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ABSTRACT

Motivation: Homology detection is a long-standing challenge in com-

putational biology. To tackle this problem, typically all-versus-all

BLAST results are coupled with data partitioning approaches resulting

in clusters of putative homologous proteins. One of the main prob-

lems, however, has been widely neglected: all clustering tools need a

density parameter that adjusts the number and size of the clusters.

This parameter is crucial but hard to estimate without gold standard

data at hand. Developing a gold standard, however, is a difficult and

time consuming task. Having a reliable method for detecting clusters

of homologous proteins between a huge set of species would open

opportunities for better understanding the genetic repertoire of bac-

teria with different lifestyles.

Results: Our main contribution is a method for identifying a suitable

and robust density parameter for protein homology detection without

a given gold standard. Therefore, we study the core genome of 89

actinobacteria. This allows us to incorporate background knowledge,

i.e. the assumption that a set of evolutionarily closely related species

should share a comparably high number of evolutionarily conserved

proteins (emerging from phylum-specific housekeeping genes). We

apply our strategy to find genes/proteins that are specific for certain

actinobacterial lifestyles, i.e. different types of pathogenicity. The

whole study was performed with transitivity clustering, as it only

requires a single intuitive density parameter and has been shown to

be well applicable for the task of protein sequence clustering. Note,

however, that the presented strategy generally does not depend on

our clustering method but can easily be adapted to other clustering

approaches.

Availability: All results are publicly available at http://transclust.mmci

.uni-saarland.de/actino_core/ or as Supplementary Material of this

article.
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1 INTRODUCTION

Finding clusters of homologous proteins, i.e. clusters containing
only paralogous and orthologous proteins, is a long-standing

bioinformatics challenge in the post-genome era. Searching the

exact phrase ‘homology detection’ with PubMed leads to

174 hits. The group of Peer Bork published one of the first
review articles on ‘Predicting functions from protein sequences’

as early as 1998 (Bork and Koonin, 1998). The availability of

next-generation sequencing technology provided us with almost

2000 whole-genome sequences, scattered over all domains of life
(Sayers et al., 2011). The annotation of the emerging sequences is

difficult, error prone and impossible to perform in the wet la-

boratory for each gene/protein of each organism individually

without appropriate bioinformatics software (Blanco and
Abril, 2009; Tcherepanov et al., 2006). To date, we have more

than 5 million bacterial sequenced genes available for download

from the National Center for Biotechnology Information

(NCBI) database (Sayers et al., 2011).
The usual starting point is a pairwise similarity matrix given by

local alignment tools, such as Basic Local Alignment Search
Tool (BLAST) (Altschul et al., 1997), that assigns each pair of

proteins a similarity value. Afterwards, we pipe this data into

clustering tools, i.e. computational methods for partitioning

data objects into groups such that the objects share common
traits, which have been measured with the similarity function

(Hartigan, 1975). Over the past years, many tools have been

developed for this purpose. Andreopoulos et al. (2009) outline

further biological application areas. For protein homology
detection, the following tools have proven useful, and their ac-

curacy is well studied: k-means, affinity propagation, Markov

clustering and FORCE, as well as transitivity clustering (TC)

(Enright et al., 2002; Enright and Ouzounis, 2000; Frey and
Dueck, 2007; Paccanaro et al., 2006; Wittkop et al., 2010).

Although most research concentrated on developing new more
sophisticated data partitioning methods, one of the major prob-

lems has been widely neglected: all clustering tools need a (set of)

density parameter(s) that adjust the number and the size of the

clusters. A clustering tool cannot ‘know’ a priori if we seek to find
protein families (restrictive parameters) or protein superfamilies

(weak parameters), for instance. Although these parameters are

crucial they are hard to estimate without gold standard data at*To whom correspondence should be addressed.
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hand. Furthermore, it is difficult and time consuming to define a
good gold standard, which consequently limits us to a small
number of proteins from a limited number of organisms.

