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ABSTRACT

Motivations: Recent progress in ancient DNA sequencing technolo-

gies and protocols has lead to the sequencing of whole ancient bac-

terial genomes, as illustrated by the recent sequence of the Yersinia

pestis strain that caused the Black Death pandemic. However,

sequencing ancient genomes raises specific problems, because of

the decay and fragmentation of ancient DNA among others, making

the scaffolding of ancient contigs challenging.

Results: We show that computational paleogenomics methods aimed

at reconstructing the organization of ancestral genomes from the com-

parison of extant genomes can be adapted to correct, order and orient

ancient bacterial contigs. We describe the method FPSAC (fast phylo-

genetic scaffolding of ancient contigs) and apply it on a set of 2134

ancient contigs assembled from the recently sequenced Black Death

agent genome. We obtain a unique scaffold for the whole chromo-

some of this ancient genome that allows to gain precise insights into

the structural evolution of the Yersinia clade.

Availability and Implementation: Code, data and results are available

at http://paleogenomics.irmacs.sfu.ca/FPSAC.

Contact: cedric.chauve@sfu.ca

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Palaeomicrobiology aims at analyzing ancient microorganisms,

especially pathogens obtained from the remains of infected hosts

(Donoghue and Spigelman, 2006; Drancourt and Raoult, 2005).

Aside of an historical interest in characterizing precisely past

infectious diseases (Drancourt, 2012), understanding the evolu-

tion of pathogens and their relation with their hosts is of primary

interest for modern microbiology (Donoghue, 2011; Wilson,

2012). Initially based on polymerase chain reaction techniques,

ancient DNA (aDNA) sequencing benefited from advances in

sequencing technologies and the development of new protocols,

that lead to breakthroughs, such as the sequencing of whole

molecules from the Yersinia pestis strain that caused the Black

Death pandemic, including a plasmid (Schuenemann et al., 2011)

and the main chromosome (Bos et al., 2011).

Recently, Bos et al. (2011) extracted410 million short single

reads (average length of 53nt) from the dental pulp of an indi-

vidual infected by the Black Death pathogen, using the genome

of an extant Y.pestis strain (CO92) as a bait. They were

assembled, using Velvet (Zerbino and Birney, 2008), into

4130 000 contigs, including 2134 contigs of length �500nt

from the main chromosome of the Black Death agent. This

first sequencing of the chromosome of an extinct prokaryote

helped to clarify the causes of the Black Death pandemic (Bos

et al., 2011; Parkhill and Wren, 2011; Wilson, 2012). However,

the 2134 larger contigs cover only 85% of the expected length of

the ancestral chromosome and their organization along this

ancestral chromosome is still unknown, keeping out of reach a

detailed genome-scale study of the evolution of the structural

organization of Yersinia genomes, whose impact on pathogen-

icity is still an open question (Chain et al., 2004).
Current scaffolding methodologies can hardly be applied to

fully assemble and finish an ancient bacterial genome from a

dataset such as the one described by Bos et al. (2011), aside of

short molecules like plasmids (Schuenemann et al., 2011). These

methods, aimed at ordering and orienting the contigs, and esti-

mating the lengths of inter-contig gaps, rely on data such as

mate-pair libraries with mixed insert sizes (Bashir et al., 2012;

Chapman et al., 2011; Donmez and Brudno, 2013; Gao et al,

2011; Ribeiro et al., 2012; Salmela and et al., 2011), genome

maps (Lin et al., 2012) or comparison with one or several closely

related genomes (Kim et al., 2013; Gnerre et al., 2009). Owing to

the decay and fragmentation of aDNA molecules [whose length

depends on many factors, but that can be as short as 300 nt

(Drancourt and Raoult, 2005)], reads from ancient genomes

are expected to be short, and genome maps or mate-pair libraries

with long inserts are not available. This leaves the comparative

approach as the only possibility. The usual setting of the

comparative approach involves the comparison of the contigs

with one, or a few, closely related genomes sequences or maps

(Husemann and Stoye, 2010; Munoz et al., 2010; Rissman et al.,

2009). For an ancestral genome, comparison with a single refer-

ence genome, either a descendant or an outgroup, is likely to

predict derived syntenic features as ancestral (Rissman et al.,

2009), which is a problem for genomes such as the Y.pestis

genomes that contains many repeats and are highly rearranged

(Darling et al., 2008). There exists only one scaffolding method

that allows to compare with several related genomes while using

a phylogenetic tree (Husemann and Stoye, 2010), but it is not

designed to scaffold an ancient genome. We address this specific*To whom correspondence should be addressed
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problem here and describe a phylogenetic approach to scaffold
ancient bacterial contigs that adapts existing methods initially

