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ABSTRACT

Motivation: Most bioactive molecules perform their action by inter-

acting with proteins or other macromolecules. However, for a signifi-

cant fraction of them, the primary target remains unknown. In addition,

the majority of bioactive molecules have more than one target, many

of which are poorly characterized. Computational predictions of bio-

active molecule targets based on similarity with known ligands are

powerful to narrow down the number of potential targets and to

rationalize side effects of known molecules.

Results: Using a reference set of 224 412 molecules active on 1700

human proteins, we show that accurate target prediction can be

achieved by combining different measures of chemical similarity

based on both chemical structure and molecular shape. Our results

indicate that the combined approach is especially efficient when no

ligand with the same scaffold or from the same chemical series has yet

been discovered. We also observe that different combinations of simi-

larity measures are optimal for different molecular properties, such as

the number of heavy atoms. This further highlights the importance of

considering different classes of similarity measures between new

molecules and known ligands to accurately predict their targets.
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1 INTRODUCTION

A large number of small molecules ranging from metabolites to

signaling molecules to drugs display strong bioactivity in differ-
ent living systems. This activity is often mediated by physical
interactions with proteins or other macromolecules. Therefore,

information about the targets of bioactive molecules is crucial to
understand, predict and interfere with their activity. In particu-
lar, it can be used (i) to predict unfavorable side effects due to

off-target interactions and thus potentially decrease the attrition
rate in clinical trials due to toxicity (Kola and Landis, 2004;
Lounkine et al., 2012), or (ii) to predict a new target for an

approved drug and reposition it for another disease (Ashburn
and Thor, 2004; Keiser et al., 2009; Novac, 2013).
Experimental identification of bioactive molecule targets has

received much attention (Ziegler et al., 2013). This has led to
technological developments of large facilities enabling re-

searchers to screen a given molecule against arrays of targets,

such as kinases. Chemogenomic strategies have also been intro-

duced to identify the targets of bioactive molecules in model

organisms such as yeast or bacteria (Smith et al., 2010).

Several databases have been developed by various groups to pro-

vide access to these data, such as ChEMBL (Gaulton et al.,

2012), DrugBank (Knox et al., 2011), PubChem (Bolton et al.,

2008) or ZINC (Irwin et al., 2012). These databases contain un-

precedentedly large datasets of interactions between proteins and

small molecules. For instance, only for human protein ligands,

the ChEMBL database (Gaulton et al., 2012) contains close to

350000 reported direct interactions (i.e. annotated as binding)

with activity510mM involving4200 000 small molecules.

However, a significant fraction of bioactive molecules still do

not have any known target. This is especially true for compounds

tested uniquely in functional assays. For instance, 17.4% of the

compounds in ChEMBL with reported functional activity in

human cells do not have direct target information (see

Methods Section 2.1). Moreover, even for well-studied mol-

ecules, our knowledge of their targets is far from complete.

For instance, N,N-dimethyltryptamine was initially described

as a ligand of sigma-1 receptor (Fontanilla et al., 2009). Later

on, it was shown to also bind hydroxytryptamine receptors

(Keiser et al., 2009). More generally, one can expect that even

a significant fraction of Food and Drug Administration (FDA)-

approved drugs have at least some unknown target.
Computational predictions of bioactive molecule targets are

helpful to narrow down the set of potential targets to be tested

and to predict off-target effects of known molecules or drugs

(Keiser et al., 2009; Kuhn et al., 2013; Lounkine et al., 2012).

A widely used strategy consists in identifying proteins with

known ligands similar to a query molecule (i.e. the so-called

‘ligand-based’ approach). Standard approaches use similarity

measures between molecules based on chemical fingerprints

(Dunkel et al., 2008; Keiser et al., 2009; Wang et al., 2013).

