported information from other databases

2262

Q.Ma et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/18/2261/240469 by guest on 20 April 2024

,
transcription factor
H
,
s
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt397/-/DC1
P
W
M
,
(HMM)
p
p
p
p
-value
p
p
-
p
.
L
position weight matrix (
)
 as follow
s
,
1st 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt397/-/DC1
-


l�ASðM0,MÞ. Our previous experience has been that the documented cis-

regulatory motifs tend to have significantly more instances with high

similarities among them than the accidental ones, and the size of a l
closure provides a good measure for this (Li et al., 2011). The P-value

pðM, lÞ of �ðM, lÞ can be approximated using a Poisson distribution

based on our previous work (Li et al., 2011). We can select a l value

lM so that the l closure of M can give the best motif prediction perform-

ance measured in terms of prediction sensitivity and specificity. One way

to accomplish this is through finding a lM that minimizes the following

function:

pðM, lMÞ ¼ min
05l51

pðM, lÞ ð6Þ

This capability can be used to derive an optimal similarity cut-off for

motif scanning on a statistically sound basis.

2.3 BBC: motif comparison and clustering

Utilization of weak conserved signals of motifs’ flanking regions in

motif comparison: We have observed that the flanking regions of

cis-regulatory motifs tend to have some level of sequence conservation,

and we have developed the following procedure to take advantage

of this information in motif comparison. Define a deformation of

information content (Schneider et al., 1986) for a motif M of length

L as follows:

DICðMÞ ¼
XL
j¼1

 X
i2 A,C,G,Tf g

FMði, jÞ
�PMði, jÞ

!2

ð7Þ

where FM ¼ ðpijÞ4�L and the other items are the same as in formula

(3). Consider two motifs M1 and M2 with lengths L1 and L2, respect-

ively, and L¼min {L1, L2}. Let M1’ and M2’ be the two extended

motifs formed by concatenating the L1=2 and L2=2 nucleotides on

each side of each motif instance sequence of M1 and M2, respectively

(If the location information of given motifs in their original genome is

available, we can use the flanking region of each motif to generate the

extended motif sequence); hence, their lengths are 2L1 and 2L2. The

similarity between the extended instances of M1 and M2 is defined as

follows:

SðM1,M2Þ ¼ max
0�p�L1, 0�q�L2

DICp, qðM
0
1Þ þDICp, qðM

0
2Þ

DICðM1Þ þDICðM2Þ
ð8Þ

where

DICp, qðM
0
1Þ ¼

XL
j¼1

X
i2fA,C,G,Tg

FM0
2
ði, qþ jÞ:PM0

1
ði, pþ jÞ

�
X

i2fA,C,G,Tg

FM0
1
ði, pþ jÞ:PM0

1
ði, pþ jÞ

0
BB@

1
CCA

and

DICp, qðM
0
2Þ ¼

XL�1
j¼0

X
i2fA,C,G,Tg

FM0
1
ði, qþ jÞ:PM0

2
ði, pþ jÞ

�
X

i2fA,C,G,Tg

FM0
2
ði, pþ jÞ:PM0

2
ði, pþ jÞ

0
BB@

1
CCA

Supplementary Figure S1 shows an example of motif comparison using

this measure, which illustrates the idea of this measure using the infor-

mation from the motif flanking regions.

Motif clustering using the new similarity measure: A group of motifs can

be clustered into subgroups of similar motifs using the following algo-

rithm, which is based on a maximum spanning tree (MST) representation

of the candidate motifs. First, consider a complete graph defined over a

list of candidate motifs, each represented as a node and each pair of

motifs connected by an edge; the weight of an edge is the similarity be-

tween the two corresponding motifs (see Fig. 2a). AnMST of the graph is

constructed using Kruskal’s algorithm (Thomas, 2001). We have clus-

tered the predicted motifs based on two different similarity thresholds,

T1 and T2, giving rise to two classes of motif clusters, namely, highly

reliable and relatively reliable motif clusters, respectively. We have com-

pared each pair of documented motifs in the RegulonDB database

(Salgado et al., 2013) and assigned the median and the upper quartile

of all the similarities to T1 and T2, respectively. Each of the two thresh-

olds is used to remove edges with similarities lower than the threshold,

giving rise to the final list of motif clusters (see Fig. 2) represented as a

connected sub-tree of the MST after application of the threshold. Then,

all instances of each motif cluster are mapped back to the original regu-

latory sequences, facilitating further analysis and interpretation of the

motif-prediction results (Supplementary Fig. S2).