designed to predict ancestral genome features from the compari-
son of extant genomes.
The design of predictive methods to reconstruct ancestral

genomic features is a relatively ancient field of computational

genomics, dating back to methods such as Fitch’s algorithm
for reconstructing ancestral genomic sequences (Fitch, 1971).

Advances in computational paleogenomics include improved
methods for reconstructing ancestral genome sequence

(Blanchette et al., 2004; Diallo et al., 2010; Liberles, 2007),
gene content (Cohen et al., 2010; Csurös, 2010; Szöllo00 si et al.,

2012) and gene order. The latter ones have been used for recon-
structing ancestral genomes organization of bacteria (Fremez

et al., 2007; Wang et al., 2006), animals (Alekseyev and
Pevzner, 2009; Chauve and Tannier, 2008; Ma et al., 2006;

Muffato et al., 2010; Ouangraoua et al., 2011; Putnam et al.,
2007), plants (Murat et al., 2010; Sankoff et al., 2009), yeasts

(Bertrand et al., 2010; Gordon et al., 2009) or protists
(Ma et al., 2008). Recent developments provide exact and fast

algorithms that handle repeats as well as diverse types of genome

rearrangements and chromosome structures (Bérard et al., 2012;
Chauve et al., 2013; Jones et al., 2012; Manuch et al., 2012).
We describe here how to adapt and integrate some of these

methods to process ancient bacterial contigs. We apply our
method to the Black Death agent genome, using the genomes

of eleven closely related descendants and outgroups from the

Y.pestis and Yersinia pseudotuberculosis clades, whose phylogeny
is given in Bos et al., (2011): we correct, order and orient the

ancient contigs of the of the medieval Black Death agent
chromosome into a single scaffold and estimate the inter-contigs

DNA sequences, and we describe a preliminary analysis of this
reconstructed ancestral genome.

2 METHODS AND ALGORITHMS

We are given a set of contig sequences for an ancestral genome

A, together with a set of related extant sequenced genomes, des-
cendants and outgroups of A, organized into a phylogenetic tree

T. Our scaffolding method FPSAC relates to a generic scheme
for reconstructing ancestral genome organization (Chauve and

Tannier, 2008; Ma et al., 2006; Jones et al., 2012), and is com-
posed of four phases:

(1) Computing homologous families. A homologous family is
composed of at least one contig segment (ancestral marker)

and several non-overlapping extant genomes segments
(extant markers), that pairwise align, with high similarity,

along their whole length. Each homologous family is
assigned a multiplicity bounding the number of occur-

rences (copy number) of ancestral marker(s) from this
family in the ancestral genome A.

(2) Computing putative ancestral adjacencies. An ancestral

adjacency is composed of two ancestral markers that are

believed to have been contiguous in A. We predict them
using a Dollo parsimony principle that takes advantage of

the internal position of A in the considered phylogenetic
tree. All adjacencies are weighted according to their phylo-

genetic conservation, defining a weighted adjacency graph.

(3) Scaffolding from ancestral adjacencies. If the set of all

ancestral adjacencies is not compatible with a multichrom-

somal circular chromosomal structure that respects the

multiplicity constraints of homologous families, we com-

pute a maximum weight subset of adjacencies that is com-

patible with such a circular chromosomal structure. Next,

as adjacencies alone can define several contig orders, due

to repeated ancestral markers forming tangles in the adja-

cency graph, conserved intervals spanning repeats are used

to clear the ambiguities, in a way similar to the use of

mate-pairs to scaffold extant genomes.