Historically, fingerprint similarity measures have been developed

to classify molecules into families. Thus, they are powerful to

identify molecules derived from the same chemical series.
More recently, other measures of similarity have been intro-

duced (Ballester and Richards, 2007; Perez-Nueno et al., 2012;

Rahman et al., 2009). For instance, it is known that the 3D shape

of molecules plays an important role when binding to a target.

Therefore, the ligands of a protein often display similarity in

their shape. This similarity can be quantified by methods based

on structural alignment (Gong et al., 2013; Liu et al., 2011;

Sastry et al., 2011) or shape recognition (Ballester and

Richards, 2007; Ballester et al., 2009; Wirth and Sauer, 2011),*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3073

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/23/3073/249118 by guest on 13 M
arch 2024

mailto:olivier.michielin@unil.ch
mailto:vincent.zoete@unil.ch
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt540/-/DC1
a
s
,
'
,
lower than 
more than 
'
D
FDA 
,
three-dimensional


such as Ultrafast Shape Recognition. The latter technique was
recently expanded to consider partial charges distribution

(Armstrong et al., 2010) and atomic lipophilicity (Armstrong

et al., 2011). A very attractive feature of shape comparison is

the ability to detect similarities between molecules with different

chemical structures, a property often referred to as ‘scaffold

hopping’ (Renner and Schneider, 2006). Despite this advantage,

previous studies suggest that fingerprint similarity gives higher

performance, both in virtual screening (Venkatraman et al.,

2010) and in target predictions (Nettles et al., 2006). Yet, it is

unclear whether this is due to limitations of shape comparison

(e.g. limited conformational sampling, shortcomings of shape

descriptors) or to biases in benchmarking datasets (e.g. over-

representation of ligands from the same chemical series).
Other approaches to predict targets of bioactive molecules

have been proposed based on higher-level features such as side

effects (Campillos et al., 2008), transcriptional responses (Iorio

et al., 2010; Iskar et al., 2013) and text-mining (Li et al., 2009).
Although these approaches are powerful to identify similarities

between molecules without chemical similarity, they require add-

itional experimental data and therefore are limited to molecules

for which such data are available. For proteins with known

structures, binding site similarity can be used to identify proteins

that could accommodate similar ligands (Haupt and Schroeder,

2011). Moreover, in this case, docking algorithms (Grosdidier

et al., 2011; Morris et al., 2009; Zoete et al., 2009) can help

predict whether a molecule can bind to a target (Li et al.,

2006; Wang et al., 2012).
Here, we develop an original method of bioactive molecule

target predictions that combines chemical and shape similarity

(see Fig. 1). We perform extensive validation of the method and

show that combining these two similarity measures leads to im-

proved performance. This is especially true when predicting the

targets of a molecule in the absence of other ligands originating

from the same chemical series. Thus, our results suggest that the

lower performance of shape similarity measures that was previ-
ously reported, is, at least partly, due to biases in available

benchmarks (Cleves and Jain, 2008). Nevertheless, fingerprint-

based methods still perform well even after stringent removal of

all molecules that are trivially similar (e.g. with the same scaf-

fold). We also observe that different combinations of similarity

measures are optimal for different molecular properties.

2 METHODS

2.1 Datasets

Release 15 of the ChEMBL database (Gaulton et al., 2012) was used

throughout this work. Interactions were selected according to the follow-

ing criteria: they should (i) involve human proteins, (ii) be annotated as

direct binding (‘assay_type’¼ ‘B’) with an activity (Ki, Kd, IC50 or EC50)

510mM, (iii) involve molecules consisting of580 heavy atoms and (iv)

involve targets that are single proteins or protein complexes (e.g. exclud-

ing targets corresponding to protein families and assays with a confidence

level54).We further discarded ambiguous interactions that had reported

activity values both below and above 10mM in different assays. This was

done to address the observed uncertainty of many protein–small molecule

interaction datasets (Kramer et al., 2012). This results in a set of 347 889

interactions involving 1700 human proteins (1627) or protein complexes

(73) and 224412 molecules. As an additional benchmark, we also

retrieved all ChEMBL molecules interacting with human proteins only

with activities between 10mM and 100mM (i.e. none of them are part of

the previous set of molecules). This consists of 79 682 molecules involved

in 94 672 interactions (see Section 3.4). For all molecules, SMILES were

retrieved from ChEMBL using the parent form.