Clusters of homologous proteins across a number of organ-
isms allow for studying lifestyle-specific genetic repertoires, i.e.
the genes that have homologous counterparts in all organisms or

in a specific set of organisms. Such studies can lead, for instance,
to the discovery of mutual proteins shared only among patho-
genic strains of a certain phyla, thus suggesting new drug targets

and wet laboratory candidates for vaccine design. The quality of
such studies is highly dependent on the quality of the clustering
process and consequently dependent on the choice of the clus-

tering method and a good estimate of the density parameter(s).
In this study, we present a robust method for selecting a suit-

able density parameter for TC for the task of protein homology

detection. TC is a clustering method that has been shown to
perform well when trying to identify protein families and protein
superfamilies based on sequence similarity. Using all protein se-

quences from 89 actinobacteria, we build our method upon two
assumptions: (i) clusters of size equal to the number of input
organisms (here 89) are likely to contain housekeeping genes

and thus should be over-represented, and (2) clusters greater
than the number of input organisms are more likely to contain
many false positives (non-homologous genes). Maximizing

(i) while minimizing (ii) allows us to estimate a meaningful
threshold for discovering clusters of homologous proteins with-
out manually curated gold standard associations for any of the

4300 000 proteins. Given this threshold, we compute and analyze
the core genome of the 89 actinobacteria. We further divide them
into four different groups of pathogenicity: non-pathogens

(NPs), human pathogens (HPs), animal pathogens (APs) and
opportunistic pathogens (OPs) (Supplementary Table S1). We
then study the class-specific genetic repertoire of the 89

actinobacteria.
The phylum actinobacteria is one of the biggest clades of bac-

teria. Their members show a high diversity throughout different

lifestyles and can cope with a variety of different habitats (Miao
and Davies, 2010). Many of these bacteria are important for
biotechnological production processes, as well as human and

animal medicine (Ventura et al., 2007). Here, we focus on
selected species of the following so-called CMNR group: cory-
nebacteria, mycobacteria, nocardia and rhodococcus. Our main

motivation for this study and our main focus of attention are the
Corynebacterium pseudotuberculosis. It causes caseous lymph-
adenitis in animals (Williamson, 2001), with dramatic effects

on livestock all over the world. All CMNR organisms selected
for this study share common properties with impact on the
design of effective vaccinations; they all share a common cell

wall organization (Dorella et al., 2006), for instance. For vaccine
design, accurate homology information about the protein space
in this group is important, e.g. for reducing drug target side ef-

fects and negative effects on the other microorganisms that are
part of the host’s microbiome.
There have been several studies about the actinobacterial

evolution [refer to Gao and Gupta (2012a)]. Most of them con-
centrated on phylogenetic tree reconstruction solely based on the
DNA sequence information of the 16S RNA. Despite the many

advantages of this method, it cannot provide insights into the
evolutionary relationship on a species level (Stackebrandt, 2009).

Gao and Gupta (2012b) used only a limited dataset of only a few
genes that were expected to be conserved along the phylum for

phylogenetic tree reconstruction. In several recent studies, best
bidirectional hits from genome-wide all-versus-all BLAST results

of all genes were used for homology detection [Karberg et al.
(2011) or Gao et al. (2006), for instance]. This strategy, however,

neglects the impact of careful BLAST cutoff evaluation, as well
as the effect of transitive dependencies in the similarity function.

Gene A may be similar to gene B, which is similar to gene C, but

gene C is not similar to gene A. These problem instances can be
‘repaired’ with clustering tools, such as TC (Wittkop et al.,

2011a). However, the problem of finding a reasonable density
parameter remains with TC, as well as with any other clustering

method.
In the following section, we briefly describe the actinobacterial

dataset used. Afterwards, we give a short introduction to TC
followed by our main contribution: a robust method for estimat-

ing a meaningful similarity threshold (TC’s density parameter).
We will describe how we study the robustness of our approach.

We further support our strategy by computing a revised phylo-
genetic tree based on the whole genetic repertoire of the 89 acti-

nobacteria. We will discuss our results and present core genomes

specific to the four aforementioned pathogenicity classes.

2 METHODS

2.1 Data sources

We obtained the protein sequences in FASTA format from

NCBI (Sayers et al., 2011) for the 89 sequenced and annotated
actinobacteria of the CMNR group. See Supplementary Table

S1 for a list of all species and a classification into the four patho-
gencity classes. We also give the associated disease where avail-

able. Our dataset comprises 344421 proteins of 89 species: 27
corynebacteria, 55 mycobacteria, 6 rhodococcus and 1 nocardia.