2.4 BBA: motif co-occurrence analysis

We have implemented a function BBA to evaluate the co-occurrences

among the identified motifs in a given set of regulatory sequences,

which can reveal joint regulation relationships by multiple TFs. For a

given motif pair a and b, and the entire set of promoter sequences P, let A

and B be the subsets of P that contain motif instances of a and b, re-

spectively (we assume, without loss of generality, Aj j � Bj j). Let

k¼ A \ Bj j, then the probability of A and B sharing k promoter se-

quences can be calculated using the following hyper-geometric function:

PrPðk P,A,Bj Þ ¼

Bj j
k

� �
PnB
�� ��
Aj j � k

� �
Pj j
Aj j

� � ð9Þ

The P-value of a and b co-occurring in the same regulatory regions is

calculated as the probability of A and B sharing at least k regulatory

sequences. For a pair of motifs, a significant P-value means their in-

stances tend to occur in same regulatory sequences, hence indicating

that their corresponding TFs may co-regulate the same genes with high

probability.

2.5 Data preparation

To test the motif-finding performance of BoBro2.0, we have collected

2462 promoter sequences (also referred to as regulatory sequences),

each being 300 bps long, covering all the predicted operons in E.coli

K12, which were retrieved from the DOOR database (Dam et al.,

2007; Mao et al., 2009). Two hundred sixteen bacterial genomes within

the same phylum but in different genre of E.coli were collected from the

NCBI (2011-11-01). In each genus, we selected the largest genome to

avoid potential selection bias in comparative genomic studies (Che

et al., 2006). In addition for the motif scanning assessment, we have

collected all the known cis-regulatory motifs of E.coli K12 from the

RegulonDB database (Salgado et al., 2013), which has the PWMmatrices

Table 1. A comparison of functionalities between BoBro2.0 and MEME

Functions MEME BoBro2.0 Unique features

Motif refining N/A BBR Strong ability in filtering out noises at

a genome scale

Motif scanning FIMO BBS P-value assessment for all the scanned

candidate motifs

Motif comparison TOMTOM BBC (i) Utilization of weak conserved signals

of motifs’ flanking regions when

comparing motifs;

(ii) A motif clustering algorithm

Motif annotation N/A BBA Motifs’ co-occurrence annotation

Note: The unique features of BoBro2.0 are listed in the last column.
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for 52 TFs of E.coli K12. Of these TFs, we removed 17 whose cis-regu-

latory motifs are known to be not conserved according to a study by

Medina-Rivera et al. (2011) and four additional ones that have been

reported as nucleoid-associated proteins whose cis motifs are known to

be not conserved, which leaves 31 TFs. In addition to E.coli K12, we also

collected 1460 human cis-regulatory motifs from Xie et al. (2005).

Further, we retrieved the detailed information of eight global TFs from

RegulonDB, representing the eight largest regulons in the database,

namely, CRP, FNR, Fur, LexA, IHF, GntR, PhoP and UlaR, to

assess the performance of motif comparison methods.

3 RESULTS

Here we compare BoBro2.0 with the latest version of the MEME

suite, a most popular motif-finding and analysis package, in

terms of their performance on both prokaryotic and eukaryotic

genomes. We found that (i) the predicted motifs by BoBro2.0

have better motif-matching scores and regulon coverage scores

(RCSs) than those by MEME; (ii) the average F-score of BBS

(0.32) on 31 E.coli motifs is significantly higher than that of

FIMO (0.14); similar performance results are found in 1460

human cis-regulatory motifs (0.34 versus 0.15); (iii) BBC

can identify more accurate motif clusters than TOMTOM in a

constructed motif database; and (iv) BBA can identify jointly

regulating TFs, which are supported by the published literature.

The computational complexity, the actual computing time and

selected parameters of each used program can be found in

Supplementary Table S1.