To compute the fraction of molecules with functional activity but

without direct target, we retrieved all molecules involved in assays with

assay_type¼ ‘F’ in human using the same threshold of 10mM (340 256

molecules in total). In all, 59311 of them (17.4%) do not have direct

targets in ChEMBL based on the two criteria: (i) no binding data or

only binding activity 41000mM, and (ii) target_type equal to

‘ORGANISM’, ‘CELL-LINE’, ‘TISSUE’ or ‘ADMET’.

When determining whether two molecules have been tested in the same

assay, all ChEMBL assays involving a human target were considered.

2.2 Ligand similarity measures

Shape similarity is defined as in the study by Armstrong et al. (2011).

Each atom of a molecule is mapped to a 5D space, where the three first

coordinates are determined by the 3D conformation of the molecule. The

two remaining dimensions encode the atomic partial charges and the

atomic lipophilicity (AlogP). Shape comparison is carried out by compar-

ing the three first moments of the distribution of 5D-distances of every

atom of the molecule to six different centroid positions (Armstrong et al.,

2011). Gasteiger atomic partial charges and contributions to molecular

lipophilicity (AlogP) have been determined with the ChemAxon cxcalc

tool (version 5.3.1) and OpenBabel (version 2.2.0), respectively. All

other parameters correspond to the ones in the original publications

(Armstrong et al., 2010, 2011). A maximum of 20 different conformations

have been generated for each molecule with ChemAxon cxcalc tool, after

converting the SMILES from ChEMBL in 3D using the Chemaxon mol-

convert tool, and protonating it at pH¼ 7.4, using OpenBabel. For this,

OpenBabel calculates which species (protonated or unprotonated) is pre-

ponderant at pH¼ 7.4 with the Henderson–Hasselbalch equation, and

adjusts the number of protons and the charge of the molecule accord-

ingly. Each conformation of a molecule was compared with each con-

formation of another one (resulting in 400 comparisons) and the highest

similarity value was chosen. To avoid storing all similarity values between

all pairs of molecules (45� 1010 numbers), similarity values50.65 have

been set to 0.65 and are not stored explicitly. The fingerprints similarity

measure used in this work is based on the FP2 fingerprints implemented

Fig. 1. General workflow. (i) Molecules interacting with human targets

are retrieved from ChEMBL. (ii) Filters are applied to remove large

molecules and ambiguous interactions. (iii) The different similarities are

computed for all pairs of molecules. (iv) Targets are predicted based on

the most similar ligands excluding comparison with the query molecule,

ligands with the same scaffold or tested in the same assays. (v) Regression

coefficients are learned on the training set. (vi) Targets are predicted for

molecules on the testing sets (10-fold cross-validation) and average AUC

values over these molecules are computed. Steps (v) and (vi) apply only

for the combined approach
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in OpenBabel (version 2.2.0). Fingerprints are calculated directly from the

molecular SMILES. Similarity between two molecules is measured as the

Tanimoto coefficient. Similarity values lower than a threshold (here 0.25)

have been set to 0.25 to allow us storing only a sparse version of the full

similarity matrix. Figure 2 shows examples of ligands with shape and

fingerprint similarity.

2.3 Scaffold identification

Molecular scaffolds were uniquely identified with the Strip-itTM software

(version 1.0.1) from Silicos-it. Here we used the OPREA-1 definition of

molecular scaffolds (Pollock et al., 2008), where any cycle is represented

as an n-membered ring (n¼ 3, 4,. . .), linkers between cycles as single

bonds and all side chains are removed (Fig. 3). Based on visual inspec-

tion, this approach provided the most reasonable definition of scaffolds.