2.2 Transitivity clustering

We decided to use TC (Wittkop et al., 2010) for this study for the

following reasons: (i) It has proven to be a well-performing clus-

tering tool for biological data in general and for protein sequence
clustering in particular. (ii) TC requires only a single intuitive

parameter to control cluster sizes and numbers. (iii) TC is com-
parably robust against noise in the data [Wittkop et al. (2011b)

and Wittkop et al. (2010)]. (iv) The runtime and memory effi-
ciency of TC allows for an evaluation of hundreds of thousands

of sequences for varying parameter settings easily. Here, point
(ii) is striking. In contrast to other more complicated clustering

tools, with TC, we are not required to optimize two or more such

parameters but only a single one. Note that our parameter esti-
mation method would work with other clustering tools, even

though the traversal over the parameter setting space can be
more runtime intense.
First, we need to obtain a pairwise similarity measure for all

protein sequences. The canonical way to archive a similarity be-

tween two proteins is using the � log10 of the BLAST E-value.
Therefore, we performed a BLAST all-versus-all on all amino

acid sequences using an E-value cutoff of 0.01. TC considers this
input as a graph, with proteins being the nodes and the simila-

rities being weighted edges. All edges below the given threshold

216
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(TC’s density parameter) are removed from the graph; all others
we keep. By solving the weighted transitive graph projection

problem, TC converts that graph into a transitive graph with
the least edit costs. As edit costs, we use the accumulated differ-

ences between the similarities of the modified edges and the simi-

larity threshold. The resulting fully connected cliques represent
the final clusters and are reported as result set. For a more

detailed description, please refer to Rahmann et al. (2007). We
study the clustering result sets of TC runs for thresholds ranging

from 8 to 100, corresponding to BLAST E-values of 1 � 10�8 and

1 � 10�100, respectively. We are confident that this range covers
all meaningful thresholds.

2.3 Threshold estimation

To reasonably investigate the clustering results, the density par-

ameter has to be set correctly such that most of the clusters

actually contain groups of homologous proteins. In our study
with 4300000 proteins from 89 different bacteria, we do not

have a given gold standard that would allow us to find a reliable
threshold. We will present an approach that only uses intrinsic

indirect information of the dataset to determine such a threshold.
In what follows, n denotes the number of species. This

number, i.e. n¼ 89 in our study, is constant and independent
on the chosen threshold. Our first assumption is based on the

expectation of observing significantly more clusters of size n than

clusters of other sizes, as housekeeping genes and essential genes
are expected to be conserved across all bacteria. Thus, they are

more likely to cluster together in a group of exactly (or almost
exactly) 89 proteins. In our analysis, we observed a peak in the

cluster size distribution (Fig. 1) at n¼ 89, with most of these

clusters containing exactly one protein from each of the 89 or-
ganisms. This gives evidence in favor of our first assumption.

Setting the clustering threshold such that we maximize the size
(height) of this peak would increase the number of allowed

housekeeping gene. However, on the other hand, we cannot

assess the number of false positives in these clusters directly, as
we do not have a given reliable gold standard. What we require

is a second measure for allowing us to minimize these false

positives. Here, our second assumption is used: clusters with

larger sizes (far bigger than n proteins) are likely to contain

non-homologous proteins (i.e. false positives). The more a cluster

size exceeds n, the more unlikely it is that this increase can be

explained by true-positive paralogous proteins. We will use this

assumption to receive a measure for handling the number of false

positives.

Put in other words, our strategy is to vary the similarity thresh-

old such that our TC-based clustering results yields the following

two optimizations:

(1) Maximize the number of clusters of size n (most likely

containing common housekeeping genes).

(2) Minimize number of large clusters (most likely containing

many false positives).

To account for the first problem, we have to separate the

desired peak from the background distribution to get the relative

peak height compared with the surrounding area. The cluster

size distribution seems to follow a power law. For that reason,

we learned the best fitting discrete power-law:

P�,xmin
ðxÞ ¼

x��

�ð�, xminÞ
,

with �ð�, xminÞ being Rieman’s Zeta function for the background

distribution using the python tools provided in Clauset et al.