(4) Estimating inter-markers gap lengths and sequences. For

each ancestral adjacency, the length of the ancestral gap

between the two involved markers is estimated from the

length of the gap between the corresponding extant adja-

cencies (extant gaps). The sequences of the extant gaps

whose length agrees with the estimated ancestral gap

length are aligned into a multiple sequence alignment

that is used to reconstruct a putative ancestral gap

sequence.

2.1 Computing homologous markers families

We map the ancient contigs onto the extant genomes. Every

significant hit (defined here by a length of at least 100 nt with

95% of identity) indicates two homologous sequences, one

located on a contig and one located on an extant genome.

Owing to rearrangements and repeats, some contigs do not

align over their whole length to every extant genome, indicating

potential evolutionary breakpoints. To detect families of hom-

ologous segments, we apply an iterative segmentation procedure,

which produces contig and extant genome segments such that

(1) contig segments align over their whole length to extant gen-

omes segments and (2) pairs of extant genome segments do not

overlap (i.e. either they have the same coordinates, or they are

completely disjoint).
From a set of pairwise contigs/genomes alignments, we cut the

contigs and the corresponding extant genome segments if either

(1) or (2) is not satisfied. Assume first that (1) is violated: there is

a segment ½a, b� from a contig of length ‘ that aligns to an extant

genome, with a41 or b5‘ or both. We assume that a41; the

other case is treated symmetrically. The contig is cut into two

segments, with coordinates ½1, a� 1� and ½a, ‘� and the corres-

ponding genome segments are cut accordingly. All others align-

ments of segments from this contig overlapping coordinate a are

also cut into two subsegments at this position in the same way as

previously mentioned. We iteratively apply this procedure until

(1) is verified for all pairwise alignments, thus defining a new set

of pairwise contigs/genomes alignments. Next, assume that (2) is

violated: two different contigs have segments aligning to two

overlapping regions of an extant genome, say ½a, c� and ½b, d�,

with a5b5c5d. In this case, the two contigs are cut into two

segments so that the four resulting segments align to genome

segments with coordinates ½a, b�, ½b, c� (for two of them) and

½c, d� (see Fig. 1). After iteratively applying this procedure until

(2) is satisfied, it is possible that (1) is violated again. To make

the procedure converge, we remove short alignments (below the

length threshold used to define significant hits) and repeat the
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two procedures until (1) and (2) are both satisfied. Then all

aligned sequences naturally cluster into sets of highly similar

ancient and extant sequences forming homologous families.

2.2 Multiplicity of homologous families

Next, we assign to each homologous family a multiplicity that is

the expected number of occurrences of the ancestral marker of the

family in the ancestral genome. The multiplicity of a family is

computed from the number of occurrences of the extant markers

in the extant genomes (the family profile) to minimize the number

of evolutionary gain/loss along the branches of the considered

phylogenetic tree. It is computed by a linear time dynamic

programming algorithm [see Csurös (2010) for example].

2.3 Computing ancestral adjacencies

To account for the orientation of markers in predicted ancestral

syntenic features (adjacencies and intervals), we decompose each

marker (ancestral or extant) into two marker extremities, its head

and its tail, a standard approach in genome rearrangement

studies (Chauve et al., 2010).

Adjacencies are then defined in terms of marker extremities

instead of markers, and are computed following a Dollo parsi-

mony principle described in Chauve and Tannier (2008): two

ancestral marker extremities form an ancestral adjacency if

they are contiguous (no other marker is between them in the

chromosome) in at least two extant genomes whose evolutionary

path in T contains A.
Adjacencies are weighted according to their patterns of phylo-

genetic conservation as described in Ma et al. (2006) [see also

Chauve and Tannier (2008)]. The weighted adjacency graph is

defined as follows: its vertices are the markers extremities and its

edges are the weighted adjacencies.