3.1 BoBro2.0 can identify cis-regulatory motifs at a

genome scale reliably and efficiently

To assess the motif-finding performance of our toolkit, we have

systematically compared BoBro2.0 with MEME on the entire

E.coli K12 genome. For each program, we take the top 100

predicted motifs as the predictions (the parameters of each pro-

gram can be found in Supplementary Table S1). First, we note

that BoBro is much faster than MEME, as it took 2181 min in

comparison with 4492 min by MEME to generate the top 100

motifs for the promoter sequences in E.coli K12 (both BoBro

and MEME are implemented on a computer with 264GB

memory and CPU E5-2630 0 @ 2.3GHz). To highlight the

performance of our motif refinement tool, BBR, we have applied

it to the motif predictions by both BoBro and MEME, denoted

as BoBroþBBR and MEMEþBBR, respectively (see Suppleme-

ntary Appendix 1 for details).
We then compared the motif prediction performance of

the four programs, MEME, MEMEþBBR, BoBro and

BoBroþBBR, in terms of the motif-matching score (MMS),

defined as follows:

MMS ¼ max
r2R

Mg \ rg
�� ��� Mg

�� ��
rg
�� ���N

( )
ð10Þ

where Mg represents the set of genes in the immediate down-

stream operon of motif M; rg represents the set of genes in

regulon r; the set of all the regulons encoded in E.coli K12 is

denoted as R; and N is the number of genes in the E.coli K12

genome. The MMS can be used to infer whether a predicted

motif is involved in the regulation of a specific regulon. From

the comparison results in Figure 3, we noted that through top 10

to top 100, (i) the MMSs of the predicted motif by BoBro are

significantly higher than that by MEME, and (ii) the MMSs of

the refined motifs by BoBroþBBR andMEMEþBBR are higher

than predicted motifs by BoBro and MEME, in most cases, re-

spectively. The consensus and enrichment scores for each pre-

dicted motif by BoBro and by MEME are shown in

Supplementary Table S2.
In addition, we define RCS for each regulon r as

[Ti¼1 Mi
g \ rg

��� ���� �.
rg
�� �� to measure the coverage of individual op-

erons of a regulon predicted by a prediction program versus the

known component operons of the regulon, where Mi
gð1 � i � TÞ

denotes the predicted gene sets by a program (T¼ 10, 20,. . .,

100). Note that the larger the RCS, the more component genes

of the corresponding regulon are correctly covered by the pre-

diction program. Figure 4 shows a comparison among the RCS

values by the four programs on the 12 largest regulons: CRP,

Fur, FNR, IHF, Fis, Lrp, CpxR, LexA, NsrR, NarL, Cra and

Fig. 3. The MMSs comparison between MEME, MEMEþBBR, BoBro

and BoBroþBBR, where XþBBR means the motif finding tool X com-

bined with our motif refinement tool BBR

Fig. 2. An example of a two-level clustering of motifs using a minimal

spanning tree, consisting of six motifs: (a) a complete similarity graph is

constructed with the weight of each edge representing the two corres-

ponding motifs’ similarity; (b) an MST {(1,2), (2,6), (3,6), (3,4), (5,6)} is

constructed using Kruskal’s algorithm; (c) four connected components of

the MST created using the first-level threshold T2, i.e. {1, 2}, {5, 6}, {3}

and {4}, reflecting that motifs 1 and 2 and 5 and 6 are similar compared

with the other motif pairs; and (d) the motif cluster {1, 2} is split into two

dependent motif clusters {1} and {2} using the threshold T2, reflecting

that the similarity between motifs 1 and 2 are lower than that between

motifs 5 and 6
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ArcA, each containing at least 20 operons. It is clear that (i) the

prediction coverage by BoBro is considerably higher than that by

MEME, and (ii) our refinement tool, BBR, can improve the

RCSs of predicted motifs by both BoBro andMEME (see details

in Supplementary Table S3).
One of the issues that have troubled the motif-finding pro-

grams is how to effectively distinguish between cis-regulatory

motifs and the so-called bacterial-interspersed mosaic elements

(Bachellier et al., 1999), also known as repetitive extra-genic pal-

indrome elements (Bachellier et al., 1999; Keseler et al., 2011),

which are conserved palindromic sequences with various se-

quence lengths, mostly in the intergenic regions. For example,

‘CTTATCCGGCCTACAAA’ is a key repetitive extra-genic pal-

indrome pattern in E.coli K12. BoBro2.0 can effectively identify

such elements when searching for cis-regulatory motifs through

the designed criteria embedded in BBR (see details in Methods

section), and filter some of them out, although overall the prob-

lem remains an unsolved one.