(2007). Figure 1 depicts the cluster size distribution and the best

fit power law for threshold 48 (we will explain below why we

picked 48). Let �̂t and x̂min, t be the approximated parameters

for the best fitting power law for the cluster size distribution

Dt(x) for threshold t. The function Dt(x) gives the absolute

number of clusters of size x. Furthermore, mt denotes the

number of observations, i.e. the total number of clusters, again

for threshold t. We now define the relative peak height ht(x) as:

htðxÞ ¼ DtðxÞ � P�̂t, x̂min, t
ðxÞ �mt,

where P�̂t, x̂min, t
ðxÞ �mt denotes the expected number of observa-

tion of a perfect power law of the given sample size mt, as

P�̂t, x̂min, t
ðxÞ is a probability function. In the following, we refer

to the relative core genome height ht(n) as ht.

Selecting the best threshold by optimizing only for ht would

lead to a weak threshold, as it would favor thresholds ‘filling up’

many of small clusters such that they contain n proteins in the

end. To address this issue, we need to penalize the occurrence of

unrealistic large clusters (false positives). In this work, we define

such a cluster as a cluster containing41:5 � n proteins. It is un-

likely, that there are clusters of that size containing only real

homologous and functional identical proteins because our acti-

nobacterial dataset is diverse. A ‘real’ cluster of size 1:5 � n would

imply that at least half of the species must have undergone the

same duplication event. That means this duplication event most

likely happened at an evolutionary early time point in their

common ancestor. On the other hand, the genetic variation

was small enough such that these paralogous proteins still

belong to the same cluster of homologous proteins. If that

would happen to be a common case, one would also expect

core genome peaks for paralogous proteins, e.g. at 2 � n or

3 � n. We were not able to identify such a peak for any of the

similarity thresholds. In conclusion, a cutoff for unrealistic big

Fig. 1. Cluster size distribution of the 89 actinobacteria for similarity

threshold 48. Arrow (A) highlights the core gnome peak at cluster

size 89. These peaks in area (B) represent more specific core genomes,

for example, all mutual proteins of the different mycobacteria/corynebac-

teria strains. The beginning of the unspecific clusters is marked by

arrow (C)
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cluster at 1:5 � n is reasonable, and the accidental punishment of

real paralogous clusters is negligible. Thus, we define the number

of unrealistic clusters ut for threshold t as:

ut ¼
X
x43

2�n

DtðxÞ

Optimizing only for that measure in turn would decrease the

number of false positives but would increase the number of false

negatives, i.e. homologous proteins put into two different clus-

ters. Thus, in a final step, we combine both quality measures to a

single overall quality value that we can assign to the TC results

for the varying thresholds. As ht and ut are two completely dif-

ferent measures, we scale them to the range [0, 1], with T being

the set of all used thresholds:

h0t ¼
ht �minðhi, 8i 2 TÞ

maxðhi, 8i 2 TÞ �minðhi, 8i 2 TÞ

u0t ¼
ut �minðui, 8i 2 TÞ

maxðui, 8i 2 TÞ �minðui, 8i 2 TÞ

We calculate our final quality measure Q(t) as the harmonic

mean of both of them:

QðtÞ ¼ 2 �
h0t � ð1� u0tÞ

h0t þ ð1� u0tÞ

We are using ð1� u0tÞ such that lower numbers of unrealistic

clusters result in the better quality measures. We may now use

this approach to find that similarity threshold t of TC, which

gives the best quality measureQ(t). Figure 2 plotsQ(t) for several

TC results for threshold ranging from 8 to 100.

2.4 Robustness analysis

So far, we have derived a quality measure Q(t) using only

intrinsic information of the provided dataset. On the other

hand, actinobacteria are known to be diverse, suggesting that

our dataset is biased. For example, we have 35 different strains

of Mycobacterium tuberculosis, which are all likely to be more

similar to each other than to the other actinobacteria. To respect

for this potential bias, we split our datasets to investigate the

stability of our approach. The following datasets were created:

� Myco-Only: all organisms of the genus mycobacteria (here:

55 species).

� Coryne-Only: same as Myco-Only but with all corynebac-

teria (here: 27 species).