2.4 Computing ancestral scaffolds

An ancestral scaffold is a linear or circular order of ancestral

markers. The set of ancestral adjacencies might not translate

into an unambiguous set of ancestral scaffolds for two reasons:

(1) there might not exist a set of circular or linear markers orders

that contain all adjacencies and respect the multiplicity of each

marker, and (2) even if ancestral adjacencies can be organized in

ancestral scaffolds, several sets of scaffolds can exist because of

marker multiplicities (Fig. 2).
To address point (1), we compute a maximum weight subset of

ancestral adjacencies such that every marker extremity belongs to

a number of adjacencies that is at most the multiplicity of the

marker family (Wittler et al., 2011;Manuch et al., 2012): for an

ancestral marker of multiplicity m, each of its extremities can

belong to at most m ancestral adjacencies. Such a selected

subset of ancestral adjacencies, that is computed in polynomial

time Manuch et al. (2012), is compatible with an order of the

markers into a set of linear and/or circular scaffolds which

respects the copy number constraint given by the ancestral

marker multiplicities.
It is important to note that, although bacterial genomes can

be composed of several circular molecules (chromosomes and

plasmids), the algorithm we use does not control the resulting

chromosomal structure (in terms of the number of scaffolds and

of their linearity/circularity). The problem of computing a max-

imum weight subset of adjacencies that can be realized into a

constrained chromosomal structure is NP-hard, as it includes the

Maximum Weight Path Cover Problem (Ma et al., 2008).

Relaxing the constraints on the chromosomal structure leads to

a tractable problem (Manuch et al., 2012); moreover, if the

resulting adjacencies can be realized into a set of linear segments,

then this defines an optimal solution to the Maximum Weight

Path Cover Problem, and so, an optimal set of scaffolds.

To address point (2), we rely on conserved intervals that span

markers with multiplicity41 (see Fig. 2 for an illustration of this

principle). More precisely, we define a repeat cluster as a maximal

connected subgraph of the adjacency graph induced by extremi-

ties of ancestral markers with multiplicity41. A repeat spanning

interval of R in a given genome G is a sequence of markers in G

of the form a x1 . . . xk b such that the multiplicity of a and b is 1

and the xi’s all belong to the repeat cluster R. A repeat spanning

interval is conserved if it appears, up to a complete reversal, in

two genomes whose evolutionary path in T contains A.

Identifying all conserved repeat spanning intervals can be done

in time linear in the total size of all repeat clusters. Next, repeat

spanning intervals are weighted using the same method as ances-

tral adjacencies, and for each repeat cluster R, we greedily select

repeat spanning intervals that are both compatible with the adja-

cencies selected during the previous step, which contain markers

of R, and satisfy the multiplicity constraints of the markers of R

(Chauve et al., 2013).

Provided all repeats are spanned by enough conserved inter-

vals, this results into an unambiguous scaffolding that includes

all ancestral markers, including repeated ones. Otherwise, this

means that the evolutionary signal present in the considered

extant genomes is not sufficient to resolve repeats in the ancestral

genome, in which case, adjacencies composed of two repeats that

Fig. 1. Illustration of the segmentation procedure to obtain homologous

families of markers. For this example, we consider two contigs C1 and C2

and their alignments on two genomes G1 and G2. Part C of C1 and C2

aligns to the same positions in both genomes, including two different

positions on G1. Parts A and B of C1 align at two different positions

of G2. So the segmentation produces four families, with non-overlapping

ancestral markers A, B, C and D. For these four segments, properties

(1) and (2) are satisfied, whereas both were violated for C1 and C2. The

family containing segment C contains two ancestral segments, two extant

segments from G1 and one from G2. According to the number of occur-

rences in other genomes, this family may have a multiplicity 41.
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do not belong to a repeat spanning interval are discarded, result-

ing in a more fragmented, but unambiguous, set of scaffolds.

2.5 Estimating inter-contig gaps lengths and sequences

An ancestral gap in an ancestral scaffold is the sequence located

between two consecutive ancestral markers (say X and Y). For

each ancestral gap, we consider the extant genomes in which

occurrences of X and Y are consecutive (no extant marker is

between them) and in the same respective orientations as in the

ancestor, thus defining an extant gap X – Y. We define a con-

served extant gap as an extant gap whose length is equal in two

extant genomes whose evolutionary path in T contains A, fol-

lowing a Dollo criterion. The lengths of conserved extant gaps

X – Y define a length interval for the ancetsral gap X – Y. If there

is no conserved extant gap, the ancestral gap length interval is

defined by the minimum and maximum extant gap lengths

between X and Y. We align all sequences of extant gaps between

markers X and Y whose length is in this interval into a multiple

sequence alignment. A parsimonious estimation of each ancestral

gap sequence is computed from the corresponding alignment

of extant gap sequences using the classical Fitch algorithm

(Fitch, 1971).