Nevertheless, some important limitations arise, e.g. if aromatic rings are

used as side chains within a series of molecules (Fig. 3).

2.4 Combining different similarity measures

To combine different similarity values, we used a multiple logistic regres-

sion, as implemented in R (bayesglm). The features used as inputs corres-

pond to the similarity values based on shape and fingerprint similarities

with either the most similar molecule (K¼ 1) or the Kmost similar ligands

of each target (K¼ 5). For K¼ 1, the logistic regression is given by the

following equation: f(s1, s2)¼ (1þexp[-a0-a1s1-a2s2])
�1, where s1 stands for

the shape similarity, s2 for the fingerprint similarity and a0, a1 and a2 are

parameters learned by the model. In particular, ai (i¼ 1, 2) is proportional

to the slope of f(s1, s2) along the ith axis at the inflexion point. To enable

comparison between coefficients a1 and a2, similarity values have been

normalized between 0 and 1. Neural networks as implemented in R

(nnet package, with one hidden layer consisting of two nodes) were also

tested when using similarity with the K¼ 5 most similar ligands as input.

For the cross-validation, molecules were split in 10 different groups.

Training of the model was done iteratively on nine groups and tested on

the remaining one. A well-known issue when training and benchmarking

binary classifiers of interactions is to have reliable negative data. Here we

used negative data generated as follows. First, we retrieved all molecules

in ChEMBL with binding activity4500mM on some target (1799 inter-

actions involving 1214 molecules). As these numbers are too low to train

a model, we then randomly selected non-interacting ligand–protein pairs

so as to have 10 times more non-interacting pairs than interacting pairs.

In this selection, non-interacting pairs involving a protein with a paralog

(BLAST E-value 510�5) reported to interact with the query molecule

were excluded from the list of negatives, as they could result from incom-

pleteness in the ChEMBL database. Moreover, we further excluded all

interacting pairs that have activity values between 10 and 100mM, or for

which a paralog of the protein has activity between 10 and 100mM with

the query molecule.

The performance was measured with standard receiver operating char-

acteristic (ROC) curves and area under the ROC curve (AUC). AUC

values displayed in this work always correspond to the average of AUC

values over all molecules. As our dataset is large and the number of model

parameters small, we typically used a subset of molecules consisting of

molecules with annotated non-interactions (4500mM, see earlier in the

text) to which 1000 randomly selected ligands were added. We observe

in Supplementary Figure S1 that this approach is sufficient to compare

different similarity measures. Similarly, when training models on different

sets of molecules (e.g. based on properties such as the number of heavy

atoms), all molecules with negative data were first considered and up to

1000 randomly selected molecules with the desired properties were added.

3 RESULTS

Identifying proteins with ligands similar to bioactive molecules is

a strong indication of possible direct interactions that could pre-

dict or explain observed bioactivity. Here, we use the ChEMBL

database to collect known ligands of human proteins and we

explore different similarity measures, based on chemical structure

(Fingerprints) and molecular shape (Electroshape) (Armstrong

et al., 2011), as well as combinations of these (see Methods).

Target prediction is carried out following the workflow of

Fig. 1. A query molecule is compared with all other molecules

in ChEMBL to assign a score to each target corresponding to the

similarity value with the most similar ligand. When combining

different measures of similarity, we use logistic regressions to

combine the similarity values obtained with each similarity meas-

ure (see Methods).
To illustrate the different strategies investigated in this work,