� Rand-20: here, we randomly selected 20 of the 89 species

without replacement. We created 20 such datasets, to get an

impression of the variability of our approach.

As expected, our approach is limited by the level of biological

diversity among the studied organisms. Although the actinoba-

cerial phylum already is diverse, we also selected a dataset con-

sisting of 40 different proteobacteria. Proteobacteria resemble

one of the largest bacterial phyla with a huge genetic diversity

(Stackebrandt et al., 1988). In the remainder of this manuscript,

we will call this the Proteo dataset. With Proteo, we aim to assess

the stability and the limits of our approach for more diverse

genomes. We used the protein sequences of 10 bacteria of

each of the following four proteobacterial subgroups: alphapro-

teobacteria, betaproteobacteria, gammaproteobacteria and the

Fig. 2. In this figure, we plot our quality measure against the similarity threshold of TC. The red plot represents the quality measure Q(t) for the entire

dataset and the blue box-and-whisker plot in the background represents the variance and mean of all Rand-20 datasets (see text). The green and orange

lines plot the quality measure for the Coryne-Only and the Myco-Only dataset respectively (see text). The three boxes in the plot mark the pick range,

i.e. that range of thresholds where we see 10% of the best quality hitsQ(t). For the two rather phylum-biased datasets, i.e. Myco-Only and Coryne-Only,

the pick range is larger than the pick range of the entire dataset. Notably, the pick range for the entire dataset is completely contained in the pick range

of both, the Myco-Only and the Coryne-Only datasets. The gray line indicates the quality measure for the Proteo dataset. This dataset is too diverse for

the presented quality measure, which is indicated by the generally lower quality values and the shifted box toward a weak threshold. The dotted red line

indicates the threshold 48, which was chosen for the core genome analysis (see text)
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delta/epsilon subdivisions (40 genomes in total). Please refer to
Supplementary Table S2 for a detailed description. As we only
use intrinsic information ‘hidden’ in the dataset, we rely on a
certain level of homogeneity among the genomes to receive a

reasonably large ‘core-genome peak’. Hence, we may expect a
slightly lower quality measures for the more diverse Proteo data-
set highlighting the limits of our approach.

2.5 The actinobacterial phylogenetic tree

Given a meaningful clustering of homologous proteins, we may
now calculate an interspecies similarity. Let O ¼ fo1, . . . , ong be
the set of n organisms with oi ¼ fpi1, . . . , pini g as a set of ni
different proteins. Furthermore, let C ¼ fc1, . . . , cmg be the set
of m clusters. Furthermore, we define �oi ðckÞ to be the number of
proteins that organism oi has in cluster ck. The function

�oi, oj ðckÞ ¼
0 if �oi ðckÞ ¼ 0 _ �oj ðckÞ ¼ 0

�oi ðckÞ þ �oj ðckÞ otherwise

�

denotes the number of mutual proteins in cluster ck of organisms

oi and oj if both organisms are represented by at least one pro-
tein. The similarity function sðoi, ojÞ between two organisms oi
and oj is now defined as:

sðoi, ojÞ ¼

P
ci2C

�oi, oj ðciÞ

noi þ noj

This is basically the number of all mutual proteins of oi and
oj scaled with the total number of proteins of both species. This

scaling is done to prevent a bias of the similarity toward species
with larger genomes (more genes).
These interspecies similarities fulfill all properties for a

similarity function required for TC. To create a phylogenetic
tree, we ran TransClust in hierarchical mode with option
‘top-down’. Set in hierarchical mode, TransClust starts with a
low threshold that is increased over several iterations. As result,

in the first iteration, we obtain one big cluster containing all
species. With more restrictive thresholds, the cluster(s) are
divided into smaller clusters until each species ends in its own

singelton cluster. The clustering result of all iterations is used to
generate a phylogenetic tree. This tree is now based on the
whole-genome repertoire of all actinobacteria. Note that we con-

struct this (simple) tree for supporting our threshold estimation
procedure, rather than introducing a new phylogenetic tree
reconstruction methodology. One could also use other phylogen-

etic tree reconstruction approaches that are based on pairwise
similarity functions.