3 RESULTS

We describe here the result of our method FPSAC applied to the

dataset described in Bos et al. (2011), followed by a preliminary

analysis of the resulting scaffolded chromosome.

3.1 Data

The input data are the 2134 larger assembled contigs (500 nt and

above) described in Bos et al. (2011), and the DNA sequences of

the fully assembled chromosomes of four Y.pseudotuberculosis

genomes and seven Y.pestis genomes, of which five are believed

to descend from the Y.pestis strain that was involved in the Black

Death pandemic (Fig. 3).

3.2 Contig segmentation and homologous families

The sequences of the 2134 contigs were mapped to the full

genome sequences of the 11 selected extant genomes using

Megablast (Zhang et al., 2000) with default parameters. As

already noted by Bos et al. (2011), 29 contigs did not map on

the Yersinia genomes, leaving 2105 ancestral contigs to analyze.

The segmentation step resulted in 2616 homologous families.

Almost all families have multiplicity 1, but 21 of them have

multiplicity greater than 1, and among them, 20 have multiplicity

2 or 3, which indicates that most repeated parts of the genomes

were not present in the larger contigs. We removed the last

family, which corresponded to the 5S ribosomal protein family,

because of its combined short length (133nt) and high multipli-

city (8). The amount of DNA encoded by the ancestral markers,

when multiplicity is accounted for, is 3 846 616nt of ancestral

DNA, whereas the initial contigs encode 4 013 159nt.

3.3 Comparative scaffolding

We detected 2634 putative ancestral adjacencies. Only 6 adjacen-

cies of these 2634 putative ancestral adjacencies needed to be

discarded to obtain a maximum weight subset of adjacencies

compatible with a set of linear/circular scaffolds. There were 29

conserved repeat spanning intervals, and 2 of them needed to be

discarded to extract a maximum weight subset that defined an

unambiguous set of three large linear scaffolds, in which all

contigs are represented.
There are six possibilities for joining these three scaffolds into

one circular scaffold. Extant adjacencies between markers

located at the scaffolds extremities were computed and defined

an order and orientation for the three scaffolds: two adjacencies

between scaffold extremities were supported by all outgroup spe-

cies, whereas no adjacency between scaffold extremities was sup-

ported by ingroup species, and the last adjacency was supported

by one outgroup (Y.pestis Microtus) and involved a marker

absent from all Y.pseudotuberculosis genomes.

3.4 Gap lengths and sequences

Out of 2636 ancestral gaps only 22 did not have a length interval

supported according to the Dollo criterion. In most other cases,

length intervals were narrow: 2561 of the gaps (out of 2636) have

a length interval whose bounds differ by at most 10 nt.
Next for each ancestral gap, we aligned all extant gaps whose

lengths fell in the ancestral gap length interval, using Muscle

(Edgar, 2004) (version 3.8.31), and constructed an ancestral

sequence from each alignment using Fitch’s algorithm (Fitch,

1971). This resulted into a single sequence containing alternating

sequenced ancestral contig segments and estimated ancestral gap

sequences, illustrated in Figure 4.

Fig. 2. Illustration of the ambiguity in ordering ancestral markers with

multiplicities41 and of the use of intervals to address it. Here is a toy

example where we have markers 1, . . . , 7, drawn with bold segments, and

adjacencies between their extremities, drawn with thin lines. Assume

every marker has multiplicity 1 except marker 2, which has multiplicity

2. Then every marker extremity has as many adjacencies as its multiplicity

predicts. But there are two possible circular orderings of these markers

according to these adjacencies: 1,2,3,4,5,2,6,7, or 1,2,5,4,3,2,6,7. Suppose

we have in addition repeat spanning intervals 1.2.3 and 5.2.6, then only

the first ordering is compatible with them

Fig. 3. Phylogeny of the considered genomes from Bos et al. (2011)
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3.5 Assessing accuracy with simulations