3.2 BBS can identify motif instances more accurately than

FIMO

The BBS provides a global P-value for the entire motif prediction

when scanning for motif instances at a genome scale, which pro-

vides a reliable way for automatically selecting an optimal

sequence-similarity threshold for global motif scanning. Our re-

sults show that BBS can significantly improve the motif-scanning

performance in both E.coli K12 and human genomes compared

with the FIMO program in MEME. The test set consists of 31

conserved motifs from RegulonDB (see Section 2.5 for details).

We used an F-score to measure the prediction accuracy (van

Rijsbergen, 1979), which is the harmonic mean of precision and

recall,

F ¼
2�precision�recall

precisionþ recall

where precision represents the fraction of the predicted motif

instances that are documented TF binding sites (Salgado et al.,

2013; Xie et al., 2005), and recall is the fraction of the docu-

mented TF binding sites that are predicted. Figure 5a shows

that the F-scores on the 31 TFs by BBS are significantly higher

than those by FIMO (see Supplementary Table S4 for details).

In addition, we have also applied BBS to 1 460 regulatory motifs

of the human genome, extracted from Xie et al. (2005), which are

identified in promoters and 3’ UTRs by comparative analyses of

the human, mouse, rat and dog genomes. Figure 5b shows a per-

formance comparison on this dataset between BBS and FIMO (see

Supplementary Table S5 for details). It is noteworthy that the

decreased performance by the two programs in comparison with

that onE.coliK12 is probably owing to the higher noise level in the

human genome than a bacterial genome. Also, the documented

motifs representing only a very small fraction of all the encoded

cis-regulatory motifs in the human genome also account for the

decline in the performance statistics. As shown in Figure 5, some

motifs, scanned byBBSandFIMO, haveF-scores close to 0 in both

human genome and E.coli K12, for which the real motifs are

known. This is caused by the relatively high false-positive rates

that all motif scanning programs have to overcome. From the

performance statistics, we can see that there is clearly a large

room for improvement in human or other complex eukaryotic gen-

omes, possibly by using additional information and techniques.

3.3 BBC can identify more accurate motif clusters than

TOMTOM

Motif BLAST is a process for identifying statistically significant

motifs in a known motif database, which match the given query

motifs. We have compared the performance in this area by

BoBro2.0 and MEME. We have built a motif dataset using the

footprinting technique (Blanchette and Tompa, 2002; Kudla

et al., 2006; Sosinsky et al., 2007) for the assessment purpose

(see Supplementary Material for details). The dataset contains

561 motifs, covering 216 bacterial genomes, for 8 global TFs,

namely, CRP, FNR, Fur, LexA, IHF, GntR, PhoP and UlaR

(see Section 2.5). The motifs of these eight TFs in E.coli K12 are

used as the queries. For any query motif m, we define the motif

prediction sensitivity as Bm \ Imj j= Imj j, where Bm represents all

Fig. 4. The RCSs comparison between MEME, MEMEþBBR, BoBro

and BoBroþBBR, where XþBBR means the motif finding tool X com-

bined with our motif refinement tool BBR

Fig. 5. (a) Performance comparison between BBS and FIMO measured

using the F-score on 31 TFs of E.coli K12. The P-value of the Wilcoxon

test is 7.2e-4; (b) Performance comparison on a dataset of the human

genome. The P-value of the Wilcoxon test is 2.2e-16
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the significant hits of m in the collected dataset using a motif

comparison program and Im represents all the implanted motifs

of m when building this dataset. We compared our method BBC

with a recently published program, TOMTOM (Tanaka et al.,

2011), a program of MEME. Figure 6 shows the comparison

results of the identification sensitivity on the eight regulons.