3 RESULTS

3.1 Threshold estimation

First, we will discuss the evaluation of the threshold estimation
method. Figure 2 illustrates the stability of our approach.
In particular, the results of the 20 randomly sampled Rand-20

datasets are a good indicator for the reliability of our approach
(refer to Table 1).
We define a threshold pick range RD ¼ fti, . . . , tkg as the set of

all thresholds, where the quality measureQ(t) exceeds 90% of the
best threshold of dataset D, i.e. that similarity threshold area

where we find 10% of the best results. The pick ranges for the

different datasets are marked with a box in Figure 2. For the

complete dataset, we observe a pick range of RAll ¼ f35, . . . , 48g.

In this range, the SD of the 20 Rand-20 datasets is only �3%

from the mean.
As we expected, the Proteo dataset (gray line) shows a lower

quality Q(t) than the actinobacterial dataset(s). We also observe

a left-shifted pick range, i.e. toward a lower threshold, resulting

in a less rigorous homology detection. The main reason for that

is the smaller size of the proteobacterial core genome. This indi-

cates that a single threshold for all species, ignoring the level or

diversity, cannot sufficiently be detected, and, for instance, the

alphaproteobacteria should be investigated separately from the

betaprotebacteria.
We now discuss the Myco-Only dataset. The quality measure

is better than for the other datasets, and the pick range is larger

(the range of suitable similarity thresholds is bigger). This is

mainly contributed to 35 strains of M.tuberculosis in a dataset

with a total of only 55 species. As the different strains of

M.tuberculosis are closely related, there is less variance in the

clustering result with respect to the threshold. In other words,

the proteins of the core genome cluster together early (for weaker

thresholds), and variance only occurs for the less similar proteins

of the non-tuberculosis species. Therefore, the relative core

genome peak height stays pretty stable for more thresholds.
We suggest that all thresholds from the pick range are good

candidates. We decided to choose the most restrictive one, i.e. 48,

to further reduce the possibility of false positives in the homology

detection and thus enhance the confidence in the presented

actinobacterial core genome. We marked this threshold with a

dashed line in Figure 2.

Table 1. This table shows the exact values for the evaluation of the

threshold estimation

20�Rand-20 All data

t �(Q(t)) �(Q(t)) Ratio (%) Q(t) � (%)

35 0.716 0.0152 2.13 0.711 �0.72

36 0.719 0.0196 2.73 0.717 �0.28

37 0.724 0.0195 2.69 0.728 0.56

38 0.729 0.0157 2.15 0.749 2.87

39 0.732 0.0186 2.54 0.757 3.46

40 0.731 0.0200 2.74 0.771 5.36

41 0.726 0.0192 2.64 0.776 6.84

42 0.723 0.0181 2.50 0.763 5.44

43 0.721 0.0215 2.98 0.756 4.90

44 0.719 0.0232 3.22 0.746 3.67

45 0.717 0.0232 3.23 0.741 3.34

46 0.715 0.0259 3.63 0.740 3.49

47 0.711 0.0257 3.61 0.744 4.64

48 0.706 0.0263 3.73 0.717 1.62

The left part represents the results of the 20 Rand-20 datasets, showing the mean

[column ‘�(Q(t))’], the SD [column ‘�(Q(t))’] and the percentage of the SD with

respect to the mean (column ‘Ratio’). For comparison, the right part displays values

for the entire dataset, subdivided into a column showing the quality measure [‘Q(t)’]

and column ‘�’ displays the percentage deviation of ‘Q(t)’ from ‘�(Q(t))’.
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3.2 Pathogenicity as a genetic model

In this first application of our previously obtained clusters of

homologous proteins, we study the relationship between the gen-
etic repertoire and bacterial lifestyles, pathogenicity classes in our
case. In particular, we are looking for genes that we find exclu-

sively in a certain class of species, pathogens, for instance. Most
likely, those genes would be conserved across several different
pathogenic phyla and thus build a cluster that contains no

proteins from NP organism. In the following, we work with
the TC clusters that we obtained by using the conservative

threshold of 48, estimated as described earlier. In the following,
we will distinguish between four different types of pathogenicity:

� HPs (44 bacteria),

� APs (10 bacteria),

� OPs (23 bacteria),

� NPs (12 bacteria).