in Figure 2, we show examples of ligands whose target is best

predicted by shape similarity (Fig. 2A), fingerprint similarity

Fig. 2. Target predictions for four molecules with exactly one target in

ChEMBL. Query molecules are shown on the left. Actual target names

are displayed in black circles. Ligands displaying the highest similarity

according to their shape or their fingerprints are displayed above (black

arrow) or below (red arrow), respectively. Bold numbers correspond to

the target rank using each similarity measure. Numbers in parenthesis

show the rank of the ligands when computing similarity with all other

molecules in ChEMBL. Green numbers show the target ranks obtained

with the combined approach. A: shape similarity performs best. B: fin-

gerprint similarity performs best. C and D: combining the two similarity

values give the best predictions

Fig. 3. Subset of neuropilin-1 (CHEMBL5174) ligands. Blue boxes show

the molecules with the same scaffolds as defined with OPREA-1 (see

Methods). Scaffolds are displayed above the dashed line. Red boxes

show the molecules tested in the same assays. All other neuropilin-1

ligands would fall in the first column
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(Fig. 2B) as well as combination of both (Fig. 2C and D). In

(Fig. 2A), the query molecule (CHEMBL1240762) has only one

reported target (CDK1, IC50¼ 2.5mM), and no other ligand

of this protein is a simple analog of this molecule. Therefore,

predictions based on fingerprint similarity rank this target at

position 168 among all 1700 possible targets. Shape similarity

instead identifies a ligand of CDK1 that displays similar overall

shape and partial charges distribution, and based on the similar-

ity with this molecule, CDK1 is ranked at the fifth position

among all targets. Figure 2B shows a frequently encountered

case, in which a clear analog (CHEMBL1210985) of the query

molecule is present among the ligands of its target. In this case,

fingerprint similarity is more appropriate. In particular, the miss-

ing hydroxyl groups in the most similar ligand detected by the

fingerprint similarity (CHEMBL1210985) result in lower shape

similarity that prevents accurate predictions. This example high-

lights some of the possible weaknesses of shape comparison and

already suggests that combining different similarity measures is

useful to optimally harness the information present among the

ligands of a target. As examples of the combined strategy, we

show in Figure 2C and D, typical cases where combining the two

kinds of similarity results in better predictions. Here, both shape

and fingerprint similarity values give reasonable predictions, with

the cognate target being ranked between the 9th and 29th pos-

ition. However, combining the two kinds of similarities results in

significantly better performance, indicating how the presence

of different ligands similar to the query molecule according to

both similarity measures gives even higher confidence in the

predictions.
More generally, Table 1, first row, shows the average cross-

validation AUC values over all tested ligands. We can observe

that fingerprint similarity performs better than shape similarity

and the combined approach leads to the highest AUC, although

all three approaches give very high AUC values. However, as

discussed in the next section, these high AUC values mainly

result from the habitual design of chemically related molecules

to target the same protein. In particular, cases of close analogs

among the ligands of a target (see example in Fig. 2B) appear

very often in ChEMBL.