BBC has at least as high sensitivity as TOMTOM.

3.4 BBA can identify TFs that jointly regulate genes

It is known that some genes are jointly regulated by multiple

TFs, and these genes should have the cis-regulatory motifs of

the corresponding TFs, generally arranged in tandem in their

promoter sequences (Madan Babu and Teichmann, 2003). We

have done statistical analysis on each pair of TFs in E.coliK12 to

identify such joint regulations. Specifically, we infer that a pair of

TFs jointly regulates genes using the motif co-occurrence analysis

on all the documented 159 motifs of E.coli K12 in RegulonDB

(see Methods section). To calibrate the P-value distribution, we

have run BBA on both documented motifs and randomly simu-

lated motifs (see Supplementary Material for details). Figure 7

shows the distribution of the P-values on both the documented

and simulated motifs. We can see that 164 (represented by red

bars in Fig. 7) of all 12 561 pairs of documented motifs have

significant P-values (50.01) to co-occur in the same promoters.

The comparison with the simulated data (represented by green

bars) shows that the P-value threshold is significant enough and

the chosen pairs are not random noise. Hence, we predict these

164 pairs of TFs jointly regulate gene transcription in E.coli K12

and 42 of them have full or partial supporting evidence in the

published literature. Table 2 shows the most significant 10 TF

pairs, and the full list is given in Supplementary Table S6.
To assess the quality of our predicted TF pairs, we have done an

extensive literature search aiming to find published data that may

support our predictions. Among the 164 TF pairs, 42 pairs have

full or partial supporting evidence with the detailed information

given in Supplementary Table S6. We highlight a few examples

here. (i) GalS and GalR are known to jointly regulate the gal

regulon (Geanacopoulos and Adhya, 1997; Weickert and Adhya,

1992); (ii) GadX andGadWaremembers of the AraC/XylS family

of TFs and they collaboratively regulate glutamate-dependent acid

resistance in E.coli K12 (Gallegos et al., 1997; Ma et al., 2002;

Martin and Rosner, 2001; Tramonti et al., 2008); (iii) FNR and

CRP belong to the CRP/FNR superfamily of TFs whosemembers
are widely distributed in bacteria, and they have been reported to

co-activate the genes involved in reductive dehalogenation of

chlorinated aromatic compounds (Gabor et al., 2006; Korner

et al., 2003); (iv) IHF and Fis are two nucleoid-associated proteins

in gram-negative bacteria (Dillon andDorman, 2010), which com-
prise the prereplication complexes to unwind the origin of replica-

tion in E.coliK12 (Ryan et al., 2004); (v) the CytR protein cannot

act alone, and the synergistic DNA binding is increased by direct

interaction with CRP (Sogaard-Andersen, et al., 1990a,b, 1991);

and (vi) IHF and CRP are known to collaborate to regulate the

expression of the tpl promoter and gltBDF operon (Bai and
Somerville, 1998; Paul et al., 2007).

4 CONCLUSION AND DISCUSSION

Compared with the most popular motif analysis software
MEME, BoBro2.0 has the following unique and strong features,

which all improve the state-of-the-art: it (i) can reliably identify

statistically significant cis-regulatory motifs at a genome scale;

(ii) provides a reliable way for optimizing the sequence-similarity

cutoff in genome-scale motif scanning; (iii) has a reliable capabil-
ity to compare and cluster motifs and (iv) can identify TFs that

may jointly regulate genes through identification of the co-oc-

currences of their cis-regulatory motifs. With these features, we

expect that BoBro 2.0 provides a useful tool for motif identifi-

cation and analysis complementary to the existing tools.
It is noteworthy that based on the above performance on the

human genome, BoBro2.0 can be realistically applied to eukary-

otic genomes for reliable identification of conserved cis-regula-
tory motifs. Specifically, BBR is designed to improve the

applications of BoBro in eukaryotes. In addition, BBA, which

is more genome-independent, can clearly be applied to eukary-

otes, and we expect that its performance should be about the

same as on prokaryotic genomes.
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tribution of P-value for simulated motif pairs; the red and blue bars are
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