Note that OPs are generally not infectious but normally act
commensal and do not harm the host. However, they can cause
diseases in the case of a weak host’s (immune) resistance (Rogers,

1963). Figure 3 depicts distributions of the cluster size overlaps
between different combinations of the pathogenicity classes.
Furthermore, we provide datasets containing all specific core

genomes, the general core genome and all possible combinations,
for example, clusters containing only proteins from HP and AP
but not from OP and NP. These datasets are disjoint, e.g. the

combined core genome of HP and AP does not contain the
only-HP and only-AP clusters.
Some clusters were bigger than the number of species. Hence,

some species must contribute with two or more proteins. That
can happen by means of gene duplication events or because of

clustering mistakes, i.e. false positives in the homology detection.
Therefore, we provide the core genome datasets in two different
‘flavors’:

� Optimistic: all clusters with three or more proteins (includes
paralogs).

� Conservative: only those clusters from the optimistic, where
the number of proteins equals the number of involved

species (no paralogs).

The general core genome includes only those clusters where all
89 species are involved. In the conservative case, these clusters

are additionally limited to a size of exactly 89 proteins.
Figure 4 depicts a Venn diagram containing the number of

clusters in the different categories. Of particular interest are

‘distinctive clusters’, which lack participating organisms of at
least one type of pathogenicity. Thus, the core genome and all
other clusters containing proteins of species of NP, HP, AP and

OPare not on that list because they do not provide information on
how to separate the different types of pathogenicity. One can

clearly observe a connection between HPs and APs. A total of
1685 of 2888 HP and 3010 AP distinctive clusters are shared,
which account formore of half of the respective distinctive clusters

in HP and AP. In contrast to this, only 646 distinctive clusters
contain proteins from HP and NP, and even less, 587, are con-
served across AP andNP. TheOPs seem to be less specific, as they

overlap well distributed with all other categories (HP:1890, AP:

1820 andNP: 2250). All these results are based on the conservative

core genome with TC threshold 48, although a similar tendency

can be observed in the optimistic case (data not shown). Although

our results do not totally fulfill our hope of seeing 100% patho-

genicity class-specific proteins, our findings clearly indicate a

certain genetic divergence between the pathogenicity lifestyles.

Fig. 3. Pathogenicity-specific cluster size distribution. The top picture, for

example, represents on the x-axis all pathogens and on the y-axis only

NPs. The colors encode the number of clusters that contain x ‘x-axis-ty-

pe-pathogenic’ and y ‘y-axis-type-pathogenic’ species. We count each spe-

cies only once (no paralogs). The core genome can be found in the

top-right corner, whereas the top-left and bottom-right corners represent

the exclusive core genomes. There are no peaks in the latter two areas,

which means that there are no proteins that uniquely distinguish between

the two pathogenicity classes. The heat maps for the remaining combin-

ations can be downloaded form the web site of this article. Please note the

log-scale of the color range
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All results are publicly available at http://transclust.mmci.uni-

saarland.de/data/actino_core/.

3.3 Quality of the homology detection

As already mentioned, there is no gold standard for our bacteria.
This poses problems for assessing the appropriateness of cluster-

ing methods for homology detection. Although slightly beyond
the scope of this study, we like to discuss the agreement of our

results with existing prediction-based homology repositories,
EggNOG (Powell et al., 2012) and the Ortholog Matrix Project
(OMA) (Dessimoz et al., 2005), for instance. OMA has the lar-

gest number of common species with our study and was shown
to perform well (Dessimoz et al., 2006) on this task. We mapped

118 000 proteins of 30 species (9 corynebacteria, 17 mycobac-
teria, 1 nocardia and 3 rhodococcus) against our actinobacterial
dataset by their IDs and their sequences. Please refer to

Supplementary Table S2 for a list of mapped proteins and spe-
cies. Finally, we removed all unmapped proteins from both acti-
nobacterial datasets.

To assess the agreement of both datasets, i.e. our with that of
OMA, we used the F-measure [a harmonic mean between preci-
sion and recall; see e.g. Wittkop et al. (2011a)]. The F-measure

ranges between 0 and 1, where 1 means perfect agreement be-
tween both datasets.