3.1 Addressing redundancy in benchmarking datasets

A major issue in benchmarking ligand-based target prediction

methods comes from the strong biases observed in sets of pro-

tein–ligand interactions (Cleves and Jain, 2008; Rohrer and

Baumann, 2008; Yera et al., 2011). The standard strategy used

in drug design or medicinal chemistry projects is to start from a

lead compound and replace one by one the different fragments of

this compound (Cleves and Jain, 2008). Therefore, a set of lig-

ands targeting a protein consists often of highly similar molecules

belonging to the same series (see Fig. 3). As a result, ligand-based

approaches trained on such datasets tend to give over-optimistic

predictions. For practical applications, it is important not to be

restricted to this kind of direct similarity, as new bioactive mol-

ecules for which targets are to be predicted may typically not be

part of existing series. Similarly, when attempting to predict off-

target effects of existing drugs, it is unlikely that molecules from

the exact same series have already been tested on the new targets

(Yera et al., 2011). These biases have been identified in smaller

datasets, for instance, by observing a higher chemical similarity

between molecules having the same primary targets compared

with those having the same secondary targets (Cleves and Jain,

2008).
To address these issues, we first used information about the

scaffold of molecules, as molecules of the same series often dis-

play a conserved scaffold (Pollock et al., 2008; Schuffenhauer

et al., 2007). We reasoned that, when making predictions for a

given compound, molecules with the same scaffold may typically

not be present among the ligands of its targets. Therefore, we

prevented comparison between molecules with the same scaffolds

that are ligands of the actual targets in our cross-validation study

(see Methods). Table 1, second row, shows the obtained AUC

values. As expected, AUC values are lower than before. This

further confirms that the very high AUC values reported in the

first row of Table 1 are merely a consequence of the high level of

redundancy among ligands in our dataset, and are only relevant

if the query molecule is part of a well-known chemical series.

Although clustering molecules with respect to their scaffold

helps identifying those coming from the same series, we still ob-

serve several cases of highly similar molecules that clearly come

from the same series but have different perceived scaffolds (see

example in Fig. 3). This is a well-known limitation of using scaf-

folds to unveil chemical series. However, to the best of our know-

ledge, there is no unified computational method that can unravel

the chemical series among any set of molecules. Fortunately, in

our case, we can use historical information present in ChEMBL,

and especially assay numbers that can provide further clues

about chemical series. Thus, as a second filter, we also prevented

comparisons between molecules that had been tested in the same

assay (see Methods). While this approach cannot fully exclude

comparisons between molecules from the same series, visual in-

spection of many specific targets indicates that it already filters

out many cases (see Fig. 3). The AUC values obtained when

preventing comparison between molecules with the same scaf-

folds or tested in the same assay are shown in Table 1, third

row. The same trend as before can be observed: the more we

prevent comparisons between molecules from the same series, the

lower the AUC. Importantly, we can observe that combining the

two methods leads to significant improvements. This clearly sug-

gests that the two approaches are complementary and combining

them is useful to optimally capture the information present

among the ligands of a target.

3.2 Influence of ligand properties

Different similarity measures may show different performance

depending on the characteristics of the molecules. Here we

Table 1. AUC values for different similarity measures and different com-

parison schemes

Comparison Shape Fingerprints Combined

All comparison 0.985 0.993 0.994

Distinct scaffolds 0.943 0.971 0.979

Distinct scaffoldsþ distinct assays 0.894 0.921 0.932
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investigate how the number of heavy atoms, the absolute total

charge and the lipophilicity (logP) affect our predictions. We first

cluster all 224 412 molecules investigated in this work according

to their number of heavy atoms and trained separate linear re-

gression models for each group. Figure 4A–C shows average

cross-validation AUC values as a function of the number of

heavy atoms for the three comparison schemes studied here.

We observe that predicting targets of smaller molecules is more

challenging. Moreover, our results indicate that combining dif-

ferent similarity measures is especially useful for molecules with

�30 atoms, which corresponds approximately to half of the

bioactive molecules targeting human proteins in ChEMBL

(Fig. 5A), and to the majority of FDA-approved drugs

(Fig. 5B). To gain further insights into the influence of the

ligand size, we show in Figure 4D–F, the evolution of the two

logistic regression coefficients a1 and a2 (see Methods). The

higher these coefficients, the more discriminative the similarity

value is for the predictions. We can observe that the two coeffi-

cients take similar values for small molecules, but coefficient a2
(associated with fingerprint similarity) increases, whereas coeffi-

cient a1 (associated with shape similarity) gently decreases with

molecule sizes, further suggesting that shape similarity mainly

helps discriminating interacting from non-interacting pairs

for smaller size molecules. In one case (number of heavy

atoms¼ 42), the fingerprint similarity was enough to drive the

predictions, and a1 takes values close to 0 or negative.
We also analyzed the effect of the absolute total charge and