To assess the validity and accuracy of FPSAC, we simulated

50 datasets as follows (full details of the simulation and results

are given in Supplementary Material). First, for each dataset,

one of the current extant genomes was randomly chosen as the

ancestral genome and it was allowed to evolve along the

Yersinia phylogeny by performing up to X random inversions

along each branch, with X 2 f10, 20, 30, 40, 50g; note these

numbers are all greater than the estimated rearrangement

numbers for the real data, thus resulting in 11 simulated

extant genomes expected to be more scrambled than the real

data. Next, 2134 contigs were selected along the genome fol-

lowing the length distribution of the real contigs, and 10 pairs

were used to create chimeric contigs. Finally, the FPSAC pipe-

line was applied on the resulting 50 dataset (ancient contigs

and extant genomes) with the same parameters than on the

real Yersinia data.
We obtained on average 2808.42 families, 130.64 having a

multiplicity 41. The scaffolding resulted into a single scaffold

except in five cases (average number of scaffolds of 1.18); there

were few adjacencies (two in total over the fifty data sets) and

repeat spanning intervals (three in total) that needed to be dis-

carded. To assess the accuracy of the contig order implied by the

scaffolds, we looked at occurrences of the non-chimeric contigs

in the reconstructed sequence (including the reconstructed gaps)

and at the length of the gaps between these occurrences. We

found that 99.47% of the initial contigs appear in the recon-

structed sequence with at least 95% of identity over 95% of

their length, and that 98.66% of the gaps between consecutive

contigs were reconstructed with the exact length in the recon-

structed sequence. Regarding chimeric contigs, 99.14% of them

were detected as chimeric. These high accuracy numbers are con-

sistent with previous simulations on the reconstruction of ances-

tral gene orders from randomly rearranged extant genomes (Ma

et al., 2006), although here we can also observe a high accuracy

in the reconstructed gap lengths, which was not considered in

previous simulations.

3.6 Analysis of the reconstructed ancestor

The pipeline described previously resulted in an ancestral genome

sequence of length 4.6Mb showing that roughly 775kb were

added to the ancestral marker sequences by the gap sequences

estimation step.
In the resulting scaffold, each occurrence of an ancestral

marker corresponds to one or several segments of the initial

contigs. The ordering of these segments is mostly compatible

with the initial contigs. We found only one chimeric contig (see

Fig. 5), split into two non-adjacent markers in the ancestral

genome organization. Also four contig segments were found to

be duplicated: a large part (4500nt) of each is probably present in

more than one occurrence in the ancestral genome, whereas the

initial assembly predicted only one occurrence. Finally, 63 con-

tigs have a sequence that is found, up to small variations, inside

another contig, whereas their number of extant occurrences sug-

gest they have multiplicity 1, so we believe they are redundant. An

alternative explanation is that they are derived mutations of the

ancient genome, which, in such a case, would not be ancestral to

current strains.

Regarding the six discarded adjacencies, two of them point

toward a possible large-scale inversion. Both, the selected adja-

cencies and intervals, as well as the discarded ones, have similar

phylogenetic support. So this alternative structure cannot be

ruled out as non-ancestral, which raises the question of the pos-

sible coexistence of different genome architectures among the

Y.pestis infecting the host individual whose remains were used

for sequencing.
We also took advantage of the availability of a full chromo-

some sequence for the main chromosome of the Black Death

agent to analyze its structure and evolution at the whole-

genome scale. We first analyzed insertion sequence (IS) elements

that have been suspected to be involved into the high rearrange-

ment rate of Y.pestis genomes (Chain et al., 2004). We mapped

extant IS to the reconstructed ancestral chromosome (see

Supplementary Material). This resulted in 92 ancestral gaps

and markers containing IS. We confirmed this comparative an-

notation with an automatic annotation of the reconstructed

chromosome sequence. We could also observe that a large pro-

portion of these IS (at least 58) were already present in the last

common ancestor of all Y.pestis strains, whereas they are almost

completely absent from the genomes of the considered

Y.pseudotuberculosis, thus providing more evidence that the

Y.pestis speciation from its Y.pseudotuberculosis ancestor was

characterized by a burst of IS insertion (Chain et al., 2004).