We now varied the TC threshold and compared the results
against OMA by using the F-measure to assess the agreement be-
tween both results sets (see Fig. 5). For the best threshold(s), the

F-measure of 0.7 is good. Most notably, however, is the observa-
tion that the F-measure is best for thresholds almost exactly within
the pick range that was suggested by our method (between 35 and

48). Aswith this article, we particularly focus on detecting amean-
ingful threshold, i.e. density parameter, for clustering algorithms

(rather than studying the performance of clustering algorithms for
homology detection in general); this observation further strength-
ens ourmain conclusion. Furthermore, it would be hard tomake a

qualified statement about the quality of OMA compared with
ours, as both methods are based on computer predictions.

3.4 The actinobacterial phylogenetic tree

We used our aforementioned interspecies similarity to perform a

hierarchical clustering. With this, we were able to construct a

phylogentic tree based on the whole-genome repertoire of all
the 89 actinobacteria. Supplementary Figure S1 depicts the

resulting tree. Whenever a cluster is split into subclusters, with
increasing threshold, we branch in the tree accordingly. If a clus-

ter sticks together for x decreasing thresholds, we set the length

of the branch to logðxþ 1Þ. This is necessary mainly for optical
reasons because some closely related organisms stick together for

many threshold, which would result in long branches. One can
see that most of the mycobacteria cluster together, whereas the

other CMNR groups are slightly more separated. This observa-

tion is reasonable, given the different lifestyles, and was previ-
ously reported in other studies, see the review from Ventura et al.

(2007), for instance. We emphasize that this tree is supposed to
support our threshold estimation procedure, rather than intro-

ducing a new method for phylogenetic tree reconstruction.

4 CONCLUSION

To sum up, we studied the actinobacterial genetic repertoire
with respect to four pathogenicity lifestyles. We used BLAST

and TC for this purpose. Here, our main novel contribution

was the estimation of a robust similarity threshold for TC.
Therefore, we set the density such that we balance the size of

the core genome (number of clusters with exactly 89 genes/pro-
teins; putative true positives) and the number of unreasonably

larger clusters (putative false positives) based on the cluster size

distribution. We studied the robustness of our method by using
random sampling and achieve stable and reasonable core gen-

omes for similarity thresholds between 35 and 48. We receive
similar results for the exclusive repertoire of the corynebacteria

and mycobacteria, respectively. In conclusion, our results suggest

that we may use the intrinsic information contained in the cluster
size distribution, at least in the phylum actinobacteria, to deduce

a reasonable density parameter for robust and accurate protein

Fig. 5. Agreement with the OMA homology detection tool. Depicted is

the development of the F-measure as a function of the clustering thresh-

old. The red box marks the pick range derived by using our model Q(t).

Remarkably, the best F-measures (agreements with OMA) are achieved

for clustering results with thresholds in pick range that we suggested using

our method. The red dotted line indicates the threshold 48

Fig. 4. These Venn diagrams depict the number of shared clusters in each

possible intersection of the four different kinds of pathogenicity with at

least three proteins (for conservative and optimistic; see text). These inter-

sections are disjoint; for example, the intersection of the non-pathogenic

core genome and the human pathogenic core genome does not contain

the human-pathogenic-only clusters. The core genome contains all clus-

ters, which contain proteins of all species. We marked the NP/HP/AP/

OP-only clusters and the core genome itself with bold font; for an inter-

section of two areas, we used italic font
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homology clustering. For future work with bacterial genomes,

we suggest using BLAST E-values between 10�35 (optimistic)

and 10�48 (conservative) when using bidirectional BLAST hits

only for homology detection. Remarkably, the same range is also

suggested by comparing the agreement of our clustering result

with the results from the OMA project.
Our method, however, is limited by the level of biological

diversity among the set of species to be studied. As we only

use the intrinsic information that is ‘hidden’ in the dataset, we

rely on a certain level of homogeneity. Hence, we can expect a

reduced accuracy for more diverse sets of genomes.

Here, we applied the methods to prokaryotes only. To use

eukaryotic genomes, some adaptions would be necessary.

Mainly, the factor that defines the number of false positives

(unrealistically large clusters) must account for the fact that

eukaryotes underwent more duplication events. We would sug-

gest the training of this parameter against a small gold standard.
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