the lipophilicity (logP). Apart from being important properties of

many ligands, we note that Electroshape similarity was de-

veloped to include partial charges and lipophilicity in the shape

description (Armstrong et al., 2011). Therefore, one could expect,

for instance, that this similarity measure will perform better on

predicting targets of charged molecules for which the presence of

a charged group plays an important role. Overall, we do not

observe a clear influence of these two molecular properties on

our predictions. When grouping ligands according to the charge,

the performances are not markedly different and optimal

combinations of the two similarity measures are similar for dif-

ferent absolute charges (see Supplementary Fig. S2). When con-

sidering ligands with different lipophilicity, we can observe

different behaviors for different logP values (Supplementary

Fig. S3). However, these differences are largely explained by

the correlation (r¼ 0.45) between the logP and the number of

heavy atoms for the molecules present in our dataset

(Supplementary Figs S4 and S5, and Supplementary Method

S1). This suggests that lipophilicity has only a minor impact on

our predictions. Overall, it appears that building separate models

(here logistic regressions) for different numbers of heavy atoms is

useful and informative, but not for different absolute total

charges or logP values.

3.3 Similarity with many ligands

So far, we have based our predictions on the ligand of each target

that displays the highest similarity with the query molecule, neg-

lecting information about other ligands. However, one could

imagine that being similar to several ligands could give higher

confidence in the predictions. To explore this aspect, we trained a

regression model using as features the similarities with the K¼ 5

most similar ligands of each target. If less than K ligands are

known for a target, the minimal similarity value was used for all

missing values. Results in Figure 6A–C indicate that only very

little, if any, improvement is obtained. In this case, the number of

parameters is larger (5 for each kind of similarity and 10 when

combining them), suggesting that more elaborate machine learn-

ing models may prove beneficial. We also trained a neural net-

work (see Methods), but did not observe any improvement either

(see Supplementary Fig. S6).

3.4 Predicting lower affinity targets

To complement the previous cross-validation studies, we ana-

lyzed the set of molecules in ChEMBL that only have reported

binding data between 10 and 100mM. These molecules are not

part of the training set and can be used to independently test our

method. Figure 6D–F shows the AUC values obtained for dif-

ferent numbers of heavy atoms, using the regression coefficients

of Figure 4F for the combined approach. AUC values are lower

than in cross-validation studies as expected, as molecules with

lower affinity display less similarity with other ligands of their

cognate target. Importantly, the general trend that combining

different kinds of similarity measures yields more accurate

Fig. 4. AUC values for different molecule sizes. (A) The data obtained

with the full ChEMBL dataset, (B) when restricting comparison to mol-

ecules with different scaffolds and (C) when restricting comparison to

molecules with different scaffolds and not tested in the same assays.

Note the different y-axis scales. (D–F) regression coefficients for the

combined approach

Fig. 5. (A) Distribution of the number of heavy atoms of ChEMBL

molecules and (B) FDA-approved drugs. Dashed bars indicate the

median
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predictions is confirmed, even in the absence of comparison re-

strictions between molecules with the same scaffold and/or tested

in the same assays. These results suggest that our method is able

to unveil weak affinity targets, which is useful for the detection of

secondary targets, and for the identification of molecules that

could then be optimized to improve the activity and efficiency

once their targets are validated.

4 DISCUSSION

Accurate predictions of bioactive molecule targets are powerful

to unravel the mechanisms of action of new molecules, guide

experimental testing or predict off-target effects of known

drugs. Several ligand-based strategies have been recently de-

signed that use different kinds of similarity measures between

small molecules (Armstrong et al., 2011; Ballester and

Richards, 2007; Campillos et al., 2008; Keiser et al., 2007;

Wang et al., 2013). Here, to have the broadest possible coverage,

we focus on similarity measures that only use information from

the 2D and 3D structures of the small molecule (i.e. without

requiring data such as side effects or transcriptional response),

and we tested our approach on the ChEMBL dataset of human

protein ligands, which is one of the largest datasets of protein–

small molecule interactions.
Our results indicate in general that fingerprint similarity per-

forms better than shape similarity. However, as it was also

observed in previous studies on smaller datasets (Cleves and

Jain, 2008; Nettles et al., 2006; Yera et al., 2011), we show that

this is partly due to the presence of structural analogs resulting

from biases toward chemically similar molecules when develop-

ing compounds targeting a given protein. The differences

between the two similarity measures become smaller when pre-

venting comparisons between molecules with the same scaffold

or tested in the same assays, and this trend is particularly strong

for molecules with530 heavy atoms. In those cases, combining

the two methods gives significantly better performance.

Considering that even our stringent approach to identify chem-
ical series may not fully cover all cases (e.g. if two teams have
developed molecules starting from the same lead compound, the

resulting similar molecules will often not appear in the same
assay), it clearly suggests that including molecular shape descrip-
tors into target prediction approaches is useful for achieving the

best accuracy.
Our work indicates that prediction accuracy changes with the

size of molecules. Different mechanisms can explain this obser-
vation. First, for large molecules, the number of distinct confor-

mers is typically high, and therefore, conformational sampling
used in shape comparison may be more difficult. Second, a small
change (e.g. replacing a carbon by a nitrogen in an aromatic ring)

in a molecule with only a few heavy atoms will impact a large
fraction of the fingerprints describing the molecule, whereas the
same change in a large molecule will only impact a small fraction

of the fingerprints. Therefore, fingerprint comparison may be
slightly more sensitive to small changes for molecules with a
lower number of heavy atoms. As a consequence, models trained

for small molecules give almost equal weight to shape and fin-
gerprint similarity, whereas models used for larger molecules rely
more on fingerprint similarity values. We also stress that, while

the heavy atom distribution of molecules in ChEMBL is peaked
�30 (median at 29), 75% of FDA-approved drugs have 530
heavy atoms (median at 23, see Fig. 5). Therefore, our combined

approach is likely to be especially appropriate for target predic-
tions of drug-like molecules.
Our results also show that similarity with the most similar

ligand of a target is driving the predictions, and integrating simi-
larity with other (less similar) ligands does not improve the per-
formance in all our benchmarks. Although this came a bit as a

surprise (one could imagine that being similar to many ligands
would strengthen the confidence in the predictions), it appears
that a similarity larger than a given value T with several ligands is

almost always accompanied by a similarity T’4T with at least
one ligand.
Overall, our comparison of the two kinds of similaritymeasures

suggests that chemical similarity is more appropriate if other mol-
ecules with similar scaffolds are present among the ligands of a
target. If not, and this might correspond to more realistic situ-

ations of new scaffolds being developed, combining shape com-
parison with chemical similarity gives the best performance. In
particular, it has the potential of identifying similarities between

molecules that do not display similar chemical structures, thereby
raising the possibility of scaffold hopping. On the more technical
side, our results indicate that one should first carefully study the

biases in protein ligand datasets when comparing small molecule
target prediction approaches. In particular, preventing compari-
son between molecules with the same automatically determined

scaffold is often not sufficient to remove biases due to the presence
of analogs. We also note that similarity measures tend to perform
differently onmolecules of different sizes, suggesting that different

models should be applied depending on the nature of the query
molecules. Although the current method has been applied only on
molecules with activity in human, it could be expanded to different

organisms, such as other vertebrates, yeast, fungi or plants, where
large datasets of protein–small molecule interactions are also
available and active molecules have interesting pharmaceutical

or agricultural applications.

Fig. 6. (A–C) AUC values obtained when training the logistic regression

with the similarity values of the K¼ 5 most similar ligands. Dashed

curves correspond to AUC obtained with the most similar ligand

(K¼ 1). (D–F) AUC values for target predictions of molecules interacting

with human targets with activities between 10�M and 100�M. The same

comparison schemes as in Figure 4 are used. Note the different x-axis and

y-axis scales
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