Fig. 4. Comparison of the reconstructed Black Death agent chromosome

(left) and of the Y.pestis CO92 chromosome (right). Outside tracks of the

Black Death agent chromosome represents gaps (outer track) and mar-

kers (inner track), with red (respectively green, blue) indicating small

(resp. mid-length, large) elements. The first two inside tracks represent

annotated (green) and inferred (green) insertion sequences. The scattered

inside track represents the level of breakpoint reuse in evolutionary scen-

ario between the ancestor and the strains Y.pestis Antiqua, Y.pestis

KIM10 and Y.pestis biovar Microtus str. 91001. Blue ribbons join colinear

chromosome segments. Figure computed using Circos (Krzywinski et al.,

2009)
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We also analyzed the genome rearrangements between the re-

constructed ancestral sequence and the extant genome sequences

by sampling inversion scenarios between the ancestral genome and

the extant genomes using the software DCJ2HP (Miklós and

Tannier, 2010). There are 8–9 inversions between the

Y.pseudotuberculosis strains and the medieval genome, and 9–22

inversions when compared with the (evolutionarily closer) Y.pestis

strains, showing a clear acceleration of evolutionary rearrange-

ment following the Black Death Y.pestis divergence (see

Supplementary Material). As noticed by Darling et al. (2008),

we can also observe that inversion breakpoints are not randomly

distributed and used (Fig. 4): highly used ones are concentrated in

one-third of the chromosome, around its probable replication

origin. The positions of the inversion breakpoints are also highly

correlated with IS, as remarked earlier (Deng et al., 2002): 76 of

the 118 mapped breakpoints are close (51000 nt distant) to some

predicted IS, whereas this number drops to 39 for uniformly

sampled random coordinates (P-value 510�3). Rearrangements

are numerous in all Y.pestis branches, strongly suggesting that

they could be driven by the IS.

4 DISCUSSION

4.1 Contig segmentation and marker multiplicities

Aligning contigs to extant genomes and using these alignments to

segment contigs might at first seem counterintuitive, as it

increases the fragmentation of the initial assembly. However, it

allows us to take advantage of the available fully assembled

extant genomes to identify potential chimeric contigs and to

extract potential repeated sequences from the contigs, which

would have been collapsed into a single contig, a well-

documented issue with assembling from short reads (Treangen

and Salzberg, 2012). Our approach follows a recent suggestion

by Roy et al. (2012) to rely on shorter contigs of higher quality

(here in terms of mapping to related genomes). This phase bene-

fited from the high sequence conservation in the Y.pestis clade

that allowed us to rely on high similarity pairwise alignments as

input of the segmentation phase. Less conserved data would

likely require more involved methods to compute a segmentation

into non-overlapping homologous families (Angiuoli and

Salzberg, 2011;Minkin et al., 2013).
Finally, the possibility to infer the multiplicity of contig seg-

ments from the alignment on extant genomes, using comparative

genomics methods designed to study the evolution of gene

families, offers an elegant alternative, specific to aDNA assem-

bly, however, to current copy number estimation methods that

rely on the depth of coverage, which can be uneven when sequen-

cing highly fragmented aDNA.

4.2 Estimating ancestral gap sequences

The key idea is that conserved adjacencies are also likely to

define conserved gaps. In the data processed, we can observe

that for most ancestral gaps, a strict Dollo parsimony criterion

identifies conserved gaps. Moreover, again benefiting from the

high sequence conservation of the Y.pestis genomes, we could

estimate most of the ancestral gap sequences from the multiple

alignments of the corresponding extant gaps using a standard

ancestral character reconstruction method. If greater sequence

variation was observed, more powerful methods designed to

infer ancestral DNA from a multiple alignment would be appro-

priate (Blanchette et al., 2004; Diallo et al., 2010; Liberles, 2007).

In a future work, we aim to use the reconstructed gap sequences

as a template to exactly assemble these gaps from the sequenced

reads. However, optimally mapping aDNA reads onto extant

DNA requires specific protocols that have recently been

developed for eukaryotic aDNA, but still needs to be established

for bacterial aDNA (Schubert et al., 2012).

4.3 Scaffolding and comparative genomics

The FPSAC method follows principles similar to most existing

scaffolding methods designed for extant genomes. It relies on

extracting a genome structure from a graph (the adjacency

graph), whose vertices are sequence elements and edges indicate

connectivity between pairs of vertices. In most scaffolding algo-

rithms, edges of this graph are defined by mate-pair reads, where-

as we rely on adjacencies and intervals that are conserved under a

Dollo parsimony criterion. The main difference we can observe is

the low number of tangles in the graph we obtained compared

with the usual large number observed in graphs based on mate-

pairs, in part because of the absence of repeated sequences in the

analyzed contigs. It is interesting to observe that, despite the fact

that Y.pestis genomes are highly rearranged, FPSAC was able to

capture a clear signal regarding the organization of markers

along the ancestral chromosome. Also important is the use of

recently developed polynomial time exact algorithms to extract a

consistent set of adjacencies while accounting for the multiplicity

of repeated segments (Manuch et al., 2012) and to assess the

compatibility of repeat spanning intervals with a given adjacency

graph (Chauve et al., 2013).

4.4 Applicability to other datasets

We applied FPSAC to a dataset with specific characteristics.

The assembled ancestral contigs were obtained using a library-

enrichment approach and are assumed to belong to the genome

of an internal node of a phylogeny, whose leaves are sequenced

and assembled. Moreover, the clade of interest contains high

sequence conservation and highly rearranged genomes. We

address the impact of these different points below and discuss

the applicability of FPSAC to a wider range of datasets.

In the case where descendants of the ancient genome of inter-

est are not available, either due to lineage extinction or because

they have not been sequenced, other comparative methods can

be used, that do not rely on a Dollo parsimony principle

Fig. 5. Contig correction: (a) the contig is cut during the segmentation

procedure, but not joined during the marker ordering; (b) the contig is

found to have two occurrences in the marker ordering; (c) two contigs

contain the same DNA sequence and this sequence is predicted to have

only one occurrence in the marker ordering
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(Husemann and Stoye, 2010). So the only important requirement

to use FPSAC is the availability of the genome sequences of at

least two related genomes whose evolutionary path contains the

ancestor of interest. From there, the performances of the scaf-

folding obtained with FPSAC will depend both on the level of

sequence conservation of both sequence identity and synteny in

the considered related genomes. Diverged extant genomes might

result in difficulty to obtain homologous families, which

adequately span the initial set of ancient contigs, as well as com-

puting their multiplicities. High rearrangement rates might result

in wrong adjacencies because of convergent evolution. Useful

indicators to assess the results obtained with FPSAC are thus

both the coverage of contigs and extant genomes by ancestral

markers and in the number of discarded adjacencies during the

scaffolding phase.
The method we describe can be applied as is even if some

of the chosen closely related extant genomes are not fully

assembled. The impact of unassembled extant genomes is likely

to be more fragmented scaffolding than what we observed on the

Black Death agent dataset because of undetected ancestral adja-

cencies or repeat spanning intervals.

Finally, if the initial ancient contigs originate from a mixture of

microbial backgrounds, for example if they result from de novo

assembly of reads obtained through shotgun sequencing, then

FPSAC can be used to assemble contigs subsets that have been

identified, through comparison with extant genomes sequences, as

belonging to well identified clades and satisfy the requirements

described previously. However, even this initial step is currently a

challenge, for example because of repeated sequences belonging,

up to variations, to several genomes (Pell et al., 2012). The prob-

lem of applying a method such as FPSAC to a whole set of

contigs originating from a mixture of genomes, that is, for scaf-

folding an ancient metagenome, is an important research avenue.

5 CONCLUSION

Technological sequencing advances can now provide sequences

from whole ancient bacterial genomes, which promises to be an

invaluable source of knowledge for understanding pathogen evo-

lution. However, assembling ancient bacterial genomes poses

specific issues, in particular because of high fragmentation in

numerous contigs. In parallel, computational paleogenomics by

comparative methods has grown tremendously, and computa-

tional methods can now provide ancestral genome sequences

accounting for substitutions or small indels, ancestral gene con-

tent or ancestral genome organizations, at the level of full

chromosomes, but, until now, were never combined to scaffold

and estimate the sequence of an ancient bacterial chromosome.

In the present work, we described a general method to combine

both sequencing and computational reconstruction, and illu-

strated its potential on a real dataset